本周專欄,一樣講國一數學,預計分上下兩篇
===================
中學以下的素養教育與經驗談:一元一次方程式(上)
質因數、因倍數跟分數四則運算還好,小學夠熟的話,這邊大概問題出在練習不夠,或是遇到應用題轉不過來。家長請用筆者之前提過的方法,要求小朋友遇到應用題,口說解釋題意,你會知道他哪邊弄不清楚。若問題是在語文能力,就只能多讀多看多寫了;計算能力不佳,就透過計算簡單但數量多的題目來練反應。
再講一次,中等程度的學生,筆者從沒見過不練習,就自然而然會的。隨便寫寫就會的,程度至少都中上以上,換PR比例是超過80,別以為這好像很差,意思是10個同學裡面只有2個可以。
你確定家裡的寶貝是嗎?
自己在家教小朋友沒有面子問題,請不要死不承認自家小孩程度真的不好,會被害死的是小孩,不是爸爸媽媽。
[數學不再只是算術──掌握數學語言]
進入一元一次方程式後,主要有三點要注意,一個不小心會牽連到往後的二元一次聯立、一元二次方程式。簡單說就是,高中數學要投降吧。
1. 徹底理解一元、一次,方程式的意義
2. 怎樣解題
3. 如何看懂及設計應用題
一元一次方程式的定義,課本一定會教。一元指的是未知數只有一個,一次指的是指數只會是1,不會有2次出現。方程式的意思很多,在國中來說只會講到恆等式,所以小國一只要讓他知道「多數情況下,方程式代表一個等號,兩邊要相等」的概念就好。
用範例來說
x+1 = 2
2x+2 = x+1
2x+1 = 5
家長一定要問,問到學生可以表達「第一個式子意思是,等號左邊有一個未知數X,加上1後會等於2」,能到這種程度,才算是可以理解方程式的定義。千萬記得要力求正確,不要呼嚨過去「就一個不知道是多少的,加上1後會有2嘛」,這在表達一元一次還好,二次式後面就開始會昏。(按:未知數的含義及運用遠遠大於「某個特定數字」的概念,因此後者僅是就算術的邏輯在理解,並未開始掌握數學語言)
雖說我們目的不是要培養數學家、科學家……但是,
「數學不是算術」。
=====================
全文請至方格子專欄閱讀https://vocus.cc/eoiss/60c8defdfd8978000162c8df
同時也有19部Youtube影片,追蹤數超過53萬的網紅映像授業 Try IT(トライイット),也在其Youtube影片中提到,■■■■■■■■■■■■■■■ 【Try IT 視聴者必見】 ★参加者満足度98.6%!無料の「中学生・高校生対象オンラインセミナー」受付中! 「いま取り組むべき受験勉強法」や「効率的に点数を上げるテスト勉強の仕方」、「モチベーションの上げ方」まで、超・実践的な学習法をあなたに徹底解説します! 今月...
一元二次方程式練習 在 Facebook 的最佳解答
【規範:未來,先確認目標】
在談規範制訂之前,除了「融洽的親子關係」要建立,還有一個重要的觀點要先被確立,那就是「父母對孩子的課業要求」的目標是什麼?
如果父母的目標是:成績優異,考取班上前三名,段考均需要在95分以上。
這個目標非常清楚,如果孩子的天資聰穎,想要朝這個目標邁進,理應不會是太難的事,遊刃有餘的孩子,還能空出許多時光,父母亦能與孩子在假日保有融洽又緊密的親子關係。
但,若孩子的學習狀況是需要花費大量時間去努力、練習、寫評量,必須花費所有精力去投入學習,才能換來優異的成績,這樣的孩子,父母想必會擔心孩子一旦鬆懈,課業就再也追不上排頭的成績,為了讓孩子永遠名列前茅,肯定會挪動所有空閒時光,提供給孩子讀書、學習、複習、預習、補習、寫評量,這麼一想,孩子的時間自然而然被填滿,親子時光又能從何處培養?
因此,規範的制訂,究竟是為了讓孩子得到學業成績的高分,還是為了讓家庭更和諧,得與失,衡量之後,才能明白此番選擇之後,我們會得到什麼,以及,會失去什麼,這些都是選擇而來的。
不管父母選擇的目標是什麼,當孩子終於得取功成名就時,我深信父母會為孩子欣喜、會為孩子感到驕傲,但當孩子挫敗或困頓時,我擔憂的是,我們是否已經做好了父母與孩子連結的網,讓孩子安全的降落?
唐鳳,一個從小就展現天分的天才,她是個耀眼的天才,不用費勁讀書,就能永遠的名列前茅,但看過她的採訪報導的人都知道,世界是容納不了真正的天才,因此唐鳳的求學之路,比一般人更坎坷艱辛,因為成績太過優異,遭到同學霸凌,小學六年,轉學六次。成績優異的唐鳳,承受著外界不能明白的困境,而她又是靠著什麼樣的信念,支持她一路挺過來?
唐鳳說:母親,是我生命中的救星。
一個成績優異的天才,也會有挫敗困頓的時刻,所幸她的母親一直站在她身後,為她織起一張溫暖的親子網,支持她轉學,支持她考試交白卷,支持她走一條只有唐鳳能走的路。
唐鳳的母親,溫柔的接住了困頓的唐鳳,於是我們才能有今日的IT大臣。
今天清明連假第一天,藉由唐鳳求學歷程的故事,學習連結孩子,讓每一個孩子都能在愛與幸福中成長。
==================
媽媽是我生命的救星/採訪:陳雅林
#原文連結:https://reurl.cc/1gplGW
「慘遭霸凌的資優生童年」
到底,天才是怎麼形成的呢?
唐鳳的爸媽都在平面媒體工作,非常喜歡閱讀,這也使得唐鳳從小就被很多書籍環繞,她覺得書上的文字充滿魔力,加上罹患先天性心室缺隔,不能做太多戶外運動,所以待在家裡的時間很多。她通常接觸到什麼書籍,就一頭栽進去研究,當然,剛開始不識字,唐鳳必須靠長輩念給她聽,但由於天資聰穎,識字能力快,五歲就開始閱讀各國經典著作了。
幼稚園的時候,父親常常牽著唐鳳的手,一邊散步一邊跟她談論蘇格拉底、因式分解以及矛盾集錦(就是數學的六個領域:邏輯、機率、數、幾何、時間及統計之間的矛盾),這些高等數學的概念讓年幼的唐鳳非常著迷。
「反正數學用到的文字不多,它大部分是方程式,我覺得這是比較容易掌握的。」唐鳳居然認為方程式比較容易掌握,我想這對大多數數學不好的人來說,會倍覺受傷。當時的她,解方程式就好像是在玩遊戲過關一樣,不斷地征服關卡、挑戰難題,讓她一路進階到九元一次方程式,這是三歲到七歲的時光。她說:「我小時候也不是什麼都看得懂,之所以會多種語言與經典,都是跟家人對話學習到的,但對於數學和音樂,就覺得很有興趣。」
漸漸的,熱愛數學邏輯的唐鳳,對家裡的一些電腦程式設計相關的書開始感興趣,但家裡沒電腦,於是,她用原子筆畫出一個鍵盤,再用鉛筆畫出電腦螢幕上的反應,自己在紙上按一按鍵,然後再擦掉螢幕上的鉛筆做出不同的反應,用這種最陽春的方式開始寫程式,爸媽看不下去,兩週以後就買電腦給唐鳳了,從此探索之門大開,等於,唐鳳從小的學習就是從自己的興趣開始的,而且自學,這種學習完全沒有邊界。
但這一切,直到上了小學、進了體制,她才發現處處被制約在同一個框架裡,自己反而跟學校格格不入。小學一年級的時候她已經可以解出聯立方程式,而且當老師教一加一等於二時,唐鳳舉手跟老師說:「那不一定,如果是二進位的話,一加一就不等於二」,當場讓老師很難招架,後來老師乾脆要她每次上數學課時都去圖書館自己看書,唐鳳從此被從團體中隔離出來,她開始意識到自己跟其他人的不一樣。
第二名的同學竟然希望第一名的唐鳳死掉
當時學校透過資優測驗,已經確認唐鳳的智商是屬於最高等級,於是詢問唐鳳的爸媽是否讓孩子轉到有資優班的學校?唐鳳與媽媽討論,覺得嘗試新環境也不錯,但萬萬沒想到,資優班裡扭曲的競爭,徹底擊垮了唐鳳,第一名的她,被霸凌了。
「因為當時資優班裡有一位同學,常常考第二名,而只因拿不到第一名,回家就會被家長打罵,於是,這位同學憤恨不平地來嗆我說:『如果你不在這個世界上,那我就是第一名了。』……」第二名的同學竟然希望第一名的唐鳳死掉、消失,這是多麼可怕的詛咒。
不只如此,同學們為了考好成績,有一次趁老師不在的時候,伸手搶她的考卷想要抄答案,但唐鳳不想讓同學看,就拿著考卷逃跑,四、五個同學在後面追,最後跑到摔倒在地上,同學上前補了一腳,導致她撞牆昏倒。
這一年著實難熬,唐鳳經常在半夜做惡夢,不但會驚醒大哭,甚至還出現自殺的念頭。她很不快樂,會把自己關在房間裡哭,最終痛苦地跟媽媽說:「我不要上學了。」母親眼看自己的小孩都想自殺了,當然支持孩子休學,小二下學期,唐鳳就再也沒有去學校了。
之後再度轉學,這回轉到台北市指南山區的一所迷你小學念小學三年級,雖然環境與資優班比起來相對友善,但依然無法滿足唐鳳的學習需要,唐鳳母親開始另外幫唐鳳找尋學習資源,也開始支持唐鳳部分時間在家自學了,自己擬定學習計畫。總計小學六年,唐鳳就轉了六所學校,她現在會開玩笑地說:「我每個小學都只待一年,這樣的轉學法,剛好使得我都不用做暑假作業,這是最開心的地方」,狀似幽默輕鬆,但其實這段過程也是斑斑血淚,尤其包括父親的不諒解。
人與人之間,不該只有「競爭」
當時爸爸曾經認為唐鳳應該要有能力去面對群體生活的困難,並且解決它。這造成親子之間的衝突愈發劍拔弩張,逼得父親最後遠走德國修習博士,暫時逃離這個高度緊繃的教養問題。而唐鳳的母親則到處找尋資源,來因應唐鳳旺盛的學習力,像是台大數學系教授朱建正,他是三個資優生的爸,很能了解同樣天賦異稟的孩子思維,他和唐鳳每週有兩個小時在研究室聊天;另外,媽媽還帶著小學三年級的唐鳳到楊茂秀博士所推廣的兒童哲學「毛毛蟲哲學教室」,在這邊,她遇到的老師是輔大哲學研究所的研究生陳鴻銘,雖然年紀相差很多,但兩人卻不斷地進行批判性、關懷性與創造性的對話與思辨。還有一位楊文貴老師,也幫唐鳳到大學社團裡找一些擅長數理的大四學生,跟小三的唐鳳討論數學。
重新接觸數學和哲學的唐鳳,身心靈似乎比較安定下來,媽媽再幫孩子轉學到新店山上一所迷你小學,這個學校標榜與大自然親近,校長很樂意讓唐鳳以不同的方式的就學,後來唐鳳就從四年級直接跳級到六年級,而且一週只要去三天就可以,這時候的唐鳳愛上讀詩、寫詩。
後來小學六年級的課程都修完了,媽媽帶著唐鳳到德國去找爸爸,就留在異鄉重讀四年級,當地老師明白唐鳳的數理優異,因此數學作業都可以不用寫,老師全力幫助唐鳳學德文,兩個月的時間,她就能聽說讀寫德文了,真的是天才,後來她又繼續跟著同學一起學法文。
在德國的歲月,很開心,更難能可貴的是,父子情感漸漸修復,唐鳳認為,是德國的自由適性發展教育環境改變了父親。
她回憶著說,「當年我在台灣念小學,每個學校都念不滿一年,這確實比較不尋常,從父親的角度來看,他也不知道要怎麼看待自己的小孩,是一個完全非他小時候所學到的那種直線成就取向。我想,他在德國待了一年後,大概也慢慢了解,看事情本來就有很多的方法,也不需要一定要去迎合體制或衝撞體制,總是可以找到新的路。所以,後來是父親改變了!」
「但畢竟父親曾經希望你能設法留在體制,去勇敢面對困難、解決困難,妳怎麼跟他溝通這件事的?」
「當時我是用體育選手做比喻,像是舉重,在那個舉重選手適合的量級去舉重,是在鍛鍊肌肉,但如果越級,就是超過量級,硬要去舉重的話,不但鍛鍊不到肌肉,而且可能傷筋動骨,可能會一生都沒有辦法從那邊恢復。所以,我想每個人的承受力還是有限的!」
這樣的比喻,感覺像是揠苗助長,但唐鳳想說的是,把人放在不對的環境就是很窒息,他更具體的描繪:「好比現在把你裝到一個八歲小孩身體裡,然後要去每天去上學二年級,你也會受不了的!」
結果,唐鳳一家四口和樂地在德國生活,一下子一年就過去了。德國小學是四年制,唐鳳已經念完四年級,那下一步呢?德國老師想推薦資優的唐鳳去一所明星中學就讀,另外也有來自美國的華裔訪問學者提議讓唐鳳去美國名校就讀,但一直有思辨能力的唐鳳卻自己做出決定—她要回台灣,要在自己的土地長大,理由是,她要做台灣的教育改革!
怎麼回事呢?小時候歷經霸凌的唐鳳,一再思考,那位希望她死掉的第二名同學為什麼會有這樣仇恨極端的態度?她的結論是,八歲的孩子不會自己想像出這樣的講法,一定是家庭給她「人與人之間要相互競爭」的想法,因此她說這是整個結構性的問題,她希望能解決這個問題。思考的過程,她看了很多兒童心理學的書,想著:「我未來如果能夠投入教育的話,我要把這種結構上的狀況解決掉,不要讓大家覺得只有一種價值叫做競爭!」
於是,唐鳳回來台灣,再念一次六年級後,升上國中,當時的校長杜惠平與唐鳳深談過後,特許她不用每天到學校,只要有參加學校考試、可以記錄成績即可。那麼,不用上學的日子,她就到大學去聽課,不但聽了許多政治系、法律系和哲學系的名師課程,她的海量閱讀,更讓她浸淫在各式各樣的經典大作裡,而拜網際網路崛起之賜,唐鳳更自在地認識了一大批台灣的電腦天才。
「我十二歲第一次寫比較大型的程式,當時有一些清大、交大的研究生在虛擬世界裡面教我怎麼寫,就像是請家教一樣。」唐鳳回憶著說。
「那他們一定不知道這個寫程式的人只有十二歲?」我好奇電腦彼端的人恐怕不知道電腦此端是個孩子。
「對,但我在某些地方也會主動講我只有十二歲,但對方很多人不相信」,對唐鳳來說,年齡完全不是個問題,於是她發現,幾歲這件事,是看自己怎麼設定,「我如果表現得很幼稚,人家就把我當小孩;我如果表現得很成熟,人家就把我當大人。後來,我發現,他們是覺得我是一位很喜歡裝小孩的大人,哈!」看來唐鳳成熟到反而被動變成偽裝能力超強。
我沒有要PASS
而她能完全脫離學校的制約,是在國中二年級,儘管唐鳳可以不用到校,但校長希望她能參加考試才能有成績紀錄,但每次唐鳳都是交白卷。
「交白卷就零分耶!」我不解地問。
「那同學就沒有什麼可以抄的!」唐鳳還是覺得,「成績是自己的成績,為什麼要給別人看」,看得出幼時的霸凌讓她傷痕很深。
「那零分,你要怎麼PASS ?」我再問。
「我沒有要PASS 啊!」唐鳳這麼一答,瞬間讓我自慚形穢,覺得自己是否落入成績主義與升學主義的窠臼裡了……。
正當心頭為之一震時,她又說:「因為當時我國二的時候,校長已經跟我說,我之後其實不需要去學校,因為我自己有一套不需要學歷也可以做學問的方法,校長很支持我。但因為我那個班級是自願就學的實驗班,這個班之後會上哪個高中,完全是靠在校成績來決定的,如果我國一成績太好,國二不交幾張白卷拉下來的話,會影響到其他班上同學的升學。」
喔?原來唐鳳的交白卷,是為了避免同學的升學受到她成績太高的比例影響,果真,在校園體制裡,她的學習得處處考量到別人的處境……後來唐鳳就輟學了!
其實,唐鳳當時多次參加科展比賽奪大獎,早就可以保送建中了,但她就已經不想再待在體制裡了,當時她有建中的朋友直接跟她說:「你不用來讀建中,因為你自己就已經有研究方向,自己一天想要研究個十六個小時都可以,但如果去念高中的話,一天就會被學校綁住八小時,還得被迫分神去應付別的事情,何必如此呢?既然已經有一個清楚的學習計畫,就執行它就好了!」
母親是我生命中的救星
接下來,開始完全自學的日子,網際網路上,唐鳳自由地向來自全球各地的高手學習,當時她的朋友群都是電腦很高竿的大學生,她也開始投入自由軟體運動與開放原始碼,朋友非常均勻地分散在全球每個時區都有。到了二十四歲,比較有能力旅遊了,唐鳳兩年內飛了超過二十個城市,一一去拜訪世界上她早已交流多時的高手朋友,自由學習真的讓她更如海綿般的吸納各家門派的技藝一樣,非常如魚得水。
「母親是我生命中的救星……」
唐鳳的母親李雅卿,曾經擔任《中國時報》記者和專欄組副主任、《商業周刊》副總編輯,法律研究所畢業,在媒體工作上的表現傑出,但為了專心陪伴天才兒子的成長,兩度辭掉工作。
「你最感恩媽媽的是當人生遇到哪些狀況時,她指引你往前走?」我問。
「一個就是我小學二年級被霸凌後決定休學,媽媽支持我,她跟我說:
『休學就休學,沒有關係,老師那邊,媽媽會去處理。』而我就是那個時候開始看兒童心理學的書,想搞清楚同學怎麼會變成那麼愛競爭的樣子。」
唐鳳回憶,「如果不是由我母親擋著學校的話,其實按照強迫入學條例,我其實不能不去學校,所以這個是很重要。」
小二的資優班就學歷程,是唐鳳人生最大的噩夢,當時包括唐鳳的弟弟唐宗浩也三歲了,兩兄弟經常會打電話找媽媽,牽掛的問題愈來愈複雜,於是,唐鳳家開了家庭會議,看是要爸爸還是媽媽辭職回家陪小孩,畢竟這兩位家長都在同一家報社上班。投票結果三比一,媽媽三票,兩個兒子都要她陪,爸爸得到的唯一一票是自己投給自己的,所以大家尊重這個民主結果,由媽媽離開報社,開始在家教育小孩。
走過生命幽谷,唐鳳非常感恩母親:「我小二休學,媽媽決定辭職陪我成長後,她有類似用兼職的方式去《商業周刊》工作,但是後來發現我休學之後,其實需要的不只是有人陪著,而是需要能找到更多的老師來帶領我,這個時候她在《商周》那邊可能也沒有那麼多時間,所以她等於是為了我辭職了兩次!」唐鳳的眼光閃爍著對母親的感謝之意,如果不是媽媽的陪伴與帶領,她不知道自己會陷入怎樣的痛苦深淵。
現在的唐鳳,享譽全球,身心靈都綻放出自由與自信的光芒。回想自己人生最難熬的歲月,就是八歲小二被霸凌的那個階段,尤其,當時原本很疼她的阿嬤和爸爸都要求她對於困境「再撐一下」時,她覺得簡直是世界末日、極度不舒服,所幸母親的即時全力救援,讓孩子展開精采的人生。
「那你第二次覺得要非常感謝媽媽是什麼時候?」我問。
「再來就是在國中二年級,我決定考試交白卷,完全放棄學歷!」
「媽媽馬上就能接受你國中肄業的學歷?」
「沒有,就算是母親,也很難接受這樣的行為。所以當時我就直接去找杜惠平校長,杜校長很開明,他說沒有問題,教育局那邊他來幫我處理,意思就是督學、體制什麼的,我們都不用擔心,他就是幫我擋著這樣。那麼,當杜校長採取了這個態度之後,我母親也就OK了,這也很重要。」
唐鳳生命中的貴人救星,真的都扮演了極為關鍵的角色。
🔥 2021父母教養手冊《薩提爾的親子情緒課》https://reurl.cc/A8Vj8p
🔥 2021年9月台北親子教養工作坊:https://reurl.cc/1gGbAX
#高雄工作坊11月6和7 (活動未上架,目前開放三人以上團體報名)
#台中工作坊12月11和12 (活動還未上架,目前開放三人以上團體報名)
一元二次方程式練習 在 李河泉老師 Facebook 的最佳解答
No.1485〈「解題力」是非學不可的事〉
我曾經說過,
人的一生中,
應該有一萬題需要解決
https://www.facebook.com/superschool.tw/posts/1607909759225446/
碰到問題請千萬記得,
與其跳開,
不如解開。
在七大卓越領導力,
我特別設計了「解題力」這堂課,
針對「人的問題」和「事的問題」
做不同的解法。
課程中我提到,
如果一般的事情
等於一元二次方程式
X+5=13
3X + 7 = 21
那麼加上人的問題
就等於是三元一次方程式
X+Y+Z=9
2X+3Y+4Z=29
3X+2Y-Z=8
變得超級複雜。
一整天的討論加演練當中,
最特別的是,
我在課堂上直接讓大家role-play「換位思考」,
先請所有同學討論出一個企劃案,
再請同學們分別扮演可能提出反駁意見的「財務部門」、「工程部門」、「客服部門」、「人資部門」、「廣告部門」,製造一些難題,
之後再請同學「換回原本企劃角色」,
去解決這些問題,
一來一往之間,
才是真正「換位思考」的最棒實際演練。
下半年還有一堂解題力,
請不要錯過
七堂課報名連結
https://www.accupass.com/event/1904281142271153337428
今天星期一
解題之道無他
惟不斷練習而已
各位河粉早安
P.S 李河泉老師的內容都歡迎分享
#人際職場溝通談判 #正向思考正面正念力 #成長學習反省 #語錄
https://drive.google.com/open…
一元二次方程式練習 在 映像授業 Try IT(トライイット) Youtube 的最佳解答
■■■■■■■■■■■■■■■
【Try IT 視聴者必見】
★参加者満足度98.6%!無料の「中学生・高校生対象オンラインセミナー」受付中!
「いま取り組むべき受験勉強法」や「効率的に点数を上げるテスト勉強の仕方」、「モチベーションの上げ方」まで、超・実践的な学習法をあなたに徹底解説します!
今月・来月のセミナー内容や日程は、トライさん公式LINEからご確認いただけます。
↓↓友だち登録はこちらから↓↓
https://liny.link/r/1655096723-1GOJPwzq?lp=gcZxVv
■■■■■■■■■■■■■■■
この映像授業では「【高校 数学Ⅰ】 データ分析6 四分位数とは?」が約10分で学べます。この授業のポイントは「(四分位範囲)=(第三四分位数)-(第一四分位数)、(四分位偏差)=(1/2)×(第三四分位数-第一四分位数)」です。映像授業は、【ポイント】⇒【例題】⇒【練習】⇒【まとめ】の順に見てください。
この授業以外でもわからない単元があれば、下記のURLをクリックしてください。
各単元の映像授業をまとまって視聴することができます。
■「数学Ⅰ」でわからないことがある人はこちら!
・数学Ⅰ 数と式
https://goo.gl/kkMY1W
・数学Ⅰ 方程式の展開
https://goo.gl/qgCjRb
・数学Ⅰ 因数分解・たすきがけ
https://goo.gl/Ae70Kr
・数学Ⅰ 有理数・無理数・平方根
https://goo.gl/VyO7Rv
・数学Ⅰ 方程式と不等式
https://goo.gl/omHWxP
・数学Ⅰ 絶対値・方程式
https://goo.gl/wv1T4f
・数学Ⅰ 2次方程式
https://goo.gl/tyqgHp
・数学Ⅰ 集合
https://goo.gl/uPzTs3
・数学Ⅰ 命題と必要条件・十分条件
https://goo.gl/9uT75D
・数学Ⅰ 2次関数のグラフ
https://goo.gl/sDgXo1
・数学Ⅰ 2次関数の最大・最小
https://goo.gl/fIsO2s
・数学Ⅰ 2次関数の応用
https://goo.gl/b4WFAW
・数学Ⅰ 放物線と直線の共有点
https://goo.gl/igr3ek
・数学Ⅰ 2次不等式
https://goo.gl/21RZov
・数学Ⅰ 三角比
https://goo.gl/q0cers
・数学Ⅰ 正弦定理・余弦定理
https://goo.gl/W44zp2
・数学Ⅰ 面積や体積への応用
https://goo.gl/UPRHnx
・数学Ⅰ データの散らばりと相関
https://goo.gl/4JhqPf
■「数学A」でわからないことがある人はこちら!
・数学A 集合・補集合
https://goo.gl/uB9WnZ
・数学A 場合の数(樹形図・和の法則・積の法則)
https://goo.gl/OS72Rb
・数学A 順列
https://goo.gl/liNVCE
・数学A 円順列と重複順列
https://goo.gl/8EQcDC
・数学A 組合せ nCr
https://goo.gl/EVfHms
・数学A 組合せの活用
https://goo.gl/vk57MX
・数学A 組み分け
https://goo.gl/qOYVj4
・数学A 確率
https://goo.gl/dhyIIV
・数学A 確率 和事象と余事象
https://goo.gl/3hQORr
・数学A 確率 サイコロ・独立試行
https://goo.gl/Vfi70n
・数学A 確率 サイコロ・反復試行
https://goo.gl/ZCPeiC
・数学A 確率 くじ・乗法定理
https://goo.gl/UJSHxY
・数学A 整数の性質
https://goo.gl/of491x
・数学A 素因数分解
https://goo.gl/7ptLnq
・数学A 倍数と約数・互いに素
https://goo.gl/nGkFLS
・数学A 方程式の整数解
https://goo.gl/7C4xXf
・数学A 方程式の整数解 割り算の商と余り
https://goo.gl/BVW8MA
・数学A ユークリッドの互除法・1次不定方程式
https://goo.gl/ycG6An
・数学A 分数と小数
https://goo.gl/tqQTjF
・数学A n進法
https://goo.gl/kt3HVR
・数学A 線分の内分・外分・平行線の性質
https://goo.gl/fqLumM
・数学A 三角形の角の二等分線
https://goo.gl/RncX40
・数学A 三角形の外心・内心・重心
https://goo.gl/IhYU3e
・数学A チェバ・メネラウスの定理
https://goo.gl/pq6m0Y
・数学A 円周角の定理・内接
https://goo.gl/uRoms0
・数学A 円の接線・接弦定理・方べきの定理
https://goo.gl/MPJCEH
・数学A 2つの円の共通接線
https://goo.gl/Do1S89
・数学A 作図
https://goo.gl/wmOUO1
・数学A 直線と平面の関係
https://goo.gl/OJHmSq
・数学A 正多面体
https://goo.gl/4c1DqH
一元二次方程式練習 在 映像授業 Try IT(トライイット) Youtube 的最佳解答
■■■■■■■■■■■■■■■
【Try IT 視聴者必見】
★参加者満足度98.6%!無料の「中学生・高校生対象オンラインセミナー」受付中!
「いま取り組むべき受験勉強法」や「効率的に点数を上げるテスト勉強の仕方」、「モチベーションの上げ方」まで、超・実践的な学習法をあなたに徹底解説します!
今月・来月のセミナー内容や日程は、トライさん公式LINEからご確認いただけます。
↓↓友だち登録はこちらから↓↓
https://liny.link/r/1655096723-1GOJPwzq?lp=gcZxVv
■■■■■■■■■■■■■■■
この映像授業では「【高校 数学Ⅱ】 式と証明3 2項定理」が約14分で学べます。問題を解くポイントは「nCrの入り方とa,bの右肩に注目する」です。映像授業は【ポイント】⇒【例題】⇒【練習】⇒【まとめ】の順に見てください。
この授業以外でもわからない単元があれば、下記のURLをクリックしてください。
各単元の映像授業をまとまって視聴することができます。
■「数学Ⅱ」でわからないことがある人はこちら!
・数学Ⅱ 展開・因数分解と2項定理
https://goo.gl/TkUpx6
・数学Ⅱ 分数式の計算・求値問題
https://goo.gl/1WQ3Cn
・数学Ⅱ 整式の割り算・剰余の定理
https://goo.gl/hNyyv3
・数学Ⅱ 方程式と恒等式の証明問題
https://goo.gl/lE00Lh
・数学Ⅱ 複素数
https://goo.gl/u5Q9Bc
・数学Ⅱ 2次方程式の解の判別・解と係数の関係
https://goo.gl/XLqXE8
・数学Ⅱ 高次方程式
https://goo.gl/CjeKXz
・数学Ⅱ 直線上の点・平面上の点
https://goo.gl/PHjKlW
・数学Ⅱ 直線・2直線の平行垂直
https://goo.gl/NNp5b2
・数学Ⅱ 円と直線・2つの円の関係
https://goo.gl/mD09m1
・数学Ⅱ 軌跡と領域
https://goo.gl/wZgkYf
・数学Ⅱ 三角比と三角関数
https://goo.gl/HTDn4p
・数学Ⅱ sinθ・cosθの関係
https://goo.gl/DkpzIc
・数学Ⅱ sinθ・cosθ・tanθの方程式と一般角
https://goo.gl/3Z3Cjo
・数学Ⅱ 三角関数のグラフと加法定理
https://goo.gl/wdiA3h
・数学Ⅱ 三角関数の合成
https://goo.gl/rKgKNS
・数学Ⅱ 指数関数
https://goo.gl/b5csBE
・数学Ⅱ 対数関数
https://goo.gl/VUeIAO
・数学Ⅱ 極限と微分関数
https://goo.gl/iShz4L
・数学Ⅱ 微分法
https://goo.gl/iqGbx0
・数学Ⅱ 積分法
https://goo.gl/HhWVSg
■「数学B」でわからないことがある人はこちら!
・数学B 等差数列(一般項と和)
https://goo.gl/gtXAGw
・数学B 等比数列(一般項と和)
https://goo.gl/lS60F8
・数学B 等差・等比数列の応用
https://goo.gl/YQm99S
・数学B 数列・Σの計算
https://goo.gl/LxRn4p
・数学B 階差数列
https://goo.gl/k13tYA
・数学B 特殊な数列の和
https://goo.gl/DQfdcd
・数学B 漸化式と数学的帰納法
https://goo.gl/Uvs8rv
・数学B ベクトルの定義・成分
https://goo.gl/3OHnXF
・数学B ベクトルの内積・垂直条件
https://goo.gl/wR64EL
・数学B 分点公式と直線のベクトル方程式
https://goo.gl/wa4GJ8
・数学B 空間ベクトル
https://goo.gl/7oLJos
一元二次方程式練習 在 映像授業 Try IT(トライイット) Youtube 的最佳貼文
■■■■■■■■■■■■■■■
【Try IT 視聴者必見】
★参加者満足度98.6%!無料の「中学生・高校生対象オンラインセミナー」受付中!
「いま取り組むべき受験勉強法」や「効率的に点数を上げるテスト勉強の仕方」、「モチベーションの上げ方」まで、超・実践的な学習法をあなたに徹底解説します!
今月・来月のセミナー内容や日程は、トライさん公式LINEからご確認いただけます。
↓↓友だち登録はこちらから↓↓
https://liny.link/r/1655096723-1GOJPwzq?lp=gcZxVv
■■■■■■■■■■■■■■■
この映像授業では「【高校 数学Ⅱ】 式と証明4 (a+b)^nの展開」が約13分で学べます。問題を解くポイントは「係数がnCkの所にどんな文字が入るか考える」です。映像授業は【ポイント】⇒【例題】⇒【練習】⇒【まとめ】の順に見てください。
この授業以外でもわからない単元があれば、下記のURLをクリックしてください。
各単元の映像授業をまとまって視聴することができます。
■「数学Ⅱ」でわからないことがある人はこちら!
・数学Ⅱ 展開・因数分解と2項定理
https://goo.gl/TkUpx6
・数学Ⅱ 分数式の計算・求値問題
https://goo.gl/1WQ3Cn
・数学Ⅱ 整式の割り算・剰余の定理
https://goo.gl/hNyyv3
・数学Ⅱ 方程式と恒等式の証明問題
https://goo.gl/lE00Lh
・数学Ⅱ 複素数
https://goo.gl/u5Q9Bc
・数学Ⅱ 2次方程式の解の判別・解と係数の関係
https://goo.gl/XLqXE8
・数学Ⅱ 高次方程式
https://goo.gl/CjeKXz
・数学Ⅱ 直線上の点・平面上の点
https://goo.gl/PHjKlW
・数学Ⅱ 直線・2直線の平行垂直
https://goo.gl/NNp5b2
・数学Ⅱ 円と直線・2つの円の関係
https://goo.gl/mD09m1
・数学Ⅱ 軌跡と領域
https://goo.gl/wZgkYf
・数学Ⅱ 三角比と三角関数
https://goo.gl/HTDn4p
・数学Ⅱ sinθ・cosθの関係
https://goo.gl/DkpzIc
・数学Ⅱ sinθ・cosθ・tanθの方程式と一般角
https://goo.gl/3Z3Cjo
・数学Ⅱ 三角関数のグラフと加法定理
https://goo.gl/wdiA3h
・数学Ⅱ 三角関数の合成
https://goo.gl/rKgKNS
・数学Ⅱ 指数関数
https://goo.gl/b5csBE
・数学Ⅱ 対数関数
https://goo.gl/VUeIAO
・数学Ⅱ 極限と微分関数
https://goo.gl/iShz4L
・数学Ⅱ 微分法
https://goo.gl/iqGbx0
・数学Ⅱ 積分法
https://goo.gl/HhWVSg
■「数学B」でわからないことがある人はこちら!
・数学B 等差数列(一般項と和)
https://goo.gl/gtXAGw
・数学B 等比数列(一般項と和)
https://goo.gl/lS60F8
・数学B 等差・等比数列の応用
https://goo.gl/YQm99S
・数学B 数列・Σの計算
https://goo.gl/LxRn4p
・数学B 階差数列
https://goo.gl/k13tYA
・数学B 特殊な数列の和
https://goo.gl/DQfdcd
・数学B 漸化式と数学的帰納法
https://goo.gl/Uvs8rv
・数学B ベクトルの定義・成分
https://goo.gl/3OHnXF
・数学B ベクトルの内積・垂直条件
https://goo.gl/wR64EL
・数学B 分点公式と直線のベクトル方程式
https://goo.gl/wa4GJ8
・数学B 空間ベクトル
https://goo.gl/7oLJos