唐鳳、羅一鈞和薛瑞元都是傳奇性人物,我們的防疫團隊都是頂尖人才,他們的共同點EQ高又親民
反觀…常自稱科學家智商157的柯文哲根本不能比
轉好文:
真正的聰明與能力不需要老在嘴上吹噓,本文簡單介紹三個政府內值得認識的人物,資料來源從網路收集整合。#已經非常簡單介紹卻還是文很長
台灣第一位數位政委,世界知名的自由軟體程式設計師 #唐鳳,5歲開始閱讀各國經典著作,小一解出聯立方程式,八歲開始從書籍上學習程式設計,也開始開發自己的應用程式,小學時學習跟思想遠遠超過同年齡人,被允許上課期間自行到圖書館閱讀,後來被建議轉入資優班,在資優班依然非常優秀屢遭排擠,以及一些適應不良的因素後來轉學過好幾間小學,最後在國立臺北師範學院講師楊文貴建議與安排之下,一周三天在小學上課學習與同學間相處的人際關係,另外三天前往 #國立臺北師範學院 滿足求知慾望,學習特別安排的高深知識內容,這時候她只是小學生。
國中一年級時,憑藉著自己設計的電腦程式贏得全國中小學科學展覽第三名,獲得保送第一志願臺北市立建國高級中學的資格,但就學不久後在 #全球資訊網 認識網路的無限可能,能與研究人員討論最新的知識技術,發現課本內容過時,對教育的想法有所轉變,決定輟學離開傳統學校教育而在家自學。
14歲與其他人共同成立資訊人文化事業公司,初期以出版電腦書籍為主,隔年唐鳳創作出能在網際網路搜尋資訊的應用軟體「搜尋快手」,12月資訊月展覽會場推出後,立刻受到電腦族群關注,不到1個月便銷售1萬多套。
16歲起投入實務工作成為網際網路創業家,獲得旺宏電子董事長、宏碁元老、英業達集團主管等資訊圈著名人士擔任顧問協助,甚至讓英特爾投資成為股東之一。
而後前往矽谷多次創立與出售公司,33歲時唐鳳完Socialtext公司和蘋果公司交接工作任務後決定退休回台,但回台後繼續轉而擔任蘋果等公司的顧問採取遠端工作模式,每小時的顧問費為於1塊比特幣等價的貨幣。以及投入公共領域和公民科技社群的開發專案。
2014年至2015年間擔任行政院虛擬世界法規調適計劃顧問,也是中華民國國家發展委員會開放資料諮詢委員會和十二年國民基本教育課程發展委員會委員,同時與法國外交部、法國經濟財政部、巴黎市政府、西班牙馬德里市政府在數位治理領域合作。2016年8月,行政院院長林全任命曾有網路創業經驗的唐鳳擔任行政院政務委員。
#本段直接擷取自維基百科
衛福部疾管署副署長 #國民女婿羅一鈞,小學唸了五年因成績優異跳級就讀國中,高中考上建中後跳級 #以全國榜首成績進入台大醫學院只花6年即畢業。
2001年9月放棄國軍醫官資格,轉而報名第一屆外交替代役的徵選,自願到非洲馬拉威擔任外交替代役,2003年6月退伍離開了馬拉威,進入臺大醫院的內科住院醫師。2006年7月,成為臺大醫院感染科總醫師。
2008年考取疾管局防疫醫師投入公職,隔年至美國疾病管制與預防中心受訓。2014年8月擔任首席防疫醫師的羅赴奈及利亞協助台商僑胞防範伊波拉病毒。
2016年被任命為疾管署副署長,2019年12月從批踢踢論壇上發現有網友提及中國華南海鮮市場出現類似SARS案例,羅馬上向中華人民共和國相關單位查證,並通報世界衛生組織,因而台灣能最早警覺與設法防堵五廢病毒。
#相關新聞護國神文
https://youtu.be/WY8CraHMioI
2020年開始投入COVID-19幕後疫調、疫情分析、防治政策的訂定等。
衛福利部政務次長,婦產科醫師 #同時也是律師 雙師薛瑞元。
台北醫學大學醫學系醫學士,#婦產科職業十多年後,因為全民健保的實施,以及一次小小的醫療糾紛之後,決定重新參加大學聯招,考取台大法律系、台大法律研究所碩士順利畢業及考取律師資格,還有雙和醫院副院長、屏東縣衛生局局長等等資歷。
許多非常頂尖的人才在政府裡競競業業的做事,而他們從來不用去吹噓自己的智商或學歷,真正的能力是看在位時每一次面對挑戰的表現,而非早已過往的考試分數或文憑。
唐鳳的圖文特別長或大張沒有私心,已經非常努力簡寫了,還有覺得這張照片拍得不錯。😎
中國 科學 技術 大學 分數 在 李開復 Kai-Fu Lee Facebook 的精選貼文
來自創新工場大灣區人工智慧研究院的兩篇論文入選了自然語言處理領域(NLP)頂級學術會議 ACL 2020 。
這兩篇論文均聚焦中文分詞領域,是深度學習引入知識後的有益嘗試,將該領域近年來廣泛使用的各資料集上的分數全部刷至新高,在工業中也有著可觀的應用前景。
本文來自創新工場公眾號
……………………………………………………………………
創新工場兩篇論文入選ACL 2020,將中文分詞性能刷至新高
“土地,我的金箍棒在哪裡?”
“大聖,你的金箍,棒就棒在,特別配你的髮型。”
感謝神奇的中文分詞,給我們帶來了多少樂趣。豐富多變的中文行文,給人的理解造成歧義,也給AI分詞帶來挑戰。
近日,自然語言處理領域(NLP)頂級學術會議 ACL 2020 (https://acl2020.org/)正在火熱舉行。
令人振奮的是,來自創新工場大灣區人工智慧研究院的兩篇論文入選。這兩篇論文均聚焦中文分詞領域,是深度學習引入知識後的有益嘗試,將該領域近年來廣泛使用的各資料集上的分數全部刷至新高,在工業中也有著可觀的應用前景。
分詞及詞性標注是中文自然語言處理的基本任務,尤其在工業場景對分詞有非常直接的訴求,但當前沒有比較好的一體化解決方案,而且中文分詞普遍存在歧義和未登錄詞的難題。
基於此,兩篇論文各自提出了“鍵-值記憶神經網路的中文分詞模型”和“基於雙通道注意力機制的分詞及詞性標注模型”,將外部知識(資訊)創造性融入分詞及詞性標注模型,有效剔除了分詞“噪音”誤導,大幅度提升了分詞及詞性標注效果。
兩篇文章的作者有:華盛頓大學博士研究生、創新工場實習生田元賀,創新工場大灣區人工智慧研究院執行院長宋彥,創新工場科研合夥人張潼,創新工場CTO兼人工智慧工程院執行院長王詠剛等人。
ACL(The Association for ComputationalLinguistics)國際計算語言學協會是自然語言處理領域影響力最大、最具活力的國際學術組織之一,自1962年創立以來已有58年歷史,其每年夏天舉辦的年會是該領域學術頂會。
與往年不同的是,受新冠疫情影響,ACL2020全部轉為線上進行,不過這絲毫沒有減弱熱度。根據之前公佈的資料,今年大會投稿數量超過3000篇,共接收 779 篇論文,包括 571 篇長論文和 208 篇短論文,接收率為 25.2%,在全球疫情衝擊下反而是有史以來最盛大的一屆ACL會議,創新工場的技術大牛們也頂著時差連續數晚熬夜參會。
▌利用記憶神經網路,將中文分詞性能刷到歷史新高
中文分詞目的是在中文的字序列中插入分隔符號,將其切分為詞。例如,“我喜歡音樂”將被切分為“我/喜歡/音樂”(“/”表示分隔符號)。
中文語言因其特殊性,在分詞時面臨著兩個主要難點。一是歧義問題,由於中文存在大量歧義,一般的分詞工具在切分句子時可能會出錯。例如,“部分居民生活水準”,其正確的切分應為“部分/居民/生活/水準”,但存在“分居”、“民生”等歧義詞。“他從小學電腦技術”,正確的分詞是:他/從小/學/電腦技術,但也存在“小學”這種歧義詞。
二是未登錄詞問題。未登錄詞指的是不在詞表,或者是模型在訓練的過程中沒有遇見過的詞。例如經濟、醫療、科技等科學領域的專業術語或者社交媒體上的新詞,或者是人名。這類問題在跨領域分詞任務中尤其明顯。
對此,《ImprovingChinese Word Segmentation with Wordhood Memory Networks》這篇論文提出了基於鍵-值記憶神經網路的中文分詞模型。
該模型利用n元組(即一個由連續n個字組成的序列,比如“居民”是一個2元組,“生活水準”是一個4元組)提供的每個字的構詞能力,通過加(降)權重實現特定語境下的歧義消解。並通過非監督方法構建詞表,實現對特定領域的未標注文本的利用,進而提升對未登錄詞的識別。
例如,在“部分居民生活水準”這句話中,到底有多少可能成為詞的組塊?單字可成詞,如“民”;每兩個字的組合可能成詞,如“居民”;甚至四個字的組合也可能成詞,例如“居民生活”。
把這些可能成詞的組合全部找到以後,加入到該分詞模型中。通過神經網路,學習哪些詞對於最後完整表達句意的幫助更大,進而分配不同的權重。像“部分”、“居民”、“生活”、“水準”這些詞都會被突出出來,但“分居”、“民生”這些詞就會被降權處理,從而預測出正確的結果。
在“他從小學電腦技術” 這句話中,對於有歧義的部分“從小學”(有“從/小學”和“從小/學”兩種分法),該模型能夠對“從小”和“學”分配更高的權重,而對錯誤的n元組——“小學”分配較低的權重。
為了檢驗該模型的分詞效果,論文進行了嚴格的標準實驗和跨領域實驗。
實驗結果顯示,該模型在5個資料集(MSR、PKU、AS、CityU、CTB6)上的表現,均達了最好的成績(F值越高,性能越好)。(注:所選擇的五個資料集是中文分詞領域目前全世界唯一通用的標準資料集)
創新工場大灣區人工智慧研究院執行院長宋彥表示,與前人的模型進行比較發現,該模型在所有資料集上的表現均超過了之前的工作,“把中文分詞領域廣泛使用的標準資料集上的性能全部刷到了新高。”
在跨領域實驗中,論文使用網路博客資料集(CTB7)測試。實驗結果顯示,在整體F值以及未登陸詞的召回率上都有比較大提升。
▌“雙通道注意力機制”,有效剔除“噪音”誤導
第二篇論文《Joint ChineseWord Segmentation and Part-of-speech Tagging via Two-way Attentions ofAuto-analyzed Knowledge》提供了一種基於雙通道注意力機制的分詞及詞性標注模型。
中文分詞和詞性標注是兩個不同的任務。詞性標注是在已經切分好的文本中,給每一個詞標注其所屬的詞類,例如動詞、名詞、代詞、形容詞。詞性標注對後續的句子理解有重要的作用。
在詞性標注中,歧義仍然是個老大難的問題。例如,對於“他要向全班同學報告書上的內容”中,“報告書”的正確的切分和標注應為“報告_VV/書_N”。但由於“報告書”本身也是一個常見詞,一般的工具可能會將其標注為“報告書_NN”。
句法標注本身需要大量的時間和人力成本。在以往的標注工作中,使用外部自動工具獲取句法知識是主流方法。在這種情況下,如果模型不能識別並正確處理帶有雜音的句法知識,很可能會被不準確的句法知識誤導,做出錯誤的預測。
例如,在句子“他馬上功夫很好”中,“馬”和“上”應該分開(正確的標注應為“馬_NN/上_NN”)。但按照一般的句法知識,卻可能得到不準確的切分及句法關係,如“馬上”。
針對這一問題,該論文提出了一個基於雙通道注意力機制的分詞及詞性標注模型。該模型將中文分詞和詞性標注視作聯合任務,可一體化完成。模型分別對自動獲取的上下文特徵和句法知識加權,預測每個字的分詞和詞性標籤,不同的上下文特徵和句法知識在各自所屬的注意力通道內進行比較、加權,從而識別特定語境下不同上下文特徵和句法知識的貢獻。
這樣一來,那些不準確的,對模型預測貢獻小的上下文特徵和句法知識就能被識別出來,並被分配小的權重,從而避免模型被這些有噪音的資訊誤導。
即便在自動獲取的句法知識不準確的時候,該模型仍能有效識別並利用這種知識。例如,將前文有歧義、句法知識不準確的句子(“他馬上功夫很好”),輸入該雙通道注意力模型後,便得到了正確的分詞和詞性標注結果。
為了測試該模型的性能,論文在一般領域和跨領域分別進行了實驗。
一般領域實驗結果顯示,該模型在5個資料集(CTB5,CTB6,CTB7,CTB9,Universal Dependencies)的表現(F值)均超過前人的工作,也大幅度超過了斯坦福大學的 CoreNLP 工具,和伯克利大學的句法分析器。
即使是在與CTB詞性標注規範不同的UD資料集中,該模型依然能吸收不同標注帶來的知識,並使用這種知識,得到更好的效果。
而在跨領域的實驗中,和斯坦福大學的CoreNLP 工具相比,該模型也有近10個百分點的提升。
▌主動引入和分辨知識,實現中文分詞技術突破
中文分詞在中國科研領域已經有幾十年的歷史。最初的中文分詞是基於詞典構建,詞典的好壞會直接影響到最後分析的效果。如果某個新詞在詞典裡沒有,那麼模型是死活都分不出來的。
這種方式的局限性還在於,詞典和分詞兩件事情中間始終有一條鴻溝,儘管詞典可以編撰得非常全面,但在處理分詞的時候,因為每一句話都有上下文語境,往往會產生多種不同的切分方法,從而無法有效地在當前語境下對分詞結構進行恰當的指導。
從2003年開始,分詞方法出現了新的突破。研究人員提出了打標籤的方式,通過給每一個字打詞首、詞尾、詞中的標籤,不再需要構建詞典,大幅度提升了未登錄詞的召回效果。
到了2014年左右,深度學習和神經網路開始被廣泛應用到中文分詞中,打標籤的模型從之前的淺層學習變成了深度學習,但演算法本質沒有發生變化,所以提升作用並不太大。
近兩年,學界開始研究怎麼在打標籤的過程中加入外部知識和資訊。創新工場的這兩篇文章就是沿著這個路徑,用記憶神經網路的方式記錄對分詞結果有影響的 n元組,並引入對詞性標注有影響的句法知識,將分詞結果和自動獲得的知識銜接起來,既發揮了神經網路的優勢,也把知識的優勢用上,實現了分詞技術上小而有效的改進和突破。
宋彥表示,“從技術創新的角度,我們的貢獻主要有兩點。一是在現有技術的基礎上,建立了一個一體化的模型框架,使用非監督方法構建詞表,並把知識(資訊)融入進來,使用更高層次的句法知識,來幫助詞性標注,起到'他山之石,可以攻玉’的效果。”
“二是主動吸收和分辨不同的外部知識(資訊)。通過鍵-值記憶神經網路和雙通道注意力機制,進行動態權重的分配,能夠有效分辨知識,區分哪些是有效的,哪些是無效的。雖然這些知識是自動獲取的、不準確的,但‘三個臭皮匠,頂個諸葛亮’,經過有效利用,總能湊出一些有用的資訊。如何實現模型的主動吸收和分辨,就變得更加重要。”
據瞭解,今年的ACL大會,在分詞領域一共收錄了18篇論文,創新工場人工智慧工程院同時有2篇入選,也表現出ACL官方對這一貢獻的認可。
▌具備跨領域分詞能力,提升工業應用效率
中文分詞和詞性標注是最底層的應用,對於接下來的應用和任務處理非常重要。例如對於文本分類、情感分析,文本摘要、機器翻譯等,分詞都是不可或缺的基本“元件”。
宋彥表示,做此項研究的目的是主要為了拓展其工業場景的應用,正確的分詞能夠平衡公司應用開發的效率和性能,同時方便人工干預及(預)後處理。
這也是創新工場人工智慧工程院的努力方向之一。工程院成立於2016年9月,宗旨是銜接科技創新和行業賦能,做嫁接科研和產業應用的橋樑,為行業改造業務流程、提升業務效率。
工程院下設北京總部、南京研究院和大灣區研究院。大灣區研究院再下設資訊感知和理解實驗室,專注于對自然語言處理(NLP)領域的研究。執行院長宋彥本人也有超過15年的NLP領域的科研經驗。
“在工業場景使用的時候,跨領域的模型能力是一個非常直接的訴求。”宋彥表示,在某個領域的訓練模型,大概率也需要應用到其他領域。
“如何在新領域缺少資料,或者新領域只有少量未標注資料的情況下,實現模型的冷開機,依然是項巨大的挑戰。如果能利用外部知識,提高模型性能,就能有效地召回很多在訓練集中沒有出現過的新詞。”
例如搜尋引擎的廣告系統,最初也是通過組詞匹配的方式,在某個特定領域訓練其分詞模型,但在進入一個新的領域時,例如從新聞領域進入醫療領域或體育領域,效果往往會大打折扣,甚至頻頻出錯。
而使用跨領域特性後,廣告系統在進入新領域時,便無需額外的資料,就可以對它進行比較準確的分詞和標注,從而有效匹配廣告和客戶,大大提升系統運行的效率和穩定性。
目前,這兩篇論文的工具都已經開源,在下面兩個連結中,可以找到對應的所有代碼和模型,各位朋友可按需自取:
分詞工具:https://github.com/SVAIGBA/WMSeg
分詞及詞性標注工具:https://github.com/SVAIGBA/TwASP
中國 科學 技術 大學 分數 在 元毓 Facebook 的精選貼文
Nature Index是國際頂尖Nature期刊2014年提出的指數,用來判斷各國或科研機構的基礎科學產出。基本上採用82家頂級期刊,文章品質都有一定國際級水準。分數分為count與share,其中以share的可參考性較高,以下數值都是取share。
中國從2013年第一屆制定指數起就排名世界第二,僅次於美國,當時美國數值是中國3.6倍;但到了2019年中國已經追趕到1.49:1。
2019年,中國是第三名德國的2.98倍。
(你問難波萬的台灣喔?我查了一下台灣只有369.22,分數是中國的2.7%,果然世界無敵!)
Nature Index劃分的四大領域,中國在化學是世界第一,分數為美國的1.5倍,佔世界貢獻57.6%。
地球與環境科學、物理學中國均排名第二,次於美國;生物科學是美國最強領域,分數是第二名中國的5.7倍,佔世界貢獻44.8%。
以機構來看,世界排名第一是中國科學院,分數1805.22,幾乎是第二名的哈佛大學的兩倍。
中國科學技術大學排名第八,分數455.82,超越第十名的北京大學,與哈佛、史丹佛、MIT三所大學同列世界Top5大學。東京大學本來排進Top10,但2019年已經跌出榜單。
(你又要問難波萬的台灣喔?台灣大學分數72.81,台灣清華大學49.32,台灣交通大學25.38,分別只有中國科學技術大學的15.97%、10.8%、5.57%;台灣中央研究院分數71.34,只有中國科學院的3.95%。果然台灣基礎科學研發能力也是世界第一!)
(還有個長庚大學分數3.01,連個位數都輸人家,又沒有十位數/百位數,就沒啥好談啦)
----
內人評:一直都知道大陸很強,只是沒想到台灣那麼爛...
(亂講!台灣宇宙難波萬!)
補充:
有興趣知道台灣工程、設計等研發能力的可以參考我去年寫過的這篇:
「2019全球智慧財產權申請狀況」
https://bit.ly/3crZogy
中國 科學 技術 大學 分數 在 中國科學技術大學吐槽大會(中)#升學#留學#大學 - YouTube 的推薦與評價
... <看更多>