【摘要】
本影片說明泰勒展開式的直觀推導方法,然後再證明由直觀方法推導出來的公式是正確的,最後再將泰勒展開式應用再估計 e、π 和根號取值上
【加入會員】
歡迎加入張旭老師頻道會員
付費定閱支持張旭老師,讓張旭老師能夠拍更多的教學影片
https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【會員等級說明】
博士等級:75 元 / 月
- 支持我們拍攝更多教學影片
- 可在 YT 影片留言處或聊天室使用專屬貼圖
- 你的 YT 名稱前面會有專屬會員徽章
- 可觀看會員專屬影片 (張旭老師真實人生挑戰、許願池影片)
- 可加入張旭老師 YT 會員專屬 DC 群
碩士等級:300 元 / 月
- 享有博士等級所有福利
- 每個月可問 6 題高中或大學的數學問題 (沒問完可累積)
學士等級:750 元 / 月
- 享有博士等級所有福利
- 每個月可問 15 題高中或大學的數學問題 (沒問完可累積)
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額不可轉讓)
家長會等級:1600 元 / 月
- 享有博士等級所有福利
- 沒有解題服務,如需要,得另外購入點數換取服務
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額可轉讓)
- 可參與頻道經營方案討論
- 可免費獲得張旭老師實體產品
- 可以優惠價報名參加張旭老師所舉辦之活動
股東會等級:3200 元 / 月
- 享有家長會等級所有福利
- 一樣沒有解題服務,如需要,得另外購入點數換取服務
- 本頻道要募資時擁有優先入股權
- 可加入張旭老師商業結盟
- 可參加商業結盟餐會
- 繳滿六個月成為終生會員,之後可解除自動匯款
- 終生會員只需要餐會費用即可持續參加餐會
【勘誤】
37:29 第四點 推完 Rn(X) 項後,(x-a) 的次數是不是應修改為 n+1? (Jie-Han Chen)
1:14:48 的估計算出來: 5 + "0.1" - 0.001 = 5.099 (Jie-Han Chen)
有任何錯誤歡迎留言告知
【習題】
無
【講義】
無
【附註】
本系列影片僅限 YouTube 會員優先觀看
非會員僅開放「單數集」影片
若想看到所有許願池影片
請加入數學老師張旭 YouTube 會員
加入會員連結 👉 https://reurl.cc/Kj3x7m
【張旭的話】
你好,我是張旭老師
這是我為本頻道會員所專門拍攝的許願池影片
如果你喜歡我的教學影片
歡迎訂閱我的頻道🔔,按讚我的影片👍
並幫我分享給更多正在學大學數學的同學們,謝謝
【學習地圖】
EP01:向量微積分重點整理 (https://youtu.be/x9Z23o_Z5sQ)
EP02:泰勒展開式說明與應用 👈 目前在這裡
EP03:級數審斂法統整與習題 (https://youtu.be/qXCdZF8CV7o)
EP04:積分技巧統整 (https://youtu.be/Ioxd9eh6ogE)
EP05:極座標統整與應用 (https://youtu.be/ksy3siNDzH0)
EP06:極限嚴格定義題型 + 讀書方法分享 (https://youtu.be/9ItI09GTtNQ)
EP07:常見的一階微分方程題型及解法 (https://youtu.be/I8CJhA6COjk)
EP08:重製中
EP09:反函數定理與隱函數定理 (https://youtu.be/9CPpcIVLz7c)
EP10:多變數求極值與 Lagrange 乘子法 (https://youtu.be/XsOmQOTzdSA)
EP11:Laplace 轉換 (https://youtu.be/GZRWgcY5i6Y)
EP12:Fourier 級數與 Fourier 轉換 (https://youtu.be/85q-2nInw7Y)
EP13:換變數定理與 Jacobian 行列式 (https://youtu.be/7z4ad1I0b7o)
EP14:Cayley-Hamilton 定理 & 極小多項式 (https://youtu.be/9c-lCLV4F0M)
EP15:極限、微分和積分次序交換的條件 (https://youtu.be/QRkGLK7Iw4c)
EP16:機率密度函數 (上) (https://youtu.be/PR1NSAOP_Z0)
EP17:機率密度函數 (下) (https://youtu.be/tDQ3o8uQ_Ks)
持續更新中...
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
Twitch:https://www.twitch.tv/changhsu_math
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#泰勒展開式 #如何求得 #如何估計
等差級數前n項的和 在 Live數學學習網- 學習執行長- 葛倫 - Facebook 的推薦與評價
等差級數前n項 和公式的重點整理與介紹─ 了解過等差級數公式的由來, 可以將等差數列第n項公式合併進來, 影片中,葛倫老師幫你複習等差級數的相關公式, ... ... <看更多>
等差級數前n項的和 在 等差數列公差在PTT/Dcard完整相關資訊 的推薦與評價
[PDF] 等差級數而這個等差級數的首項1 = 1、第12項12(剛好是這個級數的末. 項)= 12、 項數n = 12、公差d = 1。 簡單來說,將等差數列的每一項用“ + ”連接,就稱為等差 ... ... <看更多>
等差級數前n項的和 在 Re: [中學] 等差級數- 看板Math - 批踢踢實業坊 的推薦與評價
※ 引述《RealMan (新大男人)》之銘言:
: 一等差級數前n項之和為30,前2n項之和為60,則:
: 1.前3n項之和為?
: 2.前4n項之何為?
: 我的想法:
: 前n項和: n x [2首項+(n-1)d]/2 = 30
: 前2n項和: 2n x [2首項+(2n-1)d]/2 = 60
: 但這樣化簡下來 變成 n x(n-1) = n x(2n-1) 愈算愈怪... > <
: 查了網路資料 解答如下:
: 前2n項和─前n項和=30
: 也就是說每n項和的公差總和是30
: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
: 就是這一句 我百思不得其解 可否指點一下迷津
: 感謝了! (答案各是90,120)
我們知道一個等差數列的每 n 項和也形成等差數列
寫成符號就是這樣: 若 a_1, a_2, a_3, ... 是等差數列
/ n \ / 2n \ / 3n \
則 |Σ a_i|, | Σ a_i|, | Σ a_i|, ... 也是等差數列
\i=1 / \i=n+1 / \i=2n+1 /
驗證這件事很簡單 若原來公差是 d 則後面那個公差是 d*n^2 這一減就知道了
回到證明
「前2n項和─前n項和=30」就是在說後面那數列第二項也是 30
那由於第一項是原數列前 n 項和也是 30
所以後面那數列全是 30 (這應該就是第二句話想說的意思, 雖然用字上好像怪怪的)
因此原數列前 3n 項和即為後面那數列前三項和 為 90
原數列前 4n 項和即為後面那數列前四項和 為 120
會化簡成那種奇怪的式子的原因則如推文所言 d 被你除掉了
可以發現到後面數列公差是 0 所以原數列公差也是 0 所以除掉就會出事
--
◢ ˊ_▂▃▄▂_ˋ. ◣ ▅▅ ▅▅ ι●╮ █▄▄▄▄▄
▍./◤_▂▃▄▂_◥ \'▊ HARUHI █████ <■┘ ▄▄▄▄▄▄▄
▎⊿ ◤◤◥█◥◥█Δ ISM By-gamejye ¢|\ ▌▌▌▌▌▄▌▌
▏ζ(▏●‵◥′●▊)Ψ ▏ █ ⊿Δ ▄▄▄ ▄▄▄▄
█/|▊ 〃 、 〃▋ |\ ▎ ハルヒ主義 █▄▄▄█▄▄
◥◥|◣ ‵′ ◢/'◢◢S.O.S 世界を大いに盛り上げるための涼宮ハルヒの団
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.28.91
... <看更多>