🤓 หลายคนอาจเคยบ่น "เรียนเลขไปทำไม ไม่เห็นได้ใช้เลย"
อันนี้เป็นแค่ตัวอย่าง เพื่อให้รู้ว่าเลขที่เราเรียนตอนม.ปลาย
ไม่ควรทิ้งถ้าคิดจะเรียนคอมพิวเตอร์ ในระดับสูง
.
👉 1) สมการเชิงเส้น
เริ่มต้นจากสมการเส้นตรง ที่มีหน้าตาดังนี้ y=mx+c เรียกว่ารูปมาตรฐาน
- เมื่อ m เป็นความชัน
-ส่วน c เป็นจุดตัดแกน y
.
สมการเชิงเส้นเราจะได้เรียนในระดับ ม 4
พอในม.5 วิชา วิทยาการคำนวณ
ก็จะเห็นประโยชน์ของสมการเส้นตรงถูกนำไปใช้ในงาน data science (วิทยาการข้อมูล)
นำไปใช้วิเคราะห์ข้อมูลแบบ linear regression
.
กล่าวคือเมื่อเรามีข้อมูลย้อนหลังในอดีต
แล้วสามารถนำไปพล็อตลงบนกราฟแกน x กับ y
ผลปรากฏว่าข้อมูลมีความสัมพันธ์เป็นเส้นตรง
ในกรณีเราสามารถหาสมการเส้นตรงที่เหมาะสมสุด (optimize)
นำมาใช้พยากรณ์ข้อมูลล่วงหน้าในอนาคตได้
.
แต่ในกรณีที่ความสัมพันธ์ของข้อมูลพบว่าไม่ใช่เส้นตรง
เราสามารถใช้สมการที่ไม่ใช่เส้นตรง มาใช้พยากรณ์ข้อมูลก็ได้เช่นกัน
.
👉 2) เมทริกซ์
คือกลุ่มของจำนวนตัวเลข ที่เขียนเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้าหรือจัตุรัส
นอกจากใช้แก้สมการหลายตัวแปรแล้ว
จะมีประโยชน์เวลานำไปประมวลภาพ (Image processing)
หรืองานพวกคอมพิวเตอร์วิชั่น (computer vision)
.
ต้องบอกอย่างนี้ว่า รูปภาพดิจิตอลที่เราเห็นเป็นสีสันสวยงาม
แต่ทว่าคอมไม่ได้มองเห็นเหมือนคน
มันมองเห็นเป็นเมทริกซ์ โดยข้างในเมทริกซ์ก็คือตัวเลขของค่าสี
และเราสามารถกระทำการคณิตศาสตร์กับรูปภาพได้
เช่น บวกลบ คูณหาร กับรูปภาพดิจิตอล ในมุมของเมทริกซ์
.
👉 3) ความน่าจะเป็น
ยกตัวอย่างเช่น ทฤษฏี Bayes' theorem
ทฤษฏีหนึงของความน่าจะเป็น
จะใช้หาว่าสมมติฐานใดน่าจะถูกต้องที่สุด โดยใช้ความรู้ก่อนหน้า (Prior Knowledge)
.
ทฤษีนี้ถูกนำไปใช้ในงานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่อง
เช่น จงหาความน่าจะเป็นที่ชาเขียวขวดนั้นจะผลิตจากโรงงานจากประเทศไทย
จงหาความน่าจะเป็นว่าผู้ป่วยจะเป็นโรคมะเร็ง เมื่อหายจากการติดเชื้อไวรัสโคโรนา
เป็นต้น
.
👉 4) แคลคูลัส
ตัวอย่างเช่น ถูกนำมาใช้ใน neural network
ซึ่งก็เครือข่ายประสาทเทียมที่เลียนแบบเซลล์สมอง
แต่จริงๆ ข้างในเครือข่ายจะประกอบไปด้วยน้ำหนัก
.
น้ำหนักที่ว่านี้มันก็คือตัวเลขจำนวนจริง ที่เริ่มต้นสุ่มขึ้นมา
แล้วเวลาจะหาค่าน้ำหนักที่เหมาะสม (optimize)
มันจะถูกปรับทีละเล็กทีละน้อย
โดยอาศัยหลักการเรื่องอนุพันธ์ หรือดิฟนั่นแหละ
.
👉 5) ตรรกศาสตร์
วิชานี้พูดถึง "ประพจน์" หมายถึงประโยคที่ให้ค่าออกมาเป็น True หรืด False
รวมถึงการใช้ตัวเชื่อมประพจน์แบบต่างๆ ไม่ว่าจะเป็น "และ" "หรือ" "ก็ต่อเมื่อ" เป็นต้น
.
ศาสตร์ด้านนี้เป็นพื้นฐานของระบบคอมพิวเตอร์
เพราะวงจรคอมพิวเตอร์พื้นฐาน มีแต่ตัวเลข 0 หรือ 1
จึงสามารถแทนด้วย False หรือ True ในทางตรรกศาสตร์
ไม่เพียงเท่านั้นวงจรอิเลคทรอนิกส์ ก็มีการดำเนินทางตรรกศาสตร์อีกด้วย
ไม่ว่าจะเป็น "และ" "หรือ" "ไม่" เป็นต้น
.
ยิ่งการเขียนโปรแกรม ยิ่งใช้เยอะ
เพราะต้องเปรียบเทียบเงื่อนไข True หรือ False
ในการควบคุมเส้นทางการทำงานของโปรแกรม
.
👉 6) ฟังก์ชัน
ฟังก์ชันคือความสัมพันธ์ จากเซตหนึ่งที่เรียกว่า 'โดเมน' ไปยังอีกเซตหนึ่งที่เรียกว่า 'เรนจ์' โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน
ซึ่งคอนเซปต์ฟังก์ชันในทางคณิตศาสตร์
ก็ถูกนำไปใช้ในการเขียนโปรแกรมแบบ functional programming
.
👉 7) เรขาคณิตวิเคราะห์
ถูกนำไปใช้ในวิชาคอมกราฟิก หรือเกมส์
ในมุมมองของคนที่ใช้โปรแกรมวาดรูปต่างๆ หรือโปรแกรมสร้างแอนนิมเชั่นต่างๆ
เราก็แค่คลิกๆ ลากๆ ก็สร้างเสร็จแล้วใช่มั๊ยล่ะ
.
แต่หารู้หรือไม่ว่า เบื้องเวลาโปรแกรมจะวาดรูปทรง เช่น สี่เหลี่ยม วงรี ภาพตัดกรวยต่างๆ
ล้วนอาศัย เรขาคณิตวิเคราะห์ พล็อตวาดรูปทีละจุดออกมาให้เราใช้งาน
.
👉 8) ปีทาโกรัส
ทฤษฏีสามเหลี่ยมอันโด่งดังถูกนำไปใช้วัดระยะทางระหว่างจุดได้
ซึ่งจะมีประโยชน์ในการแยกแยะข้อมูล โดยใช้อัลกอริทึม
K-Nearest Neighbors (KNN)
ชื่อไทยก็คือ "ขั้นตอนวิธีการเพื่อนบ้านใกล้ที่สุด "
มันจะถูกนำไปใช้งานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่องอีกด้วย
ไม่ขอพูดเยอะเดี่ยว ม.5 ก็จะได้รู้จัก KNN ในวิชาวิทยาการคำนวณ
.
👉 9) ทฤษฏีกราฟเบื้องต้น
อย่างทฤษฏีกราฟออยเลอร์ (Eulerian graph)
ที่ได้เรียนกันในชั้น ม.5 จะมีประโยชน์ในวิชาคอม
เช่น ตอนเรียนในวิชา network ของคอมพิเตอร์ เพื่อหาเส้นทางที่ดี่สุดในการส่งข้อมูล
หรือจะมองโครงสร้างข้อมูลเป็นแบบกราฟก็ได้ ก็ลองนึกถึงลิงค์ต่างในเว็บไซต์ สามารถจับโยงเป็นกราฟได้ด้วยนะ
.
👉 10) เอกซ์โพเนนเชียล และลอการิทึม
เราอาจไม่เห็นการประยุกต์ใช้ตรงๆ นะครับ
แต่ในการประเมินประสิทธิภาพของอัลกอริทึม เวลาเขียนโปรแกรม
เขาจะใช้ Big O ขอไม่อธิบายเยอะแล้วกันเนอะ
เรื่องนี้มีเขียนอยู่ตำราวิทยาการคำนวณชั้นม.4 (ไปหาอ่านเอาได้)
.
ซึ่งเทอม Big O บางครั้งก็อาจเห็นอยู่ในรูปเอกซ์โพเนนเซียล หรือลอการิทึมนั่นเอง
ถ้าไม่เข้าใจว่า เอกซ์โพเนนเซียล หรือลอการิทึม คืออะไร
ก็ไม่จะอธิบายได้ว่าประสิทธิภาพของอัลอริทึมเราดีหรือแย่
.
+++++++
เป็นไงยังครับ สนใจอยากรู้ว่า เลข ม.ปลาย
สามารถนำไปใช้ศึกษาต่ออะไรอีกบ้างไหมเนี่ย
ถ้าอยากรู้ ผมเลยขอแนะนำหนังสือ (ขายของหน่อย)
.
หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก"
เข้าใจได้ด้วยเลขม. ปลาย เล่ม 1 (เนื้อหาภาษาไทย)
ติดอันดับ Best seller ในหมวดหนังสือคอมพิวเตอร์ ของ MEB
.
เนื้อหาจะอธิบายปัญญาประดิษฐ์ (A) ในมุมมองเลขม.ปลาย
โดยปราศจากการโค้ดดิ้งให้มึนหัว
พร้อมภาพประกอบสีสันให้ดูอ่านง่าย
.
สนใจสั่งซ์้อได้ที่
👉 https://www.mebmarket.com/web/index.php…
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
👉 https://www.dropbox.com/s/fg8l38hc0k9b…/chapter_example.pdf…
.
ขออภัยเล่มกระดาษตอนนี้ยังไม่มี โทดทีนะครัชชช
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai progammer
🤓 Many people may have complained about ′′ learning the number, why I didn't get to use it
This one is just an example to know the number we studied in high school. The end.
Don't leave if you want to learn computer at high level.
.
👉 1) Linear equation
Start from a straight line equation that looks like y=mx+c called standard photo
- When m is action
- c section is a cutting point y axis
.
Linear equation. We will learn in grade 4
Enough in the university. 5 Computational Science
It will see the benefits of straight line equation being applied to data science (data science) work.
Linear regression data analytics
.
i.e. when we have data back in the past
Then can be taken to plot on the x and y graph.
The result appears that the information is in a straight line.
In the case, we can find the most suitable straight line equation (optimize)
Advance future forecasts
.
But in case the relationship of information found out is not a straight line.
We can also use an equation that is not a straight line to propose information.
.
👉 2) Matrix
Is a group of numbers written in a square or square.
Besides using to solve several variables.
It will be useful when it's leading to the image (Image processing)
Or computer vision jobs (computer vision)
.
I have to say this. The digital photos we see are colorful.
But the computer is not visible as a person.
It's seen as a matrix inside. The matrix is the number of colors.
And we can do math with pictures
Like, plus, multiply, multiply with digital photos in the corner of the matrix.
.
👉 3) Probability
For example, Bayes ' theorem theory.
Theory of probability
I will use which hypothesis is most accurate using previous knowledge (Prior Knowledge)
.
This theory is implemented in data analysis including machine learning.
For example, find the probability that green tea will be manufactured from factories from Thailand.
Find out the probability that patients will have cancer when they recover from Coronavirus infection.
Etc.
.
👉 4) Calculus
For example, being used in neural network.
Which is also an artificial neural network that imitates brain cells.
But really, the network is composed of weight.
.
This weight is also a random number of real numbers.
Time to find the right weight (optimize)
It will be slightly fined.
By living the principle of derivative or divative.
.
👉 5) Logic
This subject speaks of ′′ pronouncement ′′ meaning True or False sentence.
Including using different plural connectors, whether it's ′′ and or or if etc.
.
This aspect of science is the basis of computer system.
Because the basic computer circuit is only 0 or 1 numbers.
So it can be replaced with False or True in logic.
Not only that, the electronic circuit also has logical action.
Whether it's ′′ and or or no etc.
.
The more the programming, the more you use.
Because we have to compare True or False conditions.
In control of the programming path
.
👉 6) function
A function is a relationship from one set called ' domain ' to another set called ' Range ' by a unique face member.
Which concept function in mathematics.
It's been applied to functional programming.
.
👉 7) Analytical Geometry
Being applied in a graphic or games class
In view of people using various drawing programs or Animation Builders.
I'm just a click and drag and it's done. Aren't we?
.
But do you know that in time, the program will draw shapes like a square, rectangular, cone collage.
All living in geometry, analyzing the plot, drawing one at a time. Let us use it.
.
👉 👉 8) Tacorus
The famous triangle theory is implemented to measure the distance between points.
Which would be useful to digest data using algorithms.
K-Nearest Neighbors (KNN)
Thai name is ′′ The closest neighborhood process
It will also be implemented for data analysis including machine learning.
I don't want to talk too much. 5 to know KNN in computational science.
.
👉 9) Preliminary Graph Theory
Theoretically, Graphite Oler (Eulerian Graph)
I have studied in the middle school class. 5 will come in handy in computer class
For example, in a computer network class to find the best way to send information.
Or look at the data structure as a graph. Think about the different links on the website. They can be linked as graphics.
.
👉 10) m AND LOGARIETYM
We may not see the application straight away.
But in assessing the performance of programming time algorithm.
He's going to use Big O. Let's not explain a lot.
This story is written in the textbook. Calculating class. 4 (go to read)
.
The Big O term may sometimes be seen in an ex-ponytail or a logic.
If you don't understand what is Exponity or Logarithum?
It doesn't explain whether our algorithm performance is good or bad.
.
+++++++
How is it? If interested, I want to know the number. The end.
Can I study anything else?
If you want to know, I recommend a book (selling stuff)
.
Book ′′ Artificial Intelligence (AI) is not difficult ′′
You can understand by the number of km. End of book 1 (Thai content)
Best seller in MEB computer book category
.
Content describes Artificial Intelligence (A) in the view of the number. The end.
Without a coding dizzy
With colorful illustrations to be seen. Easy to read.
.
If interested, order at.
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
As private as a book, you can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
Sorry for paper book. I haven't got it yet. I'm sorry.
.
✍ Written by Thai programmer thai progammerTranslated
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
「analytical machine」的推薦目錄:
analytical machine 在 AppWorks Facebook 的最佳貼文
【You're the Apple in my AI】
Last year, Google's AI and search chief John Giannandrea made waves when he shared that he was stepping down from Google and stepping up for Apple instead as a direct report to Tim Cook. It looks like Apple has quite the strategy hiring from Google, as they recently announced that Ian Goodfellow, one of Google's AI experts, will be joining Apple to direct machine learning initiatives.
As the battle wages on between big companies to attract and retain the best AI talent, what does that mean for startups?
The World Economic Forum estimates that by 2022, 133 million jobs in artificial intelligence and machine learning will be created. Spending on AI will also rise from $12 million in 2017 to $57.6 billion by 2021. And many companies surveyed mentioned that Machine Learning / Artificial Intelligence would be their company' most significant data initiative for the next year.
What all these numbers mean is that the there's no shortage of talents but being able to recruit and retain is another story. As jobs change, people will still be needed so it's important to remember to hire for the right skills such as analytical thinking, verbal & written communication, design, decision-making, interpersonal skills, and global operating. It's important to prepare for a hybrid workplace where humans and AI can work together and there are many things that AI can't (currently) do.
Once you've established a good environment where AI can thrive, the next step is establishing an AI pipeline. Many organizations turn to universities and learning projects to find good talent. Another option is to build from within the organization. Many startups train their younger employees who have aptitude and are open to a learning environment to take on AI initiatives and work on projects with an AI mentor or expert who can teach them more.
There's no playbook for hiring and retaining great AI talent. However, if you start prepping early, you might be able to anticipate this upcoming wave. If not, you can always pull an Apple and hire from your competitors.
- By Natalie Feng Lin, Analyst.
analytical machine 在 李世淦-屏東縣議員 Facebook 的最佳解答
徵才機關
國立屏東科技大學
人員區分
其他人員
官職等
職稱
校務基金進用研究人員
職系
名額
3
性別
不拘
工作地點
90-屏東縣
有效期間
107/05/01~107/05/15
資格條件
聘期自本校通知報到日起聘,以一年一聘為原則,但計畫期限在一年以內者,應依實際所需時間聘用,任期最長以三年為限。惟如因計畫持續需要,得聘期得至計畫執行期限結束時止。
◆徵聘單位:研究總中心(機電系統整合領域)
◆徵聘職稱:研究助理等級以上
◆名額:1
◆一般資格條件:具教育部認可之電子、電機、資訊等相關系所碩士(含)以上學位。具碩士學位者,以研究助理職級聘用(比照講師之研究人員);具博士以上學位,以助理研究員職級聘用(以比照助理教授之研究人員) 職級聘用。
◆專長領域或特殊資格條件(含研究著作要求):
(機電系統整合)如同時具有以下能力者,尤佳:
1.三年以上經驗從事工業機械組件的設計與整合。
2.在自動化機器的機電組件方面具有概念和詳細設計,驗證,測試和產品運作等專業技能。
3.具有創建和執行測試和評估計劃的經驗。
4.具有組態管理的經驗。
5.對於電路板、處理器、晶片、電子設備以及電腦軟硬體(包括應用程式與編程)具有專業知識與技能。
6.具有製作精確技術計劃、藍圖、繪圖和模型所需的設計技術、工具和原理的技能。
7.具有故障排除、修理、校準和維護電子設備的經驗。
◆Department:General Research Service Center
◆Position:Research Assistant level (above)
◆Vacancy:1
◆General Requirement:A MS or PhD’s degree recognized by the Ministry of Education of the R.O.C. in relevant fields of mechanical engineering, electrical engineering, or electromechanical engineering is required. MS degree available for research assistant as lecturer. PhD’s degree available for assistant researcher as assistant professor.
◆Specialization or Special Qualification(research and publication requirement included): Electromechanical System Integration If applicants have the following criteria,it is particularly good.
1.A minimum of three years of experience on designing and integration industrial mechanical components.
2. Demonstrated design expertise in electromechanical components for automatic machines, including conceptual and detailed design, validation, test and product implementation.
3. Experience creating and executing testing and evaluation plans.
4. Experience with configuration management.
5. Knowledge of circuit boards, processors, chips, electronic equipment, and computer hardware and software, including applications and programming.
6. Knowledge of design techniques, tools, and principals involved in production of precision technical plans, blueprints, drawings, and models.
7. Experience in troubleshooting, repairing, calibrating, and maintaining electronic equipment.
工作項目
◆徵聘單位:研究總中心(大數據分析領域)
◆徵聘職稱:研究助理等級以上
◆名額:1名
◆一般資格條件:具教育部認可之統計、數學、資訊分析等相關系所碩士(含)以上學位。具碩士學位者,以研究助理職級聘用(比照講師之研究人員);具博士以上學位,以助理研究員職級聘用(以比照助理教授之研究人員) 職級聘用。
◆專長領域或特殊資格條件(含研究著作要求):
(大數據分析)如同時具有以下能力者,尤佳:
1.三年以上資料分析、模式預測、數據挖掘等相關經驗。
2.專精於資料庫的建構與維護。
3.具有利用SAS, SPSS, Python, Matlab, Stata, or R.等統計軟體的能力。
4.具有人際交流,書面/口頭交流和團隊合作技巧。
5.具有與資深管理者、教職員與IT專業人士溝通能力。
◆Department:General Research Service Center
◆Position:Research Assistant level (above)
◆Vacancy:1
◆General Requirement:A MS or PhD’s degree recognized by the Ministry of Education of the R.O.C. in relevant fields of in statistics, mathematics, informatics analytics is required. MS degree available for research assistant as lecturer. PhD’s degree available for assistant researcher as assistant professor.
◆Specialization or Special Qualification(research and publication requirement included): Big data analysis If applicants have the following criteria,it is particularly good.
1. Three years or more of experience in data analysis, predictive modeling, data mining or related.
2. Expertise in building and maintaining databases.
3. Knowledge of statistical software packages, such as SAS, SPSS, Python, Matlab, Stata, or R.
4. Effective interpersonal, written/verbal communication and teamwork skills.
5. Ability to communicate well with senior level administrators, faculty, staff, and IT professionals.
工作地址
==================
◆徵聘單位:研究總中心(人工智慧領域)
◆徵聘職稱:研究助理等級以上
◆名額:1名
◆一般資格條件:具教育部認可之資料科學、數學、物理、電腦科學等相關系所碩士(含)以上學位。具碩士學位者,以研究助理職級聘用(比照講師之研究人員);具博士以上學位,以助理研究員職級聘用(以比照助理教授之研究人員) 職級聘用。
◆專長領域或特殊資格條件(含研究著作要求):
(人工智慧)如同時具有以下能力者,尤佳:
1.三年或以上的機器學習和人工智慧技術及其在開放資源技術中的實施經驗。
2.具有從各種來源檢索,操縱,融合和利用多個結構化和非結構化數據集的經驗。
3.具有使用分佈式處理體系架構和公開來源工具(如Spark,Python或R)分析大量數據的經驗。
4.具有能夠設計從數據收集到生產部署的分析週期的能力。
5.能由廣泛的可用數據中評估任務價值。
6.能識別數據科學可以應用的問題並提出解決方案。
7.能識別和分析異常數據。
8.能夠評估現有方法,模型和演算法的可行性,以識別方法的能力和局限性。
◆Department:General Research Service Center
◆Position:Research Assistant level (above)
◆Vacancy:1
◆General Requirement:A MS or PhD’s degree recognized by the Ministry of Education of the R.O.C. in relevant fields of data science, math, computer science, physical science is required. MS degree available for research assistant as lecturer. PhD’s degree available for assistant researcher as assistant professor.
◆Specialization or Special Qualification(research and publication requirement included): Artificial intelligence If applicants have the following criteria,it is particularly good.
1. Three years or more of experience machine learning and artificial intelligence techniques and their implementations in open source technologies.
2.Experience in retrieving, manipulating, fusing, and exploiting multiple structured and unstructured data sets from various sources.
3. Experience with analyzing large volumes of data using distributed processing architectures (ie. Hadoop) with open source tools (e.g. Spark, Python, or R)
4. Ability to design analytical lifecycle from data collection to production deployment.
5. Ability to assess mission value in a wide range of available data.
6. Ability to identify problems to which data science can be applied and initiate solutions.
7.Ability to identify and analyze anomalous data (including metadata)
8. Ability to assess feasibility of existing methods, models and algorithms recognizing the capabilities and limitations of methods.