#島讀回顧 #人工智慧
今年島讀網站被搜尋最多次的關鍵字是「人工智慧」(AI)。
人工智慧近年的發展迅速,許多領域都能看到其應用。
島讀今年一篇《機器學習 — 知識工作者的未來》,以「文字產生器」GPT-3 討論人工智慧,獲得不少會員迴響。
---
寫論文很痛苦。有些人痛苦到整份照抄別人的論文。現在出現一線曙光,美國 OpenAI 公布機器學習模型 GPT-3(Generative Pretrained Transformer),堪稱是「萬用」的文字產生器。最近 GPT-3 開始封測,推出 API,更在矽谷引發轟動。目前已知有人用 GPT-3 寫程式、請牛頓解釋地心引力、回答醫學問題、摘要文章,甚至寫詩。
先說 OpenAI。OpenAI 是一個非營利組織,贊助者包括 PayPal 創辦人 Peter Thiel、Elon Musk 與 Salesforce 創辦人 Marc Benioff 等。其使命是確保通用人工智慧(Artificial General Intelligence)將用於服務人類,而非迫害人類。
GPT-3 則是其開發的語言生成模型,第三代的「文字產生器」(島讀去年討論過第二代)。使用者輸入一段文字,它就會生出下一個字,再繼續生出下一個字,不斷重複下去,直到人類喊停或是達到約 1,000 個英文字為止。例如我輸入:「天下分久必合,合久必 ___」,GPT-3 大概會預測下一個字是「分」。
如果我沒喊停,也沒有設定明確的任務,GPT-3 就會繼續生成下一個字,寫出一段故事或一篇文章。
或許你會問:「世界上文字千萬種,GPT-3 怎麼知道要寫論文或小說呢?」
這就是 GPT-3 驚人的地方:它是通用模型。只要使用者稍許提示,它就會自動調整輸出內容類型,不需要使用者另外精調(fine tune)。就像一個真的有用的 Siri,不管你丟什麼任務,只要是文字,它都接得下來。
例如有人簡短的提示(prompt) GPT-3「用 19 世紀作家 Jerome k. Jerome 的語氣寫一篇關於 Twitter 的文章」,GPT-3 就生出相當完整的作品。
只要是需要文字的任務,不論是回覆 email、寫新聞稿、翻譯外文、「翻譯」法律術語、編吉他和弦,甚至是寫程式,GPT-3 都能做得還不錯。一篇網路文章《GPT-3 可能是比特幣以來最重要的創新》更是格外轟動,因為讀者讀完才發現整篇都是 GPT-3 寫的。
相較於 GPT-2,GPT-3 效能是「暴力式」的飛越性成長。換言之,GPT-3 的基本架構與 GPT-2 幾乎一樣,只是參數由 15 億增加到 1,750 億(117 倍),但效果隨之大幅成長。這讓矽谷圈精神為之一振,因為代表機器學習仍可以透過擴大規模來成長。
雖說使用成本也等比增加 — 訓練一次 GPT-3 需要 460 萬美金 — 但能用錢解決的都是小問題。目前已知人類大腦的突觸約 1 百萬億個(100 trillion),是 GPT-3 的 1 萬倍。許多人不免幻想如果再來兩次升級 100 倍(共一萬倍),是不是就能逼近人類大腦了?
有成本就需要收入。OpenAI 現在提供 API,就是為將來商業化營運作準備。其他雲服務商如微軟、AWS、Google 也都開始提供機器學習「模型即服務」(Model as a Service, MaaS)。這大致可分三種應用:
● 垂直情境,簡單但量大的工作:如辨識異常、偵測錯字、回覆 email、回答客服基本問題等。這有點類似聘僱國中生實習,但聘雇的是無限個實習生。
● 垂直情境內,困難但狹隘的工作:以 AlphaGo 為代表。它打敗所有人,但只會下圍棋。
● 不限情境,多樣性比正確性重要的工作:以 GPT-3 為代表,如虛擬秘書、虛擬陪伴(《雲端情人》)、發想劇本、草擬程式碼、撰寫科技分析電子報(咦)等。
MaaS 固定成本高,因此會傾向集中於大型平台,特別是擁有資料的企業,如 Google。邊際成本現在也很高,但應該會逐漸降低,因此有利於擁有最多客戶(用量)的企業,如 AWS、微軟。
目前 GPT-3 率先大步起跑,將引發其他企業加大投資。其他企業需要差異化,因此會開發封閉的模型;GPT-3 則會是開放或開源的形式。同時,週邊的企業也需要開發工具,形成生態圈。例如目前運算的延遲嚴重,因此雲端的速度必須跟上。有更多相容的 app 提供更精準的提示,才能發揮 GPT-3 的價值。
⠀
想知道文章對 GPT-3 的原理、隱憂的討論,歡迎試用島讀的 1 元訂閱方案:https://bit.ly/3myOL0D
---
更多人工智慧內容:
[Podcast] 從邊緣挑戰雲上的人工智慧|特別來賓耐能智慧創辦人劉峻誠(公開)
https://apple.co/2WrmCgC
臉部辨識 — 30 億張照片的資料庫|執法機關熱烈採用|三條路線(會員限定)
https://bit.ly/3p791an
蛋白質的 50 年難題|AlphaFold 遙遙領先|諾貝爾獎在望(會員限定)
https://bit.ly/2LSzIBt
「gpt-2 api」的推薦目錄:
- 關於gpt-2 api 在 Daodu Tech 科技島讀 Facebook 的最佳解答
- 關於gpt-2 api 在 李開復 Kai-Fu Lee Facebook 的精選貼文
- 關於gpt-2 api 在 richstokes/gpt2-api: (Easily) run your own GPT-2 API ... - GitHub 的評價
- 關於gpt-2 api 在 GPT2 API Page 的評價
- 關於gpt-2 api 在 gpt-2-cloud-run from ryanvolum - Github Help 的評價
- 關於gpt-2 api 在 Fine-tune a non-English GPT-2 Model with Huggingface 的評價
- 關於gpt-2 api 在 Fine-tuning GPT-2/3 on new data [closed] - Stack Overflow 的評價
- 關於gpt-2 api 在 Create A GPT-2 API Client Website and Deploy to AWS S3 的評價
- 關於gpt-2 api 在 Fine tune gpt2 via huggingface API for domain specific LM 的評價
- 關於gpt-2 api 在 FastRetrieve.AI - 【 早鳥優惠倒數22 天 】 - 【 Blog#3: GPT ... 的評價
gpt-2 api 在 李開復 Kai-Fu Lee Facebook 的精選貼文
這是我看過最好的一篇GPT-3 科普文章。到現在還看不懂GPT-3的,建議好好讀:
本文來自量子位微信公眾號
…………………………………………
火爆全球的GPT-3,到底憑什麼砸大家飯碗?
GPT-3是指第三代生成式預訓練Transformer,它由三藩市AI公司OpenAI開發。該程式歷經數年的發展,最近在AI文本生成領域內掀起了一波的創新浪潮。
從許多方面來看,這些進步與自2012年以來AI影像處理的飛躍相似。
電腦視覺技術促進了、無人駕駛汽車到面部識別、無人機的發展。因此,有理由認為GPT-3及其同類產品的新功能可能會產生類似的深遠影響。
與所有深度學習系統一樣,GPT-3也是資料模式。它在龐大的文本集上進行了訓練,並根據統計規律進行了挖掘。
重要的是,此過程中無需人工干預,程式在沒有任何指導的情況下查找,然後將其用於完成文本提示。
▌海量訓練數據
GPT-3的與眾不同之處在於它的運行規模和完成一系列令人難以置信的任務。
第一版GPT於2018年發佈,包含1.17億個參數。2019年發佈的GPT-2包含15億個參數。
相比之下,GPT-3擁有1750億個參數,比其前身多100倍,比之前最大的同類NLP模型要多10倍。
GPT-3的訓練資料集也十分龐大。整個英語維琪百科(約600萬個詞條)僅占其訓練數據的0.6%。
訓練資料的其他部分來自數位化書籍和各種網頁連結。不僅包括新聞文章、食譜和詩歌之類的內容,還包括程式碼、科幻小說、宗教預言等各種你可以想像到的任何文字。
上傳到互聯網的文本類型都可能成為其訓練資料,其中還包括不良內容。比如偽科學、陰謀論、種族主義等等。這些內容也會投喂給AI。
這種不可置信的深度和複雜性使輸出也具有複雜性,從而讓GPT-3成為一種非常靈活的工具。
在過去的幾周中,OpenAI通過向AI社區的成員提供GPT-3商業API,鼓勵了這些實驗。這導致大量新的用法出現。
下面是人們使用GPT-3創建的一小部分示例:
▌GPT-3能做什麼
1、基於問題的搜尋引擎:就像Google,鍵入問題,GPT-3會將定向到相關的維琪百科URL作為答案。
2、與歷史人物交談的聊天機器人:由於GPT-3接受過許多數位化書籍的訓練,因此它吸收了大量與特定哲學家相關的知識。這意味著你可以啟動GPT-3,使其像哲學家羅素一樣講話。
3、僅需幾個樣本,即可解決語言和語法難題。
4、基於文本描述的代碼生成:用簡單的文字描述你選擇的設計項目或頁面配置,GPT-3會彈出相關代碼。
5、回答醫療問題:來自英國的一名醫學生使用GPT-3回答了醫療保健問題。該程式不僅給出了正確答案,還正確解釋了潛在的生物學機制。
6、基於文本的探險遊戲。
7、文本的風格遷移:以某種格式編寫的輸入文本,GPT-3可以將其更改為另一種格式。
8、編寫吉他曲譜:這意味著GPT-3可以自行生成音樂。
9、寫創意小說。
10、自動完成圖像:這項工作是由GPT-2和OpenAI團隊完成的。它表明可以在圖元而不是單詞上訓練相同的基本GPT體系結構,從而使其可以像在文字上一樣實現視覺資料自動完成任務。
但是,所有這些樣本都需要一些上下文,以便更好地理解它們。而令人印象深刻的是,GPT-3沒有接受過完成任何特定任務的訓練。
常見的語言模型(包括GPT-2)需要完成基礎訓練,然後再微調以執行特定任務。
但是GPT-3不需要微調。在語法難題中,它只需要一些所需輸出類型的樣本(稱為“少量學習”)。
GPT-3是如此龐大,以至於所有這些不同功能都可以在其中實現。用戶只需要輸入正確的提示就可以調教好它。
但是網上傳出的內容存在另一個問題:這些都是精心挑選的樣本,生成結果肯定不止一個。必然有炒作因素。
正如AI研究人員Delip Rao在一篇針對GPT-3的炒作解構文章中指出的那樣,該軟體的許多早期演示來自矽谷企業家,他們渴望宣傳該技術的潛力並忽略其陷阱,因為他們關注AI帶來的新創業公司。
的確,瘋狂的鼓吹情緒變得如此強烈,以至於OpenAI CEO本人都發Twitter說:GPT-3被過度宣傳了。
▌GPT-3也會犯低級錯誤
儘管GPT-3可以編寫代碼,但我們很難判斷其總體用途。它是淩亂的代碼嗎,這樣的代碼會為人類開發人員帶來更多問題嗎?
沒有詳細的測試很難說,但是我們知道GPT-3在其他方面會犯嚴重錯誤。
當用戶和GPT-3創造的“約伯斯”交談時,詢問他現在何處,這個“約伯斯”回答:“我在加州庫比蒂諾的蘋果總部內。”這是一個連貫的答案,但很難說是一個值得信賴的答案。
在回答瑣事問題或基本數學問題時,也可以看到GPT-3犯了類似的錯誤。例如,不能正確回答100萬前的數是多少(回答是99萬)。
但是,我們很難權衡這些錯誤的重要性和普遍性。
如何判斷這個可以幾乎回答所有問題的程式的準確性?如何創建GPT-3的“知識”的系統地圖,然後如何對其進行標記?
儘管GPT-3經常會產生錯誤,但更加艱巨的挑戰是,通常可以通過微調所輸入的文本來解決這些問題。
用GPT-3創造出小說的研究人員Branwen指出,“抽樣可以證明知識的存在,但不能證明知識的缺失”,可以通過微調提示來修復GPT-3輸出中的許多錯誤。
在一個錯誤的示範中,詢問GPT-3:“哪個更重,一個烤麵包機或一支鉛筆?” 它回答說:“鉛筆比烤麵包機重。”
但是Branwen指出,如果你在問這個問題之前給機器投喂某些提示,告訴它水壺比貓重,海洋比塵土重,它會給出正確的回應。
這可能是一個棘手的過程,但是它表明GPT-3可以擁有正確的答案,如果你知道怎麼調教它。
Branwen認為,這種微調最終可能會最終成為一種編碼範例。就像程式設計語言使用專用語法的編碼更加流暢一樣,未來我們可能完全放棄這些程式設計語言,而僅使用自然語言程式設計。從業人員可以通過思考程式的弱點並相應地調整提示,來從程式中得出正確的回應。
GPT-3的錯誤引起了另一個問題:該程式不可信的性質是否會破壞其整體實用性?
現在人們已經嘗試了GPT-3各種用途:從創建客服機器人,到自動內容審核。但是答案內容的錯誤可能回給商業公司帶來嚴重後果。
沒有人原因創建一個偶爾侮辱客戶的客服機器人。如果沒有辦法知道答案是否可靠,我們也不敢拿GPT-3作為教育工具。
▌專業人士評價
一位匿名的在Google資深AI研究人員說,他們認為GPT-3僅能自動完成一些瑣碎任務,較小、更便宜的AI程式也可以做到,而且程式的絕對不可靠性最終會破壞其商用。
這位研究人員指出,如果沒有很多複雜的工程調試,GPT-3還不夠真正使用。
AI研究人員Julian Togelius說:“ GPT-3的表現常常像是一個聰明的學生,沒有讀完書,試圖通過廢話,比如一些眾所周知的事實和一些直率的謊言交織在一起,讓它看起來像是一種流暢的敘述。”
另一個嚴重的問題是GPT-3的輸出存在偏見。英偉達的AI專家Anima Anandkumar教授指出,GPT-3在部分程度上接受了Reddit過濾後的資料的訓練,並且根據此資料構建的模型產生的文本有“令人震驚地偏向性”。
在GPT-2的輸出中,如果要求完成下列句子時,模型會產生各種歧視性言論:“ 黑人(皮條客工作了15年)”、“ 那個女人(以Hariya為名做妓女)”。
參考連結:
https://www.theverge.com/21346343/gpt-3-explainer-openai-examples-errors-agi-potential
gpt-2 api 在 GPT2 API Page 的推薦與評價
GPT2 API Text Generator. Submit Text To GPT-2. ... <看更多>
gpt-2 api 在 gpt-2-cloud-run from ryanvolum - Github Help 的推薦與評價
text-generation api via gpt-2 for cloud run. ... <看更多>
gpt-2 api 在 richstokes/gpt2-api: (Easily) run your own GPT-2 API ... - GitHub 的推薦與評價
2021年2月24日 — (Easily) run your own GPT-2 API. Post writing prompts, get AI-generated responses - GitHub - richstokes/gpt2-api: (Easily) run your own ... ... <看更多>