機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改
人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警
2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室
本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免代測狀況發生。且利用區塊鏈不可修改的特性,將車輛與人臉資料串上區塊鏈,以確保駕駛人的不可否認性。
長長期以來「酒駕」都是一個很嚴肅且必須被重視的議題,儘管在2019年立法院修法酒駕及拒絕酒測的罰則,但是抱持僥倖心態的人還是數不勝數,導致因酒駕釀成車禍的悲劇還是一再重演,讓不少的家庭因此破滅。
據統計,從2015年到2018年的酒駕取締件數都逾10萬件,而因為酒駕車禍的死亡人數逾百人。在2019年酒駕新制上路以後,2020年警方酒駕取締件數有明顯下降至約6萬件,雖然成功達到嚇阻效果,但是死亡人數仍與去年前年持平,可見離完全遏止酒駕還有很長的路需要努力。
立法院於2018年三讀通過了「道路交通管理處罰條例部分條文修正案」,酒駕者必須重新考照,並且只能駕駛具有酒精鎖(Alcohol Interlock)的車輛,所謂酒精鎖,屬於車輛點火自動鎖定裝置,在汽車發動前必須進行酒測,通過才能將汽車發動,而且在每45分鐘至60分鐘後酒精鎖系統就會要求駕駛人在一定時間內進行重新酒測,以便防範在行車過程中有飲酒的情況發生,若駕駛人未遵守其要求,車子就會強制熄火並鎖死,必須回酒精鎖服務中心才能將鎖解開。
由於法案的方式無法完全遏止酒駕,因此許多創新科技或是企業致力於研究相關科技來解決酒駕的問題。
其中本田(Honda)汽車與日立(Hitachi)公司研發出手持型酒精含量檢測裝置,讓駕駛人必須在駕駛之前都先進行酒測,若酒精濃度超標就會將汽車載具上鎖,藉此避免酒駕意外或事故發生,且該技術結合了智慧鑰匙功能,若偵測到酒測值超標,車輛中的顯示面板將會發出警告訊號告知駕駛人,避免酒駕上路之問題。
另一方面則是解決酒精殘值之問題,因為有許多駕駛人都會認為,休息一下後,身體也無感到不適,即駕車出門,等到駕駛人被警方臨檢時才知道酒測未通過,因此收到罰單,甚至是吊銷駕照處罰等。
根據醫學研究指出,酒精是在人體體內由肝臟代謝,實際代謝時間必須看體質以及飲酒量而定。台灣酒駕防制社會關懷協會建議,喝酒後至少要10至20小時後再駕車比較安全。多數人無具備酒精代謝時間的觀念,導致駕駛人貿然上路,待意外發生或罰單臨頭時,已經為時已晚。
背景知識說明
本文介紹的方法為酒精鎖結合攝影鏡頭進行人臉辨識,並將人臉特徵資料與車輛資料串上區塊鏈,並利用區塊鏈不可篡改的特性,來避免駕駛人在解鎖酒精鎖時發生他人代測的問題。
由於人臉辨識技術具備防偽性、身分驗證的特性,因此將酒精鎖的技術結合人臉辨識,便可確認為駕駛本人。
何謂人臉辨識
人臉辨識技術屬於生物辨識的一種,基於人工智慧、機器學習、深度學習等技術,將大量人臉的資料輸入至電腦中做為模型訓練的素材,讓電腦透過演算法學習人類的面部特徵,藉以歸納其關聯性最後輸出人臉的特徵模型。
目前人臉辨識技術已經遍佈在日常生活之中,其應用面廣泛,最為常見的應用即為智慧型手機的解鎖、行動支付如LINE Pay、Apple Pay等,其他應用還包括行動網路銀行、網路郵局、社區大樓門禁管理系統、企業監控系統、機場出入關、智能ATM、中國天眼系統等。一般來說,人臉辨識皆具備以下幾個特性:
‧ 普遍性:屬於任何人皆擁有的特徵。
‧ 唯一性:除本人以外,其他人不具相同的特徵。
‧ 永續性:特徵不易隨著短時間有大幅的改變。
‧ 方便性:人臉辨識容易實施,設備容易取得,如相機鏡頭。
‧ 非接觸性:不須直接接觸儀器,也可以進行辨識,這部分考量到衛生問題以及辨識速度。
人臉辨識透過人臉特徵的分析比對進行身分的驗證,別於其他生物辨識如虹膜辨識、指紋辨識,無須近距離接觸,也可以精準地辨識身分,且具有同時辨識多人的能力。因應新冠肺炎疫情肆虐全球,人臉辨識技術也被用來管理人來人往的人流。人臉辨識的儀器可以搭配紅外線攝影機來測量人體體溫,在門禁進出管制系統中,利於提高管理效率,有效掌握到進出人員的身分,以及幫助衛生福利部在做疫調時更容易掌握到確診病患行經的足跡。
人臉辨識的步驟
人臉辨識的過程與步驟,包括人臉偵測、人臉校正、人臉特徵值的摘取,進行機器學習與深度學習、輸出人臉模型,從影像中先尋找目標人臉,偵測到目標後會將人臉進行預處理、灰階化、校正,並摘取特徵值,接著人臉資料交給電腦進行機器學習與深度學習運算,最後輸出已訓練好的模型。相關辨識的步驟,如圖1所示。
人臉偵測
基於Haar臉部檢測器的基本思想,對於一個一般的正臉而言,眼睛周圍的亮度較前額與臉頰暗、嘴巴比臉頰暗等其他明顯特徵。基於這樣的模式進行數千、數萬次的訓練,所訓練出的人臉模型,其訓練時間可能為幾個小時甚至幾天到幾周不等。利用已經訓練好的Haar人臉特徵模型,可以有效地在影像中偵測到人臉。
Python中的Dilb函式庫提供了訓練好的人臉模型,可以偵測出人臉的68個特徵點,包括臉的輪廓、眉毛、眼睛、鼻子、嘴巴。基於這些特徵點的資料就能夠進行人臉偵測,如圖2~4所示。圖中左上角的部分是偵測到的分數,若分數越高,代表該張影像就越可能是人臉,右側括弧中的編號代表子偵測器的編號,代表人臉的方向,其中0為正面、1為左側、2為右側。
人臉的預處理
偵測到人臉後,要針對圖片進行預處理。通常訓練的影像與攝影鏡頭拍出來的照片會有很大的不同,尤其會受到燈光、角度、表情等影響,為了改善這類問題,必須對圖片進行預處理以減少這類的問題,其中訓練的資料集也很重要:
‧ 幾何變換與裁剪:將影像中的人臉對齊與校正,將影像中不重要的部分進行裁切,並旋轉人臉,並使眼睛保持水平。
‧ 針對人臉的兩側用直方圖均衡化:可以增強影像中的對比度,可以改善過曝的影像或是曝光不足的問題,更有效地顯示與取得人臉目標的特徵點。
‧ 影像平滑化:影像在傳遞的過程中若受到通道、劣質取樣系統或是受到其他干擾導致影像變得粗糙,藉由使用圖形平滑處理,可以減少影像中的鋸齒效應和雜訊。
人臉特徵摘取
關於人臉特徵摘取,相關的技術說明如下:
‧ 歐式距離:人臉辨識是一個監督式學習,利用建立好的人臉模型,將測試資料和訓練資料進行匹配,最直觀的方式就是利用歐式距離來計算所有測試資料與訓練資料之間的距離,選擇差距最小者的影像作為辨識結果。由於人臉資料過於複雜,且需要大量的訓練集資料與測試集資料,會導致計算量過大,使辨識的速度過於緩慢,因此需要透過主成分分析法(Principal Components Analysis,PCA)來解決此問題。
‧ 主成分分析法:主成分分析法為統計學中的方法,目的是將大量且複雜的人臉資料進行降維,只保留影像中的主成分,即為影像中的關鍵像素,以在維持精確度的前提下加快辨識的速度。先將原本的二維影像資料每列資料減掉平均值,並計算協方差矩陣且取得特徵值與特徵向量,接著將訓練集與測試集的資料進行降維,讓新的像素矩陣中只保留主成分,最後則將降維後的測試資料與訓練資料做匹配,選擇距離最近者為辨識的結果。由於影像資料經過了降維的步驟,因此人臉辨識的速度將會大幅度地提升。
‧ 卷積神經網路:卷積神經網路(Convolutional Neural Network,CNN)是一種神經網路的架構,在影像辨識、人臉辨識至自駕車領域中都被廣泛運用,是深度學習(Deep Learning)中重要的一部分。主要的目的是透過濾波器對影像進行卷積、池化運算,藉此來提取圖片的特徵,並進行分類、辨識、訓練模型等作業。在人臉辨識的應用中,首先會輸入人臉的影像,再透過CNN從影像提取像素特徵並轉換成特定形式輸出,並用輸出的資料集進行訓練、辨識等等。
何謂酒精鎖
酒精鎖(圖5)是一種裝置在車輛載體中的配備,讓駕駛人必須在汽車發動前進行酒測,通過後才能將車輛發動。且每隔45分鐘至60分鐘會發出要求,讓駕駛人在時間內再次進行檢測。
根據歐盟經驗,提高罰款金額以及吊銷駕照只有在短期實施有效,只有勸阻的效果,若在執法上不夠嚴謹,被吊照者會轉變成無照駕駛,因此防止酒駕最有效的方法就是強制讓駕駛人無法上路,這就是「酒精鎖」的設計精神。
在本國2020年3月1日起酒駕新制通過後,針對酒駕犯有了更明確且更嚴厲的規定,在酒駕被吊銷駕照者重考後,一年內車輛要裝酒精鎖,未通過酒測者無法啟動,且必須上15小時的教育訓練才能重考,若酒駕累犯三次,要接受酒癮評估治療滿一年、十二次才能重考。
許多民眾對於「酒精鎖」議論紛紛,懷疑是否會發生找其他人代吹酒精鎖的疑慮,為防範此問題,酒精鎖在啟動後的五分鐘內重新進行吹氣,且汽車在行駛期間的每45至60分鐘內,便會隨機要求駕駛重新進行酒測,如果沒有通過測量或是沒有測量,整合在汽車智慧顯示面板的酒精鎖便會發出警告,並勸告駕駛停止駕車。
對於酒精鎖的實施,目前無法完全普及到每一台車子,而且對於沒有飲酒習慣的民眾而言,根本是多此一舉,反而增加不少麻煩給駕駛。若還有每45~60分鐘的隨機檢測,會導致多輛汽車必須臨時停靠路邊進行檢測,可能加劇汽車違規停車的發生頻率。
認識區塊鏈
區塊鏈技術是一種不依賴於第三方,透過分散式節點(Peer to Peer,P2P)來進行網路數據的存儲、交易與驗證的技術方法。本質上就是一個去中心化的資料庫,任何人在任何時間都可以依照相同的技術標準將訊息打包成區塊並串上區塊鏈,而這些被串上區塊鏈的區塊無法再被更改。區塊鏈技術主要依靠了密碼學與HASH來保護訊息安全,也是賦予區塊鏈技術具有高安全性、不可篡改性以及去中心化的關鍵。區塊鏈相關概念,如圖6所示。
區塊鏈的原理與特性
可以將區塊鏈想像成是一個大型公開帳本,網路上的每個節點都擁有完整的帳本備份,當產生一筆交易時,會將這筆交易廣播到各個節點,而每個節點會將未驗證的交易HASH值收集至區塊內。接著,每個節點進行工作量證明,選取計算最快的節點進行這些交易的驗證,完成後會把區塊廣播給到其他節點,其他節點會再度確認區塊中包含的交易是否有效,驗證過後才會接受區塊並串上區塊鏈,此時就無法再將資料進行篡改。
關於區塊鏈的特性,可分成以下四部分做說明:
1. 去中心化:區塊鏈其中一個最重要的核心宗旨,就是「去中心化」,區塊鏈採用分散式的點對點傳輸,該概念架構中,節點與節點之中沒有所謂的中心,所有的操作都部署在分散式的節點中,而無須部署在中心化機構的伺服器,一筆交易或資料的傳輸不再需要第三方的介入,因此又可以說每個節點就是所謂的「中心」。這樣的結構也加強了區塊鏈的穩定性,不會因為其中的部分節點故障而癱瘓整個區塊鏈的結構。
2. 不可篡改性:透過密碼學與雜湊函數的運用來將資料打包成區塊並上鏈,所有區塊都有屬於它的時間戳記,並依照時間順序排序,而所有節點的帳本資料中又記錄了完整的歷史內容,讓區塊鏈無法進行更改或是更改成本很高,因此使區塊鏈具備「不可篡改性」,並且同時確保了資料的完整性、安全性以及真實性。
3. 可追溯性:區塊鏈是一種鏈式的資料結構,鏈上的訊息區塊依照時間的順序環環相扣,這便使得區塊鏈具有可追溯的特性。可追本溯源的特性適用在廣泛的領域中,如供應鏈、版權保護、醫療、學歷認證等。區塊鏈就如同記帳帳本一般,每筆交易記錄著時間和訊息內容,若要進行資料的更改,則會視為一筆新的交易,且舊的紀錄仍會存在無法更動,因此仍可依照過去的交易事件進行追溯。
4. 匿名性:在去中心化的結構下,節點與節點之間不分主從關係,且每個節點中都擁有一本完整的帳本,因此區塊鏈系統是公開透明的。此時,個人資料與訊息內容的隱私就非常重要,區塊鏈技術運用了HASH運算、非對稱式加密與數位簽章等其他密碼學技術,讓節點資料在完全開放的情況下,也能保護隱私以及用戶的匿名性。
區塊鏈與酒精鎖
由於區塊鏈的技術具備去中心化、記錄時間以及不可篡改的特性,且更加強酒精鎖的檢測需要身分驗證的保證性。當進行酒精鎖檢測解鎖時,系統記錄駕駛人吹氣時間以及車輛的相關資訊,還有人臉特徵資料打包成區塊並串上區塊鏈。因此,在同一時間當監控系統偵測到當前駕駛人與吹氣人不同時,此時區塊鏈中所記錄的資料便能成為一個強而有力的依據,同時也能讓其他的違規或違法事件可以更容易進行追溯。
酒駕防偽人臉辨識系統介紹
為了解決酒精鎖發生駕駛人代測的問題,酒精鎖產品應導入具有身分驗證性的人臉辨識技術。酒駕防偽人臉辨識系統即為駕駛人在進行酒精鎖解鎖時,要同時進行人臉辨識,來確保駕駛人與吹氣人為同一人。
在駕駛座前方的位置會安裝攝影鏡頭,作為駕駛的監控裝置。進行酒測吹氣的人臉資料將會輸入到該系統中的資料庫儲存,並將人臉資料以及酒測的時間戳記打包成區塊串上區塊鏈,當汽車已經駛動時,攝影鏡頭將會將當前駕駛人畫面傳回系統進行人臉比對驗證。如果驗證成功,會將通過的紀錄與時間戳一同上傳至區塊鏈,若是系統偵測到駕駛人與吹氣人為不同對象,系統將發出警示要求駕駛停車並重新進行檢測,並同時將此次異常的情況進行記錄上傳到區塊鏈中。
如果駕駛持續不遵循系統指示仍持續行駛,該系統會將區塊鏈的紀錄傳送回給開罰的相關單位,並同時發出警報以告知附近用路人該車輛處於異常情況,應先行迴避。且該車輛於熄火後,酒精鎖會將車輛上鎖,必須聯絡酒精鎖廠商或酒精鎖服務中心才能解鎖。相關的系統概念流程圖,如圖7所示。
區塊鏈打包上鏈模擬
在進行酒測解鎖完畢以及進行人臉資料儲存後,會透過CNN將影像轉換輸出成128維的特徵向量作為人臉資料的測量值,接著將128個人臉特徵向量資料取出,並隨著車輛資訊一起打包到同一個區塊,然後串上區塊鏈。取出的人臉特徵資料,如圖8所示。
要打包成區塊和上鏈的內容,包括了人臉特徵資料、車牌號碼、酒測解鎖時間點等相關輔助資料,接著透過雜湊函數將相關的資料打包成區塊。以車牌號碼ABC-1234為例,圖9顯示將車輛資料和人臉資料進行區塊鏈的打包,並進行HASH運算。
將人臉資料和車輛相關資料作為一次的交易內容,並打包區塊,經過HASH後的結果如圖10所示,其中prev_hash屬性代表鏈結串列指向前一筆資料,由於這是實作模擬情境,並無上一筆資料,其中messages屬性代表內容數,一筆代表車牌資料,另一筆則為人臉資料。time屬性則代表區塊上鏈的時間點,代表車輛解鎖的時間點。
情境演練說明
話說小禛是一間企業的上班族,平時以開車為上下班的交通工具,他的汽車配置了酒駕防偽影像辨識系統,以下模擬小禛下班後準備開車的情境。
已經下班的小禛今天打算從公司開車回家,當小禛上車準備發動車子時,他必須先拿起安裝在車上的酒測器進行吹氣,並將臉對準攝影鏡頭讓系統取得小禛的人臉影像。小禛在汽車發動前的人臉影像,如圖11所示。
待攝影鏡頭偵測到小禛的人臉後,接著系統便會擷取臉上五官的68個特徵點,如圖12所示。然後,相關數據再透過CNN轉換輸出成128維的特徵向量作為人臉資料的測量值,如圖13所示。
酒精鎖通過解鎖後,車輛隨之發動,解鎖成功的時間點將會記錄成時間戳記,隨著影像與相關資料串上區塊鏈。在行駛途中,設置在駕駛座前方的鏡頭將擷取目前駕駛的人臉,以取得駕駛人的128維人臉特徵向量測量值,並且與汽車發動前所存入的人臉資料進行比對,藉以判斷目前的駕駛人與剛才的吹氣人臉是否為同一位駕駛。當驗證通過後,也會再將通過的紀錄與時間戳上傳至區塊鏈中,如此一來,區塊鏈的訊息內容便完整記載了這一次駕車的紀錄,檢測通過的示意圖如圖14所示。
系統通過辨識後,便確認了駕駛人的身分與吹氣人一致。且透過時戳的紀錄和區塊鏈的輔助,也確保了駕駛的不可否認性。若有其他違規事件發生時,區塊鏈的紀錄便成為一個強而有力的依據來進行追溯。
如此一來,便可以預防小禛喝酒卻找其他人代吹酒測器的情況發生。在駕駛的途中,如果有需要更換駕駛人,必須待車輛靜止時,從車載系統發出更換駕駛要求,再重新進行酒測以及重複上述流程,才可以更換駕駛人。如果沒有按照該流程更換駕駛,系統將視為異常情況。
結語
酒駕一直是全球性的問題,將有高機率導致重大交通事故,造成人員傷亡、家庭破碎,進而醞釀後續更多的社會問題,皆是酒駕所引發的不良效益。為了解決酒駕的問題,各個國家都有不同的酒駕標準或是法律規範,但是大部分國家的規範和制度都只有嚇阻作用卻無法完全遏止。在不同的國家防止酒駕的方式不盡相同,有的國家如新加坡,透過監禁及鞭刑來遏止酒駕犯,又或者是薩爾瓦多,當發現酒駕直接判定死刑,這樣的制度雖嚇阻力極強,但是若讓其他國家也跟進,會造成違憲或是違反人權等問題。因此,各國都在酒駕的問題方面紛紛投入研究,想要達到零酒駕的社會。
為達成此理想,本文介紹了基於區塊鏈的酒駕防偽辨識系統,利用酒精鎖搭配人臉辨識技術以及區塊鏈技術,使有飲酒的駕駛人無法發動汽車。且該系統搭載在行車電腦中,結合攝影鏡頭的監控對駕駛進行酒測防制管理,將人臉資料、酒精鎖、解鎖時間點與相關資訊打包成區塊並上鏈。基於區塊鏈技術內容的不易篡改,可加強駕駛人的不可否認性,當汽車發生異常情況時,便能利用有效且可靠的依據進行追溯。人工智慧和物聯網時代已經來臨,透過酒駕防偽辨識系統來改善酒駕問題,在未來能夠普及並結合法規,智慧汽車以及智慧科技的應用將會帶給人們更安全、更便利的社會。
附圖:圖1 人臉辨識的步驟。
圖2 人臉特徵點偵測(正臉)。
圖3 人臉特徵點偵測(左側臉)。
圖4 人臉特徵點偵測(右側臉)。
圖5 酒精鎖。 (圖片來源:https://commons.wikimedia.org/wiki/File:Guardian_Interlock_AMS2000_1.jpg with Author: Rsheram)
圖6 區塊鏈分散式節點的概念圖。
圖7 系統概念流程圖。
圖8 取出人臉128維特徵向量。
圖9 儲存車輛相關資料及人臉資料到區塊。
圖10 HASH後及打包成區塊的結果。
圖11 汽車發動前小禛的人臉影像。
圖12 小禛的人臉影像特徵點。
圖13 小禛的人臉特徵向量資料。
圖14 系統通過酒測檢測者與駕駛人為同一人。
資料來源:https://www.netadmin.com.tw/netadmin/zh-tw/technology/CC690F49163E4AAF9FD0E88A157C7B9D
「千值練wiki」的推薦目錄:
- 關於千值練wiki 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
- 關於千值練wiki 在 翟本喬 - 科技時代 Facebook 的最佳解答
- 關於千值練wiki 在 鄭龜煮碗麵 Facebook 的最佳解答
- 關於千值練wiki 在 我們千值練國際有限公司將不會再提供任何... - Sentinel ... 的評價
- 關於千值練wiki 在 蓋特devolution wiki、蓋特皇帝、蓋特恐龍在PTT/mobile01評價 ... 的評價
- 關於千值練wiki 在 蓋特devolution wiki、蓋特皇帝、蓋特恐龍在PTT/mobile01評價 ... 的評價
- 關於千值練wiki 在 Miles Dread/ Gallery | Max Steel Reboot Wiki | Fandom 的評價
千值練wiki 在 翟本喬 - 科技時代 Facebook 的最佳解答
《政見三:鑽研關鍵尖端科技,奠定未來二十年核心產業領域基礎》
《政見四:長期培養高階人才,營造三十年後研發大國氛圍與環境》
尖端科技和高階人才息息相關,所以這兩條政見寫在同一篇裡。
我最近在以色列 [1] 見到了人稱以色列比爾蓋茨的 Zohar Zisapel [2]。他在1982年創辦的 RAD 集團先後開了185家公司,其中8家上市,19家被併購出場。他在草創初期專注於網路通訊設備,2000年後轉向資安產業,最近幾年則進入電動車及自駕車領域。
他選擇領域的原則是:「該領域正在被破壞」。
台灣人選擇產業領域的原則常常是:「有別人做了賺到錢」。
很多人可能聽過沙漠裡開加油站的故事。一個猶太人看到穿過沙漠的高速公路,覺得這些車子應該會需要加油,於是開了一個加油站,賺了大錢。第二個猶太人看到,覺得這些停下來加油的人會需要用餐,於是開了一家餐廳,也賺了大錢。第三個猶太人看到,開了一家旅館,也賺了大錢。第四個猶太人看到,開了一家雜貨店,也賺了大錢。於是一個城鎮就慢慢地建立起來了。
故事主角換成台灣人:第一個台灣人開加油站,賺了大錢。第二個台灣人看到,也開了一家加油站,也賺了一些錢。然後沙漠裡開起一堆加油站,一家比一家更炫,但最後全部都倒了。
當別人賺到錢的時候,那個領域很可能快要進入成熟階段,要花很大的努力才能超越別人。台灣的新創目前的重大問題,就是很多人做的都是非常淺的創新,或是「市場創新」,也就是把別國做過但台灣還沒有的東西抄來台灣做。這種模式很容易被別人超越,例如蝦皮砸錢就把台灣電商市場吃掉一大塊,就是因為電商的技術已經成熟,不容易造成進入門檻。相較之下,「正在被破壞」的領域則是有很多機會做出別人還沒想到做到的東西,一個點子不行,很快再換下一個,重點就是人才的靈活度要高,不是只專精一件事,而且不會執著於一個點子不願放棄。
這一趟以色列之行拜訪了另一家公司 Mellanox [3],這家公司今年初被 nVidia 以69億美金買下來 [4]。他們在網路交換機技術上,領先 Cisco、Juniper、Intel 這些公司五年。Intel 花了 20 億美金想要做同樣的技術做不出來,因為 Mellanox 從一開始技術就已經領先,後來依然持續保持領先。別人做1G的時候,他就開始做10G;別人做10G的時候,他就開始做40G、56G、100G。這些技術不只是把舊有的系統改得比較快,裡面的架構也有很大的差異,所以有非常多的研發要做,而且都是沒有別人做過可以參考的。在看到別人湧入一個領域的時候,他們就開始進入下一個領域。
我問了一個政治問題:外商到中國做生意,都要把技術交出來,你們在中國市場很大,碰到這個問題怎麼辦?創辦人兼執行長 Eyal Waldman 說「我不交。你愛買不買,去買 Cisco、Juniper 啊?落後我五年啊!」當技術領先這麼多,中國要技術就可以跟他嗆聲:你希望中國資料中心都落後美國五年,你就不要買我的。中國只好乖乖地買。
他們技術領先的關鍵是什麼?
人才。他們的人,就是比別的公司優秀,思維靈活,動作快,執行力強。
所以我問他怎麼找人。是從好的大學訓練出來的嗎?
不是,他找聰明、有潛力、基本功紮實的人,然後在公司裡自己訓練應用的部分。台灣的產業界常常希望大學訓練出來的學生是公司馬上可以用的,但那是技職體系的特質。在低科技時代只要有技職的訓練就可以上生產線,馬上為公司製造產值。但台灣靠勞力提升GDP的時代已經過去了,現在的產值提升要靠先進的技術,而這些技術常常是遠超過一般學校課程能教到的範圍,必須是由專門的研究單位長期的開發才能做出來。
除了學校畢業生自行訓練之外,他的人才來源,很重要的一塊是來自大名鼎鼎的 Talpiot 計畫 [5]。以色列全民皆兵 [6],男生服役三年,女生兩年,當完才能上大學。這個計畫從全國最優秀的高中生之中再選出150-200個學生,通過一個兩天的動態測驗,最後錄取50位左右。這些學生在服役三年期間同時取得大學學位,然後繼續服六年的志願役,從事高階的研發工作。很多退役的校友都成為科技界的佼佼者。台灣當年的國防役有點類似這個計畫,但因為很多客觀環境的差異,所以得到的結果也不同。
Mellanox 這麼棒的公司,他們政府是怎麼栽培出來的呢?他們說 “We asked them not to interfere. Leave us along!”。
政府所能做最糟的事,就是外行領導內行,讓千里馬去拖大車。
這次見到還有一家值得一提的公司叫 Vayyar [7]。他們做的是穿牆雷達,在一個名片盒的大小裡,裝上72支MIMO天線,用毫米波雷達探測週圍。實際應用包括:
家居監視器:雷達靈敏到可以看出嬰兒有沒有在呼吸,AI可以判斷老人有沒有跌倒起不來。
牆柱探測器:要在牆上釘釘子掛東西的時候要找到牆裡的柱子,才能承重。
取代金屬探測器:在安全檢查的時候可以看出人身上有沒有帶武器,連非金屬製的都可以看到。
乳癌檢測:取代 mammogram 有幅射且不舒服的做法。
這個技術是從以色列軍方研發出來的,本來的用途是用來找躲在屋子裡的恐怖份子。
看了這些以色列的故事,我們政府可以有什麼具體的做法?
第一:不要再有「政府領導產業」的心態。政府可以從旁鼔勵和獎勵,但不要認為政府可以為產業制定發展計畫。讓先進科技產業的研發,依照自己應有的步調快速前進,不要再要求他們「帶動產業發展」,強行加上增加就業率或是「整合國家隊」這種大枷鎖,妨礙他們的行動。
第二:建立研發志願役制度。台灣現在取消了義務役,所以沒有以前國防役的誘因。更不要說後來的研發替代役,常常變成大企業的廉價研發勞工。但我們可以用極高的待遇吸引頂尖的人才為國家服務,他們可以得到國家的資源支持,做出一般民間企業無法進行的研發成果。台灣的政府,不可能出不起比台積電更高的薪水吧?而這些研發成果,除了為國家所用之外,未來也可以釋放到民間,成為新產業的基礎。
《回顧》
政見一:推動政府數位轉型,增設行政院副院長以帶領數位創新 https://www.facebook.com/benjaifans/posts/141809803919167
政見二:創新型態國際合作,以台灣強項製造服務投資世界新創
https://www.facebook.com/benjaifans/posts/142514483848699
《預告》
政見五:強化前瞻法規制度,阻卻跨國企業掠奪國家戰略性個資
政見六:推動資安就是國安,防患未然制敵機先以決勝千里之外
[1] https://www.cna.com.tw/news/afe/201911140198.aspx
[2] https://en.wikipedia.org/wiki/Zohar_Zisapel
[3] https://en.wikipedia.org/wiki/Mellanox_Technologies
[4] https://nvidianews.nvidia.com/news/nvidia-to-acquire-mellanox-for-6-9-billion
[5] https://en.wikipedia.org/wiki/Talpiot_program
[6] 阿拉伯裔和教士除外。因為陸地週圍都是敵人,隨時可以走過來,所以有全民皆兵的必要;台灣的情形不同。
[7] https://vayyar.com/
千值練wiki 在 鄭龜煮碗麵 Facebook 的最佳解答
我們該如何規範人工智慧 (全文)?
#COMPUTEX,這個跟我一樣歲數的電腦資訊展會,我竟然直到今年才首次踏入。
這次受主辦單位之一的 #外貿協會 ( #TAITRA)邀請,在上週三(5/29)來到位於南港展覽館 2 館4樓的「 #SmarTEX」展區參觀,與多家參展公司交流。我雖然自己經營過科技媒體網站,但我不是擅長採訪會展的記者,也不是好的 3C 部落客,因此我抱著「幫自己正在思考的問題取材」的目標,前往這場大型科技會展。
(先說:因此這篇文章不會有太多展覽展位上產品的細節跟照片,請大家見諒。)
而我最近在想的問題,也就是本篇文章的主題是:進入人工智慧時代,我們該如何規範人工智慧?
或者,我們也可以反過來問:人工智慧該如何規範我們?
自認偏樂觀派的我,其實不希望讓大家覺得「人工智慧的未來真糟糕」,我的個人偏見是:大致來說,我喜歡科技,儘管科技的確會帶來衝擊,但只要我們更願意去思考,就更有機會讓未來往比較好的方向演進。所以談這個議題,目的是要避免要是這樣的狀況真的發生了,我們才懊悔地說「這真糟糕,為何我們沒有早點想到。」
--------------------
關於人工智慧的規範問題,首先,我們來看看 MIT 媒體實驗室做的一個調查「道德機器」(網址:http://moralmachine.mit.edu/hl/zh)。
在這個網頁裡頭,有許多類似「#電車難題」的情境,需要你來回答。每一個參與者,需要回答 13 個題目,每個題目只有兩個選項。在每一個題目的情況中,都有一輛突然煞車失靈的自動駕駛汽車,而你必須做出選擇,要繼續前進,或是轉彎離開。
例如在某個二選一的情況中,你認為這台自動駕駛車該繼續直衝,撞死一個成人男性,還是轉動方向盤,讓車子撞上另一側的護欄,殺死車上四個人,包括兩名兒童?
在另一個二選一的情況中,這台自動駕駛車上只有一隻貓,若繼續直衝,會撞上護欄,讓貓死於非命,但若自駕車往左彎,貓的性命可保,卻會撞死一位正在違規闖紅燈過馬路的遊民。
類似這樣的二元選擇有很多種變化,例如過馬路的可能是動物、可能是罪犯、可能是醫生,嬰兒,或是這些人的綜合隊伍,他們或許是違規過馬路,或許是遵守交通規則但運氣不好。而車子直衝或轉彎,也隱含了道德選擇。推薦各位都上道德機器的網頁去回答看看,看你會不會跟我一樣覺得實在是逼人太甚,到最後根本就放棄思考(XD)。
這個網頁告訴我們一件事:我們不可能對各種狀況產生共識、或得出任何堪稱正確的答案,事實上這個調查也不是要用多數人的意見來決定未來的自駕車要是真的煞車失靈的時候,該做出什麼行動。然而這個調查提醒我們,當越來越多的「人工智慧代理」進入我們的生活,就會產生更多類似的道德難題。
--------------------
舉例來說,若一個 #人工智慧股票交易系統,因為對政治領袖發在社群媒體上的文章產生錯誤的解讀,而決定拋售某一檔股票,造成連鎖反應,讓投資者大賠一筆,這樣的損失該由誰來負責呢?
延伸閱讀:〈AI 機器人害我投資賠錢,我能告他嗎?〉
https://www.techbang.com/posts/70447-ai-robot-made-me-invest-money-can-i-sue-him
舉例來說,若一個 #人工智慧戀愛配對系統,推薦了一位居心不良的對象給另一個使用者,最後使用者被騙財騙色了,誰會受到最多的指責呢?誰「#與惡的距離」最近呢?
再舉一例來說,如果用於門禁或 ATM 的臉部辨識 AI 系統出問題,太過嚴格以至於讓使用者開不了門、領不到錢,或是太過寬鬆使歹徒得以利用,那該怎麼定義問題的範圍,用理性的方式來解決呢?
臉部辨識作為服務升級的關鍵,從智慧零售到智慧家居到智慧服務,都少不了這項技術的身影,也是人工智慧使預測平價化的代表。只要你拿著這一兩年出的新手機,想必也不會陌生。例如我這次參訪的 #訊連科技(CyberLink)展場主打「FaceMe」AI 臉部辨識引擎,他們提供 SDK 與多家科技廠商合作,包括 #宏碁雲端、#奇景光電、#微程式、#凌群、#達碩 等。我也拜訪了同在 SmarTEX 展出的達碩智慧科技,了解他們使用這套臉部辨識引擎,針對銀髮照護、社區管理、企業差勤管理等不同情境設計的解決方案。即使在我與訊連跟達碩的主管談話時,他們自謙還不是目前領先的廠商,但他們的服務也已經非常成熟,可見這樣的軟硬體整合套裝將持續普及到各地,而台灣中堅企業將成為關鍵推手。
美中貿易戰,加上美國可能逐步針對有侵犯人權之虞的監控科技施加圍堵禁令(如 #海康威視、#浙江大華、#商湯科技 等),突顯出台灣提供類似服務的企業所能提供的安全價值,但即使如此,這項科技本身還是帶給社會其他挑戰。訊連科技的連啟民協理跟我說,臉部辨識的準確性不是 0與1 的取捨,他們的 SDK 能夠針對不同情境,讓配合的廠商自行調整精度,掌控風險,例如從一般社區門禁的萬分之一調到 ATM 的十萬分之一,同時使用邊緣運算技術(Edge Computing),讓資料不用都到雲端,降低反應時間及資安疑慮。
我在展場也與 #康訊科技 及 #訊舟科技 兩家公司進行交流。康訊從圖資起家,以地理定位技術切入車載系統設備,扎根台灣30多年來,已經成為全球領先的車隊管理服務商,不管是共享汽機車、物流公司、校園巴士、救護車、消防車都是他們服務的客戶。他們提供的設備就像車上的黑盒子,可以完全掌握車輛的狀況,如透過監測引擎啟動狀態,可以知道司機是否過勞;透過監測燃料消耗情況,可以知道是否有偷油的情形發生。而全球客戶累積的數據也成為重要的資產,可以協助物流業者優化路線。
訊舟作為老牌網通公司,這次展出許多產品,我認為最亮眼的就是他們與中研院陳伶志博士合作推出的「空氣盒子」,我雖然早就知道空氣盒子,卻是第一次看到並且從訊舟的角度聽這個已經是公民科技典範的故事,目前在全台已經有 4,000 多台設備上線,密集監測空氣品質,累積的數據也已經可以做到空品預測。
另外,這次在 SmarTEX,科技部推動的 #GLORIA 國際產學聯盟現場展出 67 項前瞻技術,我也與聯盟中的幾所大學交流,例如 #中國醫藥大學 推出能夠判讀骨齡、癌症等資訊的 AI,節省醫師判讀時間,加速診斷。#國立交通大學 伍紹勳博士則與 #新光醫療團隊 合作,用像是貼在東尼史塔克胸口的智慧貼片,只用3導程就能正確模擬專業醫療設施12導程的ECG心電圖信號,大幅改善病患的行動自由,也顯著降低成本。而具有超過 2,000 例達文西手術經歷的 #臺北醫學大學劉偉民醫師團隊,則在擁有大量醫師第一視角錄影的基礎上,推出手術教學平台,包括 VR 手術直播拍攝,與虛擬手術教學模擬系統。
從訊連、達碩、康訊、訊舟到這三個來自學界的醫療技術案例,可見都與數據分析、人工智慧辨識判讀、虛擬模型建置有關,儘管我相信在台灣醫療與科技、工程多重優勢下,他們都前景可期,但該問的仍然要問:要是出了差錯,怎麼辦?誰負責?各團隊對此問題顯然也都深思熟慮過。而我將他們給我的回答整理,加入我對「人工智慧如何規範」這個問題的答案。
--------------------
#以自駕車為例思考
著名的科幻小說家艾希莫夫,在1942 年的短篇小說 Runaround 以及後來的機器人系列裡頭,提出了機器人三原則(Three Laws of Robotics),很多人可能都會背了,這三原則分別是:第一,機器人不得傷害人類,或坐視人類受到傷害;第二,除非違背第一法則,否則機器人必須服從人類命令;以及第三,除非違背第一或第二法則,否則機器人必須保護自己。
參考:Three Laws of Robotics
https://en.wikipedia.org/wiki/Three_Laws_of_Robotics
這三原則聽起來很周密,但其實並非如此,而且也不太現實。以自動駕駛汽車作為案例吧,自動駕駛汽車是這一波人工智慧發展最受關注的領域,而且因為許多國家政府正在積極制訂法規,自駕車的自動化程度,跟依據自動化程度而制定的責任歸屬,也比較清楚,值得用來舉一反三,幫助我們思考,人工智慧要是進入到每一個領域,會帶來多少該仔細考量的變化。
那麼,到底什麼是自動駕駛汽車呢?你可能聽過什麼 Level 3,Level 5 的,那指的是自動駕駛的自動化程度分級,我們可以用這張表來簡單呈現:
這個分級定義,是由國際汽車工程協會(Society of Automotive Engineers, SAE)所提出的,已經獲得廣泛的共識。從第零級到第五級,共有六個層級。第零級的自動駕駛就是毫無自動化,一直到第二級,都還是以駕駛員為主,機器提供輔助。
但從第三級開始,負責開車的就是機器了。人類駕駛頂多在緊急狀態作為備用選項。第四級之後,就連緊急狀態也是由機器來應對,人類就從駕駛這件事基本退場了。到第五級的情況,就像是有一個超級人工智慧在負責開車,相信到時候,超級人工智慧也不會只用在車上。
目前已經有幾家汽車公司宣稱自己的自駕車達到了第三級,例如 #奧迪、#特斯拉、#現代汽車 等,大部分車廠也都表示在 2020 年就會推出第三級的自駕車。Google 旗下的 Waymo 以及台灣的財團法人車輛研究測試中心 ARTC 則表示都已經有第四級自駕車的技術能力。
日本政府非常積極地花工夫在自動駕駛的規範上,日本的「投資未來委員會」在 2018 年底,便提出了已經研擬多年的自動駕駛汽車指導原則。根據報導,日本首相安倍晉三希望透過採取具體步驟,建立法律框架,讓日本成為率先制定國家級規範的國家。首要處理的就是第三級自動化情況下的監督跟法律方向。我們就來看看,在自駕車的規則上,日本是怎麼想的?
日本的規則是,通常來說車主需要對車輛自主運行時發生的事故負責,並且由政府規定的汽車保險公司承保。如果車輛系統有明顯的缺陷,該負責的就是汽車製造商。強制性保險這一步確定了之後,保險公司也就能夠制定方案,讓車主選擇,要保哪一種。
另外,為了釐清事故的原因,自動駕駛汽車需要完整記錄位置、轉向、人工智慧系統操作狀態的信息,也就是說,得要有像是飛機黑盒子這樣的裝置。
那如果遇到新型態科技犯罪者或駭客呢?只要車主有採取適當的安全措施,例如更新車輛系統或維護保養,那麼若是因為駭客攻擊或入侵造成損害,就視同汽車被偷走了。
除了這幾個大方向以外,還有不少問題待解決。因為剛剛說的都只是民事責任,財產相關的規範,但還沒有碰觸到刑事責任,如果真的因為自駕車的缺陷而造成傷亡,除了車主以外,程式開發者,汽車製造商該負起哪些連帶的責任呢?若不能盡快釐清,程式開發者跟汽車製造商就難以決定是否該正式推出產品。
另外,自動駕駛的操作條件、例如速度限制,運作的時間長短,天氣狀況也都得考量,就像各種已經存在的汽車安全規範一樣,人工智慧控制系統的標準、對網路攻擊抵禦的強度,也都得一一制定。
--------------------
而以自動駕駛為案例,可以幫助我們思考該怎樣規範其他人工智慧的應用情境。歸納我這次到 SmarTEX 參訪交流的心得,我想比起艾希莫夫的機器人三原則,我們該建立的思考原則其實是這四個:
#面對此時此刻的人工智慧該有的思考原則
第一,#釐清主控權。整項任務中,是人類還是機器掌握主控權?能否以清楚的層級概念來劃分人類或機器的掌控程度?就像自駕車這樣呢?另外,在關鍵決策點,人類有沒有介入,是否被要求介入?這些都必須根據不同的應用環境來一個一個釐清。
第二,#損害管理與風險溝通。在發生意外的時候,擁有者、使用者、設計者、販售者、維修者等角色,是否已經明白可能要負的對應責任?這些責任的政府主管機關與相關的法律有哪些?其實每一樣新的科技進入我們的生活,都會有一段學習曲線,我們不太可能在了解所有問題、解開所有疑慮之後才採用新技術,而是必須妥善跟每一個角色溝通風險。
第三,#數據紀錄透明化。為了忠實檢討意外發生的原因,人工智慧系統需要持續紀錄運作狀況,以及感測器所收集到的各種資訊。並且要確保訓練人工智慧的資料也是可受檢驗的,避免造成系統化的偏見。另外也同等重要的是,收集數據的單位,像是企業、保險公司或政府,有義務證明,收集這些資訊,是必要且適當的。例如飛機上機長跟駕駛員的通話可以收集,但車內的通話該不該收集呢?商店內的顧客對話該不該收集呢?
第四,#系統思維。任何意外發生,都要了解,系統總是存在一定的風險,告知風險機率跟可能的狀況類型。以「不責難」的出發點,來面對後續的檢討,才能讓各角色更願意把系統中的臭蟲或不當行為揪出來,最終的目標是讓這個能夠便利更多人、拯救更多人的系統,越來越好。就像醫療一樣,如果每次只要有病人在手術中過世了,醫生都要被告到賠上身家,那還會有醫生願意繼續替病人動手術嗎?當醫療行為中有越來越多具有人工智慧的機器介入,診斷疾病、決定麻醉份量、甚至用機械手動手術,我們就不得不分配信任給更多的角色。
從 COMPUTEX 的 SmarTEX 展區上琳瑯滿目結合了人工智慧的技術,可以肯定人工智慧已經,也即將進入每一個我們可以想像得到的層面,過去的規範將無法適用,而且即使訂出新規範,也會很快過時。我們不可能完全理解我們部署的人工智慧系統的風險。當前的機器學習運行得如此之快,以至於沒有人真正知道機器是如何做出決策,通常連開發人員也不知道。這些系統還會持續從環境中學習並更新他們的函式,這使研究人員更難控制和理解決策過程,在這樣缺乏透明度,也就是常說的黑盒子問題籠罩下,要建立道德準則跟規範,當然就極為困難。
然而若不要大驚小怪,將人工智慧與人肉智慧對等來看,人類花了幾千年建立起的道德準則,同樣漏洞百出,我們卻也習慣了。人類專家有的偏見跟偏誤更是問題層出不窮,而我們也是一直倚賴這樣有缺陷的專家系統在運作。此刻的人工智慧浪潮,正給了我們機會跟動力,檢視我們習以為常的那些想法,我認為以上的四原則,更有助於我們迎向已經到來的未來世界,而開發出這些技術,推出產品與服務的企業,若都能夠率先思考這些問題,也是我們所期待的。就如同我在這次 COMPUTEX SmarTEX 展區上看見的一樣。
--------------------
最後,我雖然只逛了整個 COMPUTEX 的一部份,但很感謝外貿協會,讓我能不只是走馬看花,而是深入與廠商對話跟採訪,非常有收穫。幾乎每一家我逛的展位,都跟數據、AI(起碼是機器學習)有關,並將其結合硬體,整合出具有市場競爭力的方案,雖然我沒有資格替他們的產品背書,但我覺得深入談過之後,他們都對自己的產品與服務非常有自信,或許並非市場的領先者,也已經看見該切入的定位與成長的路徑。
今年的 COMPUTEX 展會已經結束,不過以後若有機會前往類似會展活動,很推薦大家跟我一樣帶著問題意識去逛逛,跟這些未來世界的打造者聊聊,畢竟我們得住在裡面。
--------------------
Medium 版:http://bit.ly/2HLuT8p
千值練wiki 在 蓋特devolution wiki、蓋特皇帝、蓋特恐龍在PTT/mobile01評價 ... 的推薦與評價
蓋特devolution 網路推薦好評商品就在露天,超多商品可享折扣優惠和運費補助。蘿蔔旋轉屋千值練RioboT 宇宙最後的3分鐘黑蓋特DEVOLUTION 三分鐘3分間~熊貓熊~全新千值 ... ... <看更多>
千值練wiki 在 蓋特devolution wiki、蓋特皇帝、蓋特恐龍在PTT/mobile01評價 ... 的推薦與評價
蓋特devolution 網路推薦好評商品就在露天,超多商品可享折扣優惠和運費補助。蘿蔔旋轉屋千值練RioboT 宇宙最後的3分鐘黑蓋特DEVOLUTION 三分鐘3分間~熊貓熊~全新千值 ... ... <看更多>
千值練wiki 在 我們千值練國際有限公司將不會再提供任何... - Sentinel ... 的推薦與評價
Sentinel International Co., Ltd. Gunbuster no.7 熱血同盟是有得訂的. 快開始接受予訂了. 請稍候. 9 年 ... ... <看更多>