#十分鐘知天下 2021/9/30 #福和觀點
日本—自民黨選出前外務大臣岸田文雄為新黨魁,將任日本首相。
AidData報告指出中國一帶一路計畫在目標國家造成貪腐、汙染、血汗勞動激起反感,許多計畫取消,且債務激增。
英國—下令軍方士兵駕駛運油卡車解決油荒問題。
歐盟—宣布因西撒哈拉問題,歐盟取消與摩洛哥的農產貿易協定。
越南—疫情蔓延造成iPhone 13出貨受影響。越南主要組裝鏡頭模組。
#國際焦點新聞
同時也有436部Youtube影片,追蹤數超過14萬的網紅英雄日常Heroisme2,也在其Youtube影片中提到,恩傑水冷:https://shopee.tw/nzxt.tw 訂閱英雄:https://www.youtube.com/user/herosbaga?sub_confirmation=1 二站:https://youtu.be/sIuWV4gEXEg 本站:https://www.youtube...
「歐卡模組車」的推薦目錄:
- 關於歐卡模組車 在 Facebook 的最讚貼文
- 關於歐卡模組車 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於歐卡模組車 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於歐卡模組車 在 英雄日常Heroisme2 Youtube 的最佳貼文
- 關於歐卡模組車 在 法師Fashi Youtube 的最佳解答
- 關於歐卡模組車 在 真電玩宅速配 Youtube 的最佳貼文
- 關於歐卡模組車 在 [問題] 歐卡2有沒有增加車流量的模組- 看板Steam - 批踢踢實業坊 的評價
- 關於歐卡模組車 在 歐洲模擬卡車轎車模組Honda EP3 Typer + Varex Sound 小炸 ... 的評價
- 關於歐卡模組車 在 歐洲卡車模擬2 | ETS 2 # 31 : Nissan GTR !! - YouTube 的評價
- 關於歐卡模組車 在 【ETS2 歐卡2 】最新1.33 2019模組教學-台灣地圖 - YouTube 的評價
- 關於歐卡模組車 在 歐卡2轎車mod的推薦與評價,PTT - 最新趨勢觀測站 的評價
- 關於歐卡模組車 在 歐洲卡車2(單機MP遊戲討論區) - Facebook 的評價
- 關於歐卡模組車 在 euro truck simulator 2 mod教學2023-精選在臉書/Facebook ... 的評價
- 關於歐卡模組車 在 [閒聊] 歐卡2(ETS2)簡介及FAQ - steam - PTT遊戲區 的評價
- 關於歐卡模組車 在 請教自組電腦建議,需要用到剪輯,繪圖,3D建模 - Mobile01 的評價
- 關於歐卡模組車 在 策學備纂: 32卷 - 第 22-32 卷 - Google 圖書結果 的評價
歐卡模組車 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
歐卡模組車 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
彩色電子紙來了!除了電子書閱讀器外,在物聯網的應用場景更廣泛
HaopengHaopeng 發表於 2021年6月22日 09:00 2021-06-22
彩色電子紙來了!除了電子書閱讀器外,在物聯網的應用場景更廣泛
一般大眾對於電子紙的認識,大多來自電子書。這幾年許多電子書閱讀器投入台灣的市場,讓大家對於電子書閱讀器所使用的電子紙有了更多的了解。但電子紙能做的事情,不是只有電子書閲讀而已,而是試圖要取代紙張。
現在全世界每分鐘大約消耗了2千萬張A4大小的紙張,換算下來大概是100公噸的重量;而每生產1公噸的紙張,需要20棵生長20-40年,直徑16公分,高8公尺的樹木。從這簡單的數字中,我們大概就可以看出人類因為紙張的需求對於森林的砍伐有多麼嚴重。
20多年前個人電腦剛進入消費市場時,「無紙化辦公室」這個口號喊的震天嘠響。但20多年過去了、人類對於紙張的使用則是有增無減;手寫時代寫錯字大多用修正液修改,沒人想花時間再重抄一份;但到了電腦時代,哪怕只錯了一個字就可能電腦修改完後重新再列印一份,這導致紙張的使用不減反增。
不過隨著電子紙技術的進步,現在有可能可以朝著「無紙化」再前進一步。現在的電子紙的發展有什麼值得我們關心的嗎?
電子紙特性:反射式和雙穩態
電子紙的技術有很多種,像是電泳式、液晶型、微機電型.......等。但目前技術最成熟,商品化最成功的,就是元太科技電泳式電子墨水技術,目前超過九成的市場佔有率。
電子墨水是一種液態的材質,在這些液態材料中懸浮著成千上萬的微膠囊,每個微膠囊的大小差不多等於頭髮的直徑。然後將這些「墨水」透過開發的技術「印刷」到相關的介質表面,再貼覆上薄膜電晶體(TFT)電路,經由驅動IC控制,形成像素圖形。
一般大眾覺得電子紙有二大好處,分別是「護眼」和「省電」,而這就有依賴電子紙的「反射式」和「雙穩態」這兩個特性。
反射式讓電子紙和一般紙張一樣,需要有外在光源才能透過反射看見畫面,所以可以在戶外和陽光閲讀,成像後畫面不閃爍的特性也和紙張一樣,因此長時間閲讀眼睛比較不疲勞。而雙穩態則只有在元件被驅動時才會耗電,成像後顯示的靜態畫面並不使用電力,直到下一次更換顯示畫面時。簡單的說就是「持續顯示不耗電」。
雙穩態省電
我們所熟知的黑白電子墨水的面板中,會幾百萬個微小的膠囊,每個膠囊裡都有帶負電的白色電子墨水粒子和帶正電的黑色電子墨水粒子,利用正負相吸的原理,當電場接通時,對應的黑色粒子或白色粒子,就會被吸附到面板的頂端,我們就可以在面板上看到黑色或白色。
利用這種方法,就可以在面板上排列顯示出我們所需要的文字或圖形。而一旦電子墨水排列固定後、就不需要使用電力,一直到下一次需要更換排列時墨水粒子,因此電子紙螢幕比起LCD的螢幕省電許多。一般說來,電子書閱讀器,在特定條件甚至使用長達14天,這是一般利用手機閱讀辦不到的續航力。
反射式護眼
電子紙並不主動發光,所以你想看淸楚電子螢幕上所呈現的畫面,需要外在的光源,如同一般的書籍一樣。因此說電子紙護眼,其實是相對於LCD螢幕而言,因為LCD螢幕有個背光模組持續的發光,當你看電腦或手機螢幕時,光源是直射你的眼睛,因此有些人長時間看電腦或手機螢幕會覺得眼睛容易疲勞,加上光譜中最短波長最高能量的藍光問題,讓需要長時間閱讀人會選擇使用電子紙的產品。
現在的電子書閱讀器都有閱讀燈的設計,這在早期的產品上是沒有的。早期的電子書閱讀器就如同真正的書本一樣,沒有外在光源就沒法看,但這顯然會讓電子書閱讀器的使用場景很受限,因此後來的電子書閱讀器才加上了閱讀燈的設計。
但電子書閱讀器的閱讀燈並不是像LCD一樣加上背光模組,而是在螢幕的上方加上燈光照射,如同打開桌燈一樣,是反射式的。所以相較之下,對長時間閱讀的人來說,眼睛會比較舒服一點。
彩色電子紙:Kaleido及E Ink Spectra
彩色電子紙的發展已經有許多年的歷史,但一般大眾也大多是因為彩色電子書閱讀器才開始注意到彩色電子紙。長期以來電子書閱讀器只能顯示黑白的畫面,對於雜誌或是食譜之類的書籍來說顯然是不夠的,因此不斷的有讀者希望能夠推出彩色的電子書閱讀器。
而這二年,也開始有使用彩色電子紙的閱讀器出現在市場上,但因為顯像原理的關係,解析度從黑白的300 PPI下降到100 PPI,因此看起來就沒有黑色電子紙那麼細膩。一般會需要彩色電子紙的閱讀環境大多是雜誌這種有許多照片的版式書籍,因此需要更大尺寸的螢幕。但大螢幕加上低解析度,在閱讀上就會是場災難,因此市面上目前的彩色電子閱讀器目前大多以小尺寸居多,除了成本的考量外, 螢幕的解析度也是重要的考量。
但彩色電子紙技術出現擴大了電子紙的應用空間,讓電子紙不再侷限於閲讀的環境,而可以更進一步的和物聯網結合。目前元太的彩色電子紙主要有Kaleido、E Ink Gallery和E Ink Spectra這幾個系列。
Kaleido
Kaleido微膠囊電泳技術呈現彩色的方式是在黑白粒子的上方,再加上一層RGB的彩色濾光片(CFA)技術,透過光線的反射來呈現不同的顏色,再利用RGB這3原色來混合出其他的顏色,最高可以呈現4096的色彩,灰階的部分則是16階的灰階顯示。新的Kaleido Plus彩色濾光片則比前一代的Kaleido產品更輕更薄。
但因為必須透過光線的反射才能呈現出色彩,所以在使用彩色電子紙的產品時,前光都必須開足,反射出來的顏色才會愈淸楚。因此在閱讀彩色電子書時,閱讀器的閱讀燈基本上都必須打開,很多使用者甚至都會把閲讀燈開到最亮。
E Ink Spectra
Spectra的色彩呈現方式則和Kaleido不太一樣,Kaleido是在黑白粒子上再加上彩色濾光片,但Spectra微杯電泳技術則不使用彩色濾光片,是在原有的黑白粒子外再加上不同顏色的粒子來呈現色彩。
E Ink Spectra 3000在原有的黑色和白色粒子之外,再加上紅色的粒子,是一款三色電子紙;而Spectra 3100則會在黑、白、紅外,再加上黃色的粒子,是一款四色電子紙。
Spectra透過電壓的控制讓不同顏色的粒子出現在面板的上方,排列出需要的圖案。但因為不像Kaleido需要透過彩色濾光片的反射,反應出來的是粒子的純色,顏色的飽合度會更好,同時4個顏色的粒子混合後、可以呈現多種顏色,所以適合用在廣告或大型海報。尤其紅色和黃色顏色非常鮮明,也很適合應用在零售業的環境。
電子紙新應用:零售智慧化
電子紙除了我們所熟知的電子書閱讀器,隨著IoT的興起,電子紙有了更大的應用空間。網路電商興起後,如何推動零售智慧化,讓線上、線下有更多的整合一直都是店家思考的方向。電子商務標錯價錢的事件層出不窮,當實體賣場遇到特價時,更換價格標籤則要花去大量的人力和時間。
去年因為疫情的關係必須減少人和人的接觸,員工也儘量輪班上工,因此人力更為吃緊。在這種情況下,之前已經裝設了電子標籤的店家,開始享受它所帶來的好處,可以把寶貴的人力使用在服務客人等其他更有意義的地方。
貨架的電子標籤
台灣便利商店的密度之高,應該是全球之冠,以今年二月的統計數字來看,台灣有12,093間的便利商店。台灣便利商店的店員之能幹大家有目共睹,要結帳、補貨、應付各種繳貴,但其實更換貨架上的標籤,是很瑣碎的工作,也花去許多時間。
以一個有六萬個品項的大賣場為例,平均有20%的品項每二周就會輪流的降價促銷,這意味著工作人員經常性的要為12,000個品項更換售價標籤,然後等到促銷結束,又要更換回來。每次更換標籤就需要花去6個小時的時間。
除著去年的疫情升溫,許多零售業儘量減少工作人員到店,以減少感染的機會。在這樣的情況下,許多零售業開始使用電子標籤來減少無謂的人力耗損,希望能把寶貴的人力拿去對客戶做更好的服務,而不是更換標籤。
每個電子標籤都會有一個獨立的識別碼,控管系統可以一次對每一張電子標籤的內容個別修改和調整。不僅大幅度的縮短更換標籤的時間、也減少人為作業可能產生的錯誤。
運送箱的物流標籤
電商這幾年的成長一直都很迅速,去年開始的疫情讓許多的使用者更選擇電商的服務。但大量的紙箱也造成紙張的浪費。歐盟規定從2030年,所有的紙箱都要能夠再重覆利用,許多的廠商也在材料改良和商業模式在做調整。但目前唯一還沒有辦法解決的,就是貼在運送箱上的物流貼紙。除了不利於重覆使用外,物流人員清理箱子上的殘膠也要花費大量的力氣。
目前大部分的物流貼紙仍然都是紙質的貼紙,沒法重覆使用。但使用電子紙的物流標籤可以解決物流標籤重覆使用的問題,而且電子標籤結果其他的感應器後,可以即時得知物品的位置;甚至收貨後,只要按個按鈕就會自動通知相關人士去取回箱子
E Ink能否替代LCD螢幕?
雖然E Ink主要的目標是取代傳統紙張,但對於一般的使用者來說,難免會拿來和常見的LCD螢幕做比較。既然電子紙有護眼的特性,對於上班時需要長時間盯著螢幕看的工作者來說,如果把電腦用的螢幕換成電子紙的產品,不是更好嗎?
但是E Ink因為技術原理的關係,螢幕更新速率沒有那麼快,所以大家最常接觸的電腦螢幕和手機螢幕大多是使用LCD的產品。但是其實仍然有少部分的廠商開發了使用電子紙螢幕的手機和電腦螢幕,但其實都比較像是概念性的產品,較少被大眾所接受。
最早推出E Ink手機的是2010年的俄羅斯手機YotaPhone,它是一款雙螢幕手機,手機的一面使用LCD螢幕,另一面則採用E Ink。這款手機的銷量並不出色,2016年開始轉入中國發展,並在2017年推出YotaPhone 3,但是仍然沒有什麼起色,Yota在2019年宣布導閉。
不過E Ink手機的概念開始有幾家中國廠商推出,像掌閱推出過4G的電子墨水手機,而海信更是在去年推出使用彩色電子紙的5G手機,也有廠商推出電腦使用的電子墨水螢幕。雖然電子紙的反應速率仍然比不上LCD螢幕,但現在有廠商推出25.3吋的電子紙顯示螢幕,透過粒子調控技術,讓反應速度大幅加快甚至可以播放動畫,雖然仍然不及LCD來的快,但已經相當適合文書與程式開發者使用,對於有乾眼症的患者來說更是一大福音。
雖然說現在的電子紙也有閲讀燈的光線設計,不同於LCD的背光的直接照射,電子閲讀使用的是「前光」也就是光線是從上方照射電子墨水層,再依靠反射來呈現。因此即使是內建了閲讀燈的裝置,它仍然保有了護眼的特性。
但整體來說,在播放影片或是需要快速反應時,E Ink還是比不上LCD,但反射式的特性,讓使用者在長時間使用時,眼睛會舒服一些。
電子紙未來應用更廣
電子紙並不是個新科技,它發展的時間幾乎和電腦一樣長,有30年的歷史了。在這段時間中,一般民眾習慣於電腦螢幕和手機螢幕,電子紙常被拿來和LCD做比較,反而突顯不出電子紙的特點。
Amazon 於2007年底推出第一款的Kindle之後,電子書閲讀器輕薄容易攜帶、可以儲存大量的書籍和省電可以長時間閲讀的特性讓電子紙開始被大眾認知。2017讀墨推出台灣第一款本土自製的電子書閲讀器mooInk後,也在2021年推出彩色的電子書閲讀,在這4年之間,台灣民對電子紙的認識也愈來愈多。
除了護眼、省電、輕薄之外,可折疊彎曲的特性,讓電子紙可以印刷在不同的表面上。隨著5G和物聯網的到來,大家未來看到電子紙的機會,將會比現在大得多。
可折疊可捲曲
電子紙的優點,除了我們之前說的護眼、省電和輕薄外,還有一個優點就是可以折疊、彎曲。
這是因為電子墨水的膠囊是液態,所以比LCD螢幕更容易做成可折疊的產品,不受物體表面形狀的限制。
以目前可以看到的應用來說,像是手錶的錶面可以顯示相關資訊,也可以打洞。或是國外也有人把電子紙縫製在帆船選手的運動服的前臂上,讓選手在激烈的動作中,仍然可以看到大會所發送的各種資訊。
https://youtu.be/aC5gb9yM8I4
▲可摺疊的彩色電子紙。
https://youtu.be/RijO7oY8k3M
▲可捲曲的電子紙。
https://youtu.be/KCZnNSOzMkU
▲這些公車站牌是可以著不同公車進站的時間,動態更新資料。
表單電子化
在我們的生活經驗中,有許多的場合都需要填寫大量的相關資料,許多行業的表格填寫都是以紙本為主,像是保險的保單、就診時的表格或是銀行開戶時填寫的各式表單。新北市一個衛生所一年會填寫8,400張的表格,永豐銀行一年125個分行印出來的紙張加起來有2個101大樓那麼高。
這些表格除了填寫之外,按照法規,有許多還需要保存七年之久。存儲這些文件的空間和條件都有一定的溫濕度要求,更別說真要查詢調閱多年前的資料時,搜尋調閱也是一個大問題。
電子紙近年來最大的改變,就是加入了「手寫」的功能,因為加入了筆,讓電子紙在取代紙張上又向前跨進了一大步。而「儲存」和「搜尋」剛好都是數位化的強項,因此新北市衛生所和永豐銀行都開始讓民眾和客戶都已經開始使用電子筆記來做這些記錄。除了節省紙張外,也大大的降低了儲存的難度和提高搜尋的便利性。
附圖:▲ 這張圖片可以很好的說明雙色電子墨水的原理 (圖片來源:元太科技)
▲ 因為反射式的特性,所以在大太陽下畫面仍然清晰可讀。
▲ 電子書閲讀器是一般民眾最熟知的電子紙應用
▲ 目前彩色電子書閲讀器使用的,大多是Kaleido的技術。
▲ Kaleido是在黑白粒子的上方,再加上一層新的RGB的彩色濾光片(CFA)技術,透過光線的反射來呈現不同的顏色。(圖片來源:元太科技)
▲ 目前彩色電子書閲讀器使用的,大多是Kaleido的技術。
▲ 彩色電子紙也可以應用在可重覆使用的員工識別證上。
▲ E Ink Spectra微杯電泳技術不使用彩色濾光片,是在原有的黑白粒子外再加上不同顏色的粒子來呈現色彩。(圖片來源:元太科技)
▲ 使用彩色電子紙製作的桌牌。
▲ E Ink Spectra 3000在原有的黑色和白色粒子之外,再加上紅色的粒子,是一款三色電子紙。(圖片來源:元太科技)
▲ 使用彩色電子紙製作的桌牌。
▲ 可重覆使用、更換的展示桌牌。
▲ 色彩鮮明,飽和度高的微杯技術很適合應用在桌牌或是廣告展示。
▲ 電子標籤可以省去更換大量貨架標籤的時間,把寶貴的人力用在服務客人。
▲ 電子標籤方便管理又可重覆使用的特性,在這波疫情中受到很大的歡迎。
▲ 2010年推出的俄羅斯手機YotaPhone,是一款雙螢幕手機。正面是LCD螢幕,背面是電子墨水螢幕。
▲ 透過這張圖,我們可以清楚的看到即使內建了閲讀燈的裝置,電子紙的光線仍然是來自於反射,因此還是保有護眼的優點。(圖片來源:元太科技)
▲ 2010年推出的俄羅斯手機YotaPhone,是一款雙螢幕手機。正面是LCD螢幕,背面是電子墨水螢幕。
▲ 使用彩色電子紙的手機
▲ 有些廠商開發的技術,可以讓顯示的螢幕更新速度幾乎可以媲美液晶螢幕。
▲ 手錶的錶面使用電子紙,可以在螢幕上打洞安裝指針;在太陽光下也可以很清楚的看見錶面上的訊息。
▲ 彩色電子紙也可以拿製作可重覆使用的員工門禁卡或訪客通行證。
▲ 電子墨水畫廊使用 ACeP全反射式的彩色電子紙,透過帶色的粒子,實現了包含八種原色的全色域顯示效果。可以使用在公共看板或是零售業促銷看板。
▲ 部分銀行和醫院已經開始使用電子表單來取代傳統的紙張。
資料來源:https://www.techbang.com/posts/87328-colored-electronic-paper-is-coming-in-the-age-of-the-internet?fbclid=IwAR2uJghIo-xDa7fZ3uGJ6OvgBt1ARznUiFcuBMON24C0-WcNViM9v9a9oqg
歐卡模組車 在 英雄日常Heroisme2 Youtube 的最佳貼文
恩傑水冷:https://shopee.tw/nzxt.tw
訂閱英雄:https://www.youtube.com/user/herosbaga?sub_confirmation=1
二站:https://youtu.be/sIuWV4gEXEg
本站:https://www.youtube.com/user/herosbaga
英雄日常FB:https://www.facebook.com/herosbaga
英雄日常繪畫工作室:http://www.jibako.com/gigs/194
英雄本舖:https://tw.bid.yahoo.com/booth/Y6789613507?bfe=1
#歐卡
歐卡模組車 在 法師Fashi Youtube 的最佳解答
歐卡模組車 在 真電玩宅速配 Youtube 的最佳貼文
《漫威》英雄電影相信大家都看過,相關遊戲也不在少數,這次在gamescom 2021前夜祭直播中,同樣也公佈了一款名為《漫威午夜之子》(Marvel's Midnight Suns)的全新戰術RPG,特別的是這次製作方不是過往大家熟悉的SONY,而是由《XCOM》系列開發商Firaxis Games負責開發,是以漫威在1992年開始連載的漫畫《午夜之子》為基礎。本作目前已於官方網站開放玩家註冊,預計在9月1日將公開本作的實機遊玩影片。
《墮夢》(Dolmen)是一款驚悚動作RPG,遊戲結合了未來科幻和宇宙性恐怖元素,玩家將前往一個名為「雷斐昂主星」的危險外星世界執行任務,目的是取回具有獨特屬性的水晶樣本「墮夢」。玩家可以使用各種武器和招式,在近戰和遠程戰鬥之間切換,藉此戰勝各種強力的敵人。本作預計2022年在多個平台推出,感興趣的玩家可以持續關注。
這次萬代南夢宮娛樂在gamescom 2021前夜祭直播中,正式發表《傳奇》系列智慧型手機遊戲新作《Tales of Luminaria》。可以發現系列角色將齊聚一堂,帶來全新的原創故事,遊戲戰鬥以直立式畫面呈現,採用3D動作RPG玩法,不過詳細的上市時間仍未確定。
人氣動漫畫《鬼滅之刃》改編的遊戲《鬼滅之刃 火之神血風譚》,終於釋出了「那田蜘蛛山篇」登場的下弦之伍「累」對戰的最新實機影片,並一窺「鬼」模組的製作過程,官方預計於10月14日遊戲上市後透過免費更新讓「鬼」加入VS模式。
《忍者龜:許瑞德的復仇》(Teenage Mutant Ninja Turtles: Shredder’s Revenge)也在這次展上宣佈,卡通中被默認為女主的記者「艾波歐尼爾」也將參戰,身穿黃色制服的她靠著拳腳、麥克風以及攝影機,一同與忍者龜並肩作戰!遊戲預計2022年於STEAM上市,現在就可以加入願望清單了喔。
《絕命精神病院》系列新作《絕命精神病院 實驗》(The Outlast Trials),這回釋出了新的遊玩宣傳影片,更多噁心、凶猛且強大的實驗體怪物也都在影片中出現,場景跟過去比起來也更加明亮,不過遊戲將延至2022年推出,感興趣的玩家還得再等一等囉。
由Nullpointer開發的第一人稱射擊遊戲《INTO THE PIT》,公布了最新的遊戲影片,並預告將加入Xbox Game Pass陣容。本作結合了隨機地城Rogue-Lite元素與第一人稱射擊,玩家將在隨機多變的地城當中,挑戰滿坑滿谷的惡魔大軍。並且需要收集符文和鑰匙,來開啟其他迷宮地城,體驗更深入的內容。
在昨日公開「投石車」影片之後,微軟在今日又曝光了《世紀帝國4》的最新實機影片。在影片中可以看到羅斯人的射手衛隊與武僧,以及神聖羅馬帝國的高級教士和國土傭僕,這兩個文明的特色單位。遊戲即將在10月28日上市,準備好創造你的文明了嗎?
韓國遊戲大廠珍艾碧絲(PEARL ABYSS),也帶來了《多可比》的最新影片。遊戲擁有獨特的世界觀,玩家要在這個開放世界當中與鬼怪們一同展開冒險。官方目前計畫先在PC與家用主機平台推出,隨後也會有手機版本登場,你是不是也很期待呢?
以上就是我們為大家整理的gamescom 2021第一天重磅消息,也別忘了持續鎖定接下來每一天的精彩報導喔。
© 電玩宅速配
「電玩宅速配」粉絲團:https://www.facebook.com/tvgamexpress
「網紅攝影棚」節目:https://tinyurl.com/y3hejwb5
遊戲庫粉絲團:http://www.facebook.com/Gamedbfans
歐卡模組車 在 歐洲模擬卡車轎車模組Honda EP3 Typer + Varex Sound 小炸 ... 的推薦與評價
... [email protected] 歐卡 在轎車 模組 除了車型及內裝都不錯但就是少了聲音(幾乎都是卡車聲)而這 模組 應該是目前最好的引擎速度也掌控都條的不錯可惜 ... ... <看更多>
歐卡模組車 在 歐洲卡車模擬2 | ETS 2 # 31 : Nissan GTR !! - YouTube 的推薦與評價
《 歐卡 2》的玩家為什麼動不動就能玩上千小時?【這才叫遊戲27】歐洲卡車模擬2·篇Euro Truck Simulator 2 · 【阿杰】台灣地圖 模組 ,從台北到台灣最南點( ... ... <看更多>
歐卡模組車 在 [問題] 歐卡2有沒有增加車流量的模組- 看板Steam - 批踢踢實業坊 的推薦與評價
如題,因為有點不知道要用什麼關鍵字搜尋,因此想來請教一下版友。
我想增加路上車流量,甚至是體驗一下塞車 開到一半急煞等比較真實的車流量。
因為覺得內建預設的車流都不多,找了一下遊戲設定裡面也沒有可以增加AI車子數量的選
項
因此想問有沒有類似符合上述的MOD可裝,感謝~
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 101.14.195.104
※ 文章網址: https://www.ptt.cc/bbs/Steam/M.1510375983.A.238.html
... <看更多>