【N世代學苑】中部共學班🔎#組織再造改革力 #課程大補帖
㊙ 看到最後留言+1分享本堂課好康資訊㊙
歷經2次線上聚會,上週三(9/8)中部共學班的夥伴,迎來首次實體課程啦🔥 這次透過不同面向的工具,讓企業學員瞭解數位應用解方👇
❶ AI人工智慧如何協助生產優化及智慧傳承
❷ 採購X銷售X帳款:輕鬆駕馭進銷存運作管理
❸ 業務拓展X客群關係維護
👉 #知識管理AI應用
AI人工智慧的應用不再遙不可及,#杰倫智能業務總監余常任 講師透過產線數據、文字資料、具因果關係的數值,分享了AI如何進行機器學習,並預測生產配方及機台數據模擬,降低生產損耗達到生產優化的目標✨。
雖然有AI人工智慧的協助,講師也提醒企業必須先找出核心問題🎯,蒐集關鍵數據才能事半功倍!
👉#進銷存系統也能上雲
資料上雲☁是企業近年的趨勢,在第二個子議題邀請到 #鼎新商務運用雲的高級規劃師 #劉耀中 講師分享雲端進銷存系統與傳統單機版不同之處,透過雲端進行進銷存管控,除了節省時間與人力,
更大的好處是企業可以依據需求擴充功能,打造適合自身公司的進銷存系統,用手機📲就能夠查詢採購、出貨、帳款等資訊!
👉#透過CRM系統掌握客戶樣態
企業時常因為人員流動而造成客戶移交資料不完整,這時候客戶關係管理就顯得更加重要🤝, #叡揚資訊雲端及巨資事業群 #胡瑞柔總經理 在第三階段的課程中,解析如何整理客戶資訊🙋♂️🙋♀️。
除了接手人員可以迅速了解客戶需求,還可以預測下單時間及數量,進行相關的產品推薦⭐,課程間也透過案例分析及客戶分群練習,讓中部共學班的夥伴們更了解客戶輪廓,並進行分類實務練習👪。
看到這裡,如果你也是想要進行數位工具導入的中小企業,對知識管理、雲端進銷存系統及CRM等工具有興趣😍,
歡迎在底下留言+1,小編將會把本堂課的好康資訊分享給你喔!㊙㊙㊙
--------
關於N世代學苑👉https://bit.ly/3meTo2J
#中小企業接班傳承數位成長計畫
#不可不知數轉工具
人工智慧的 分類 在 軟體開發學習資訊分享 Facebook 的最讚貼文
✍ 線上課程介紹:現代人工智慧精修班: 建構 6 個專案
人工智慧( AI )是一門使電腦能夠模仿人類智慧的科學,例如決策、推理、文字處理和視覺化概念。人工智慧是一個更廣泛的一般領域,涉及幾個子領域,如機器學習、機器人學和電腦視覺。
為了讓公司變得更有競爭力,並且快速增長,他們需要利用人工智慧的力量來改進流程、降低成本和增加收入。如今,人工智慧在許多領域得到了廣泛的應用,從銀行業到醫療保健、交通運輸和技術等各個行業都在進行轉型。
近年來,人工智慧人才的需求呈指數級增長,而且不再侷限於矽谷!Forbes 雜誌稱,人工智慧技術是 2020 年最受歡迎的技術之一。
本課程的目的是以一種實用、簡單和有趣的方式提供你現代人工智慧應用的關鍵方面的知識。本課程提供學生運用真實世界資料集的實際動手經驗。本課程涵蓋了許多新的主題和應用,如 Emotion AI (情緒人工智慧)、Explainable AI (可解釋的人工智慧)、Creative AI( 創造性人工智慧 ),以及應用在醫療、商業和金融領域的 AI用。
本課程的一個主要特色是我們將使用 Tensorflow 2.0 和 AWS SageMaker 來培訓和部署模型。此外,我們將涵蓋 AI/ML 工作流程的各種元素,包括模型建立、培訓、超參數調整和部署。此外,本課程經過精心設計,涵蓋了諸如機器學習、深度學習和電腦視覺等人工智慧的關鍵技術。
以下是我們將要做的專案摘要:
✅ 專案 #1( Emotion AI): : 情緒分類和基於人工智慧的關鍵人臉點檢測( Facial Points Detection )
✅ 專案 #2(應用在醫療保健中的 AI ) : 使用人工智慧檢測和定位腦腫瘤
✅ 專案 #3(應用在商業/市場行銷的 AI ) : 使用自動編碼器和非監督式學習演算法進行商城客戶區隔( Segmentation )
✅ 專案 #4(應用在商業/金融的 AI ): 使用 AWS SageMaker 的 XG-Boost 演算法( 自動駕駛,AutoPilot )預測信用卡違約
✅ 專案 #5( Creative AI ) : 人工智慧創造藝術作品
✅ 專案 #6( Explainable AI): 使用 GradCam 揭示人工智慧的黑盒特性並可視化隱藏層
對此課程有興趣,請參考底下留言區
人工智慧的 分類 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
從火星探測系統到輔助工業製程,美國工業用 AI 新創 Beyond Limits 如何在台灣做到技術在地化應用?
李佳樺 2021/08/13
從2012 年美國太空總署成功將探測車「好奇號」送上火星至今,已經過了3000多個「火星日」,肩負著火星探測的重要任務,8年來好奇號傳回許多對火星的重要觀察與發現。背後更不為人知的,則是好奇號的 AI 運算系統,其實是由美國新創 Beyond Limits 的團隊建立的,公司發展至今也將觸角伸到能源、先進製造等產業,建立 SaaS 服務,為產業提供 AI 輔助平台,2020 年更獲得 1.3 億美元的投資,拓點到台灣、日本、新加坡、香港等地。
Beyond Limits 將 AI 應用到產業製程的契機,源自於當時跨國石油集團 BP 在墨西哥灣發生的漏油事件,企業希望導入 AI 優化決策過程,合作中也發現了石化能源產業的痛點,研發出石油配方建議系統、石油製程操作檢引系統等 SaaS 產品,不僅受到美國石油公司歡迎,日本市場也買單。
有了日本的先例,這套美國研發出的產品,照理說要拓展到亞洲市場應該不成問題,不料到了台灣卻窒礙難行,甚至需要重新開發不同的產品。
Beyond Limits 的台灣團隊究竟面臨了什麼挑戰?
台灣市場與美國差異大,Beyond Limits 台灣團隊必須如創業般從頭研發產品
台灣分公司總經理張中宜說明,台灣產業的先天特性,讓美國母公司已開發的產品都面臨市場可行性低落的問題,以石油產業的產品舉例,在台灣只有中油、台塑兩個客戶,且台灣的石油公司並不做研發工作,多半直接向國外公司購買配方,因此團隊必須在美國 SaaS 模式 的技術基礎下,研發出符合台灣市場、針對不同產業需求的商品。
「Beyond Limits 在台灣設立公司時的處境,跟重新創業差不多。」張中宜表示,AI 應用產品的開發不僅需要能夠從零開始寫演算法的工程師,也要有懂產業製程的專家團隊,龐大的研發費用與對產業專家的需求,讓每一次產品開發都像募資活動,團隊必須透過產業訪談做足市場研究找到痛點,說服製造公司與他們合作開發能解決產業問題的軟體。
然而開發全新市場對張中宜來說並不陌生。
她曾經在孟加拉創立幫助偏遠地區孩童課輔的非營利組織 e-Education ,第一年就讓偏鄉學子考上孟國最高學府卡達大學,更順勢搭上鼓勵企業與 NPO 合作的開放式創新風潮,讓卡西歐、 AI 新創、安永都找她擔任顧問,執行戰略布局或開發新通路的工作,面對 Beyond Limits 在台灣的難題,團隊選擇了電動車電池研發、面板機器手臂維修與人流異常預警系統等三個產業切入。
延伸既有美國產品技術,尋找合適的台灣在地產業切入開發產品
選擇電動車電池產業與 Beyond Limits 在美國石油產業的經驗有關,研發電池的過程與石油廠研發機油的邏輯相似,痛點都在於漫長的研發過程,就像做菜時要多次嘗試才會知道多少的鹽與油才是最佳的調配一樣,電池配方更要經歷至少半年的實驗,且實驗設計也要在無數次團隊與客戶的交鋒後才能成型,溝通成本相當高昂。
使用 Beyond Limits 導入認知 AI 架構的電池配方建議系統,研發人員只要以自然語言輸入期望的電池規格、價格與電車轉速,系統即可在 43 分鐘內提供數百種配方與實驗方式供選擇,縮短約 2 千倍的研發時間。
Beyond Limits 也在 7 月 29 日宣布與日本的三井物產公司進行策略結盟,以其認知 AI 的核心技術,協助三井投資的液化天然氣廠進行巨量資料分析,並整合作業人員專業知識與數位化作業模式,制定出精簡有效率的解決方案。日本三井整合數位策略部部長常務董事真野雄司氏說,透過與 Beyond Limits 的合作可以改善與再造營運流程,更有效率執行現有事業群的高附加價值項目。
另外,Beyond Limits基於公司在美國既有的輔助風電機維修平台,投入面板機器手臂維修建議系統的開發,「雖然也想在台灣用同一套產品幫助風電產業,也與風電廠陸續接洽,但台灣的風電仍在建設階段,缺乏營運經驗,目前的維修需求也不高。」張中宜談到,市場開發的大方向是要在台灣尋找具備預測維修需求,且市場密集、成熟的產業,公司在與投資人仁寶電腦的合作中,發現光電面板產線中機器手臂的維修概念與風機維修類似,而且痛點也類似:包含高昂的維修成本、未經標準化的維修流程,以及依賴經驗的維修決策。
目前輔助維修系統正與日本機器手臂原廠合作開發,由廠商提供維修資料與產業專家, Beyond Limits 透過 AI 分析維修數據,建立資料背後的邏輯推演,系統最終能判斷機器損壞的原因,並建議耗材種類與維修方式。從管理者的角度能降低維修、備料倉儲成本,對維修人員來說也有可依循的維修建議,長遠更能累積產業知識 ( domain know-how ) ,促進升級。
以邊緣運算技術,與北捷合作開發人流異常預警系統
而將技術從太空拉回到地面,Beyond Limits 也能在大眾運輸犯罪預警上有所發揮。他們與北捷合作,使用等同於在火星探測時、消弭與地球時差的邊緣運算技術,原理是透過分散式的運算提升效率,達成在監控系統的邊緣節點就進行異常人流的辨別,降低反應時間落差。
張中宜舉例,正常的人流像是乘客擠進車廂內的固定位置,開始滑手機,異常的人流可能是人群往四面八方散去,產生快速移動的樣態,異常訊息可以在 10 秒內將送到中控室,大幅縮減以往需要 4 分鐘以上的訊號傳輸時間,也能避免踩到人臉辨識的紅線,未來希望擴張應用到大樓監控,或是銷往他國的大眾運輸系統。
源自NASA,認知型AI成為技術優勢與門檻
與其他單純使用機器學習技術分類數據並預測結果的數值 AI 系統不同,Beyond Limits 的 AI 服務融合了數值 AI 與符號 AI ,前者的數值 AI 是透過大量數據讓模型認知「此為何物」,而符號 AI 則是藉由邏輯定義數值 AI 判斷的結果是好還是壞,並加以做出決策與判斷,以電池配方為例,將實驗室過去的實驗數據導入數值 AI 系統後,會得出樹種配方組合,再藉由符號 AI 判斷個配方辦法的優劣,並給予客戶回饋與建議。藉由結合數值 AI 與符號 AI 兩大系統的結合,讓人工智慧的每項建議都能以人類可理解的思路解釋,輔助人類做最後決策,也使人機協作的製程模式成為可能。
對於這項技術,張中宜表示這其實是源自於 NASA 將探測器「好奇號」送上火星後,由於火星與地球之間的數值傳遞有時間差,人類基本上不可能遙控好奇號,而且火星上的數據在這之前是 0,所以數值 AI 也無法運作,為了能夠讓好奇號自行在火星上探測與行動,勢必須要模擬人類大腦的認知型 AI 系統,當時才會開發出符號 AI。
根據研究報告,2025 年工業用 AI 規模將達 160 億美元,其應用開發仍具高度可能性,Beyond Limits 在台灣也希望更全面地研發產品打進該市場。除了正在培養市場的風電產業外,未來也希望協助優化晶圓半導體產業的製程,團隊更積極與社會、產業溝通,讓社會了解 AI 進入產業能讓人類更有餘力進行創意發想與決策,也讓產業正視轉型需求,近期將與台灣新創基地合作舉辦 AI 科普講座,持續促進製造業的人機共榮合作。
創業快問快答
Q:服務的創意來源,是因為發生甚麼事情而有這樣的想法?
A:台灣數位轉型瓶頸
Q:創業至今,做得最好的三件事為何?
A:用國際薪資招聘頂尖人才、台灣市場國際定位清楚、客戶分潤共創模式的商業模式
Q:要達到下一步目標,團隊目前缺乏的資源是?
A:能見度
附圖:BeyondLimits 台灣總經理 張中宜
Beyond Limits 以數值AI及符號AI兩大關鍵技術,達到人機互補智能
圖片來源 : Beyond Limits
擠捷運
圖片來源 : diGital Sennin on Unsplash
圖說:BeyondLimits Hybrid AI導入流程說明
BeyondLimits Hybrid AI導入流程說明
圖片來源 : BeyondLimits
資料來源:https://meet.bnext.com.tw/articles/view/47993?fbclid=IwAR2HbB5FrPIBoV9kDL27OnhNF-JDNzfYdsoLoVKn85yAA7GUjzDzI3y5Lw0
人工智慧的 分類 在 Ai4quant - 人工智慧的等級分類 的推薦與評價
相比狹義人工智慧,此時的AI智能體已經能完美的做到跨領域且多任務的工作,所有人類能做的到的事情,電腦都能做到!在這樣的情況下,電腦不只下圍棋的實力 ... ... <看更多>