<表示失權之重大虐待或侮辱如何解釋?>
大家好,我是賴川。本週星期五民商法教室要來看繼承法爭點,這個爭點是,民法第1145條第1項第5款表示失權的重大虐待或侮辱,應該如何解釋?繼承人長期未於平日探視與關心被繼承人,是否即構成「重大虐待或侮辱」?
依民法第1145條第1項第5款喪失繼承權,必須符合二要件:第一,繼承人對於被繼承人有「重大虐待或侮辱」;第二,繼承人必須經被繼承人「表示不得繼承」。準此,民法第1145條第1項第5款喪失繼承權之規定,繼承人必須經被繼承人表示不得繼承後,始喪失繼承權,故學說上稱其為「表示失權」,而與民法第1145條第1項第1款至4款之「當然失權」規定,無須被繼承人為任何表示,即可發生失權之效果不同。
然而,有疑問的是,何謂重大虐待或侮辱?繼承人長期未於平日探視與關心被繼承人,是否即構成「重大虐待或侮辱」?
黃詩淳教授認為,在我國現行民法規範下,表示失權並非要式行為,亦無庸經法院裁判為之,其構成要件已失之寬鬆,則法院在解釋「重大虐待或侮辱」時,應力求慎重嚴謹。然而近年部分地方法院卻認為如繼承人「長期未於平日探視與關心」就可構成重大虐待。此等看法,應有不妥。
詳言之,黃詩淳教授指出,若將我國部分地院裁判所採之立場,普遍適用於我國社會,使被繼承人得剝奪「二至五年間未於平日探視及關心被繼承人者」之繼承權,即意味何人得以討被繼承人歡心,而使被繼承人立下剝奪其他繼承人繼承權之遺囑等,就能增加自己的應繼分,如此一來,即可能使本有嫌隙的共同繼承人,發生更嚴重的猜忌與對立。此外,更重要的是,被繼承人所為之剝奪繼承權的表示,將使繼承人連最根本的特留分均不保,因此,對於想要更多遺產的繼承人而言,設法讓被繼承人剝奪其他繼承人的繼承權,比起讓被繼承人以遺囑將特定財產留給自己,更能達成目的。
總結而言,被繼承人所為之剝奪繼承權表示的效果更為嚴峻,但民法卻將此等嚴重行為規定成不要式,已輕重失衡,若法院在個案解釋又放寬表示失權之構成要件,無異使被繼承人限於繼承人的諂媚阿諛等情緒勒索中,將使繼承人彼此間之明爭暗鬥更為激烈,而非立法者所樂見。
#星期五民商法教室31
附註:
明日7/25(六)13:00-15:00,思法人在台北車站的班內衝刺講座,我會帶各位複習近年最高法院決議爭點,思法人願意開放班外生 5 位可來現場,有興趣的同學請私訊我。
同時也有1部Youtube影片,追蹤數超過14萬的網紅賢賢的奇異世界,也在其Youtube影片中提到,#亞特蘭提斯 #高次元外星人 #賢賢的奇異世界 各位大家好,歡迎來到賢賢的奇異世界,我是Tommy 那為什麼改名呢?其實HenHen是我名字的最後一個字 在客家話裡面,‘賢’是讀hian,所以是hian hian TV 大家跟我讀一次,賢賢的奇異世界,對啦! 最近在看回我之前做的亞特蘭提斯影片,發...
何謂應力 在 未來Family Facebook 的最佳解答
#耐髒適應力更強_耐煩才能深入學習有所成就
美國職籃傳奇明星柯比‧布萊恩因直升機墜機意外英年早逝,我和班上孩子討論,為什麼他那麼讓世人懷念?他的成就從何而來?在於堅持。柯比每天清晨四點開始練球,練兩個小時再休息,這個習慣從高中就養成。
當別人還在睡夢中,他已經早起多練習兩小時了,每天的兩小時,日積月累,造就堅強實力,別人已無法超越,這就是耐苦又耐煩的堅持......↘️↘️
--
☀教養路上不孤單!快將<未來Family>加入"搶先看" ➡ 讓我們和您一起在教養路上並肩作戰!
何謂應力 在 City News 城市新聞 Facebook 的最佳貼文
【#精選話題】趕快收藏!去年TED最夯10部影片!
2019 年最受歡迎的 TED 演講 Top10 有哪些?聚焦 3 大主題,首先是個人成長,比如在複雜多變的市場,適應力商數(AQ)比智商(EQ)更重要。第二是社會進步,社群媒體是否會讓苦心建立的民主毀於一旦?氣候變遷也是一再提及的議題。第三則是關於愛,步入婚姻是人生最重要的決定之一,如何選擇對的伴侶,晚婚可能是一個解答。以下是影片清單整理:
NO.10 適應力(AQ)增強計畫
https://youtu.be/xJM_CQN8-ns
NO.9 打造快樂的婚姻
https://youtu.be/aRcD31sA2a0
NO.8 建立自信的方法
https://youtu.be/b5ZESpOAolU
NO.7 臉書如何摧毀民主
https://youtu.be/OQSMr-3GGvQ
NO.6 與悲傷同行
https://youtu.be/khkJkR-ipfw
NO.5 何謂健康的愛
https://youtu.be/ON4iy8hq2hM
NO.4 人類如何在氣候變遷下自處
https://youtu.be/H2QxFM9y0tY
NO.3 憂鬱和悲傷的原因
https://youtu.be/MB5IX-np5fE
NO.2 多國語言者的學習心法
https://youtu.be/o_XVt5rdpFY
NO.1 睡眠力就是你的超能力
https://youtu.be/5MuIMqhT8DM
資料來源:經理人月刊
何謂應力 在 賢賢的奇異世界 Youtube 的精選貼文
#亞特蘭提斯 #高次元外星人 #賢賢的奇異世界
各位大家好,歡迎來到賢賢的奇異世界,我是Tommy
那為什麼改名呢?其實HenHen是我名字的最後一個字
在客家話裡面,‘賢’是讀hian,所以是hian hian TV
大家跟我讀一次,賢賢的奇異世界,對啦!
最近在看回我之前做的亞特蘭提斯影片,發現有太多的資料沒有整理好,
而且可能影片太長,大家看到有點消化不了。
我決定將亞特蘭提斯人的檔案重啟,整理後濃縮,再分成比較短的影片來解釋
然後把之前大家的坑都補一補,敬請期待哦!
今天要說的是亞特蘭提斯,大家有聽過嗎?
我在之前的十大失落的文明國度裡面曾經有說過
他是一個傳說中的古老國度,當時的文明曾經非常發達,
最後不知名的原因之下落入了海底。
有一個人告訴我說他是亞特蘭提斯的轉世者,
他擁有亞特蘭提斯文明的前世記憶。
亞特蘭提斯,在古希臘學者柏拉圖的著作【對話錄】有提過。
開始的傳說是源自古埃及,之後由古希臘學者傳了下來
在希臘的傳說中,他是由海神波賽頓所建造的城市。
他把這個島分成了十個區,分別給五對雙胞胎管理,
而且把最高管理權交給長子大力神阿特拉斯Atlas,
所以這個城市就叫亞特蘭提斯Atlantic。
當時亞特蘭提斯人的生活非常高級,不需要工作,因為一切都是自動化。
他們可以透過水晶來吸取知識,所以一個小孩子也能夠擁有學者的知識。
具體的情況如下,比如一個人50歲,
特製的水晶經過特殊的方法,
能夠儲存這個人50年以來大腦中所有的知識技能,
譬如一個水晶裝一個人一生的知識,
假如一個小孩使用了10顆這樣的水晶,
那麼他就能取得10個人10生的知識。
所以亞特蘭提斯人用腦是90%。
由特殊的水晶使用了特殊的心電感應力,
這樣的水晶甚至能讀取動物在想什麼。
所以當時的人能夠跟動物說話。
人與動物是和平共處的,
絕對沒有人殺了動物這種事。
當時的人也透過超高的科技,製作了高級人工智慧機器人。
甚至透過特殊的基因工程,製作了半人半獸,
現在在歐美傳說中的動物,像是獨角獸,美人魚,半人馬等等的。
其中最吸引現在科學家注意的,
是他們的能源系統。
能源系統的中心是磁歐石,
他是個六面體的巨大圓柱,像玻璃一樣透明清澈。
他能吸取太陽能,將太陽能儲存為能源。
他就設在亞特蘭提斯的首都【波賽迪亞】的中央能源所裡面。
他不僅能提供亞特蘭提斯國度的能源供應,
甚至可以用做人死重生,返老還童這些特殊的治療。
然而卻在至今一萬年前,這個裝置發生了大爆炸,
整個亞特蘭提斯大陸就此沉落到海底,
文明徹底毀滅。
就在文明毀滅之前,有些亞特蘭提斯人由於預知了毀滅的大事件,
因而帶領人們一起乘坐宇宙飛船(俗稱UFO飛碟),逃到了地球以外的地方。
在此我們簡單介紹一下,亞特蘭提斯人其中八成的人屬於四次元,也就是四維度;
有少數兩成靈性提升的較高的人,屬於五次元甚至六次元的靈魂振動頻率。
何謂靈魂振動頻率?例如現代人普遍屬於三次元,由高次元的人看來,
靈魂的振動頻率是相對緩慢的,越緩慢就越受地心引力影響,也越物質化。
相反的,四次元的振動頻率,相對較快速,已漸漸不受地心引力影響,
且已擁有超感知能力(俗稱超能力),
例如:簡易的漂浮、心電感應、預知能力、體態偽裝能力等等。
簡易漂浮:能在離地面50公尺處進行飛行,但不能飛行到超過50公尺的地方
心電感應:能讀取他人內心在思考些什麼,俗稱讀心術
預知能力:能在事情發生前10分鐘、前1天、前一年,就預先知道會發生什麼。
預知能力越強,能越早知道未來的事情。
體態偽裝能力:能利用本身的超感知能力,將身體偽裝成人類的身體。
現代有許許多多的黑暗勢力四次元蜥蜴人,就偽裝成人類,默默操控著人類社會。
亞特蘭提斯人是天琴星外星人的後代,天琴星人是類人族外星人,
屬於光明勢力外星人的一支。
以下這些外星人,都屬於光明勢力外星人。
仙女星人:來自仙女星系,屬於7到9次元/7到9維度
天琴星人:來自天琴星團,屬於6次元/6維度
天狼星人:來自天狼星團,屬於6次元/6維度
昴(念作卯,不是昂喔!)宿星人:來自昴宿星團,屬於5次元/5維度
大角星人:來自大角星團,屬於5次元/5維度
太陽人:來自太陽,太陽其實有外星人居住,屬於5次元/5維度
金星人:來自金星,屬於4次元/4維度
火星人:來自火星,屬於4次元/4維度
註:目前已知,只有仙女星人屬於星系級別,
一個星系之中,有至少10億顆星球
何謂星團?星團僅次於星系,
星團是由最少2顆星球,最多1千顆星球所組成。
一個星團至少有1顆恆星,最多有10顆恆星。
太陽系就只有太陽的1顆恆星。
以上這些都屬於類人族外星人,通通隸屬於銀河聯邦。
也就是說,光明勢力的外星人,都紛紛加入了銀河聯邦。
銀河聯邦指揮部負責抵抗、協調與消滅黑暗勢力外星人。
前面提到,有的亞特蘭提斯人由於預知了毀滅的大事件,
因而帶領人們一起乘坐宇宙飛船(俗稱UFO飛碟),逃到了地球以外的地方。
具體逃到了哪裡,?
依照當時的人本身所屬次元,
4次元的就逃到金星和火星;
5次元的就逃到昴宿星和大角星和太陽;
6次元的就逃到天琴星和天狼星。
至於亞特蘭提斯轉世者講了些什麼?黑暗勢力外星人有哪些?
下一集的亞特蘭提斯檔案2亞特蘭提斯轉世者訪談錄,黑暗勢力外星人
請繼續的守著賢賢的奇異世界,
我們下個亞特蘭提斯重啟檔案裡面尋找答案
Bye Bye!
何謂應力 在 【生物力學系列】「應力」「剪力」聽不懂?用食物解釋讓你 ... 的推薦與評價
【生物力學系列】「 應力 」「剪力」聽不懂?用食物解釋讓你輕鬆理解!身體受的力|練健康生物力學ft. @HDbanana北投流暢哥布丁ㄉㄨㄞㄉㄨㄞ在那邊動 ... ... <看更多>
何謂應力 在 101商業週報- 【成大斗六分院17日舉辦『快樂當『乾媽』揮別 ... 的推薦與評價
陳醫師於記者會上表示何謂應力性尿失禁?且此症狀通常發生於女性身上,若罹患了應力性尿失禁應如何治療相當重要。 舞技一流的林太太,是社區跳舞班上 ... ... <看更多>
何謂應力 在 [建議] 賺錢用- 看板cksh80th315 - 批踢踢實業坊 的推薦與評價
Q1. 何謂「材料點(material point)」?
A1. 物理點(physical point)與幾何點(geometric point)的意義並不相同。數學上的幾何點為一沒有體積、沒有大小的抽象概念。但在自然科學中的物理點乃是指一個特定的區域,如果在此區域中某物理量(如應力、密度、溫度…等)均為定值,則此區域即為此物理量所相應的"點"。 而材料點正就是一種物理點。由此可知,雖然通常所指的材料點均為極小,但重點並非其範圍的大小,而是在一材料點內其有關材料的物理量均為定值。
Q2. 何謂「徹體力隅矩(body couple moment)」?
A2. 我們可將力量概分為「接觸力」與「超距力」兩類,力隅矩亦同。而所謂徹體力隅矩,其實就是「超距力隅矩」,也就是不需相互接觸,即可產生相互之作用。通常可利用電磁學的方法在材料體內製造出徹體力隅矩。
Q3. 何謂剪應力的「互等定理(theorem of reciprocity)」?
A3. 材料點處於靜平衡狀態,並且無徹體力隅矩(body couple moment)的作用時,應力矩陣中的剪應力會滿足下列關係:
此稱為剪應力的互等定理(theorem of reciprocity)。這時應力矩陣將成為對稱矩陣。
Q4. 何謂「應力轉換(transformation of stress)公式」?
A4. 同一材料點的受力狀態,以不同座標系所寫出之應力矩陣間的關係,即稱為應力轉換(transformation of stress)公式。
三維應力的應力轉換公式的型式為
其中 矩陣為兩個不同座標系之間的轉換矩陣, 與 為用不同座標系所寫出之同一材料點的應力矩陣。
Q5. 何謂「平面應力(plane stress)」?
A5. 所謂平面應力(plane stress)乃是指材料點所受應力僅在某一平面上。
譬如圖(a)所示,材料點僅受到 xy 平面上的應力作用,而 z 平面上的應力全為零,此即為一平面應力態。通常我們將平面應力態以圖(b)來表示,但宜注意,這僅是表明應力只在 xy 平面,而非指材料點為一個平面。
Q6. 何謂「Mohr圓(Mohr's circle)」?
A6. 以通過材料點某一個方向的應力 及 分別為兩座標軸線,而將平面應力轉換公式以圖形方式表現,所繪出之圓稱之「Mohr圓(Mohr's circle)」。如下圖所示
Mohr圓的數學方程式為
圓心座標為 ,其中 。
半徑 :
Mohr圓上的每一個點,即對應到通過材料點某一個方向的 正向應力與剪應力。
Q7. 何謂「應力張量(stress tensor)」及「應力矩陣(stress matrix)」?
A7. 代表材料點受力狀態的物理量稱為應力張量(stress tensor),而其矩陣表示法即為應力矩陣。
對於圖示之三維空間的材料點,其應力矩陣,以表示為
Q8. 何謂「主應力(principal stress)」?
A8. 若通過材料點某一平面上的剪應力恰為零,則該平面稱之主平面(principal plane),其相應的垂直軸稱主軸(principal axis),而主平面上的正向應力則稱為主應力。 簡而言之,主應力定義為:沒有剪應力之方向上的正向應力。
Q9. 何謂「三維Mohr圓(three-dimensional Mohr's circle)」?
A9. 以主座標系表示材料點的應力狀態,並且每次繞一主軸旋轉,而改變另兩根主軸的方向,我們可得到三個Mohr圓,此三個Mohr圓合稱為材料點的三維Mohr圓。 透過三維Mohr圓,可以明顯看出最大之主應力及剪應力,並且知道其所在的平面。
.
Q10. 何謂「應力向量(stress vector) 」?
A10. 應力向量T 為材料中某切面上單位面積的受力。如下圖所示,設以表示作用在面積元素上的內力,則我們定義應力向量(stress vector)T 為
Q11. 何謂「平面應變(plane strain)」?
A11. 所謂的平面應變係指材點的應變只局限在同一平面。
譬如圖示,被拘朿在兩光滑剛性壁之間的材料元素。由於剛性壁的限制,所以其僅能有三項應變,其餘的等皆為零。此種類型的應變狀態稱之為平面應變。 對於極長的隊道、涵管等結構物,在較遠離兩端之斷面上的材料點,可以近似地以平面應變的狀態作分析。
Q12. 何謂「主應變(principal strain)」?
A12. 當通過材料點之某兩相互垂直軸線的角度變化為零(即剪應變為零),則此兩軸線稱之為應變主軸(principal axis)。而兩軸線方向的正向應變稱主應變。
Q13. 何謂「應變張量(strain tensor) 」及「應變矩陣(strain matrix)」?
A13. 用以表示材料點的變形狀態的物理量,稱作「應變張量」,其矩陣表示法稱為「應變矩陣」。
Q14. 何謂「延性材料(ductile material)」? 何謂「脆性材料(brittle material)」?
A14. 材料在斷裂前會出現極大應變者稱作「延性材料」,反之在極小的應變狀態時即斷裂者稱為「脆性材料」。 通常以「延展比(ductility ratio)」作為判別延性材料或脆性材料的依據。以d 表示延展比,其定義為 ,其中表示材料斷裂時的應變,而則為恰發生降伏時的應變。當延展比 d 大於 5時,為延性材料。而延展比若小於 3 ,則為脆性材料。
Q15. 何謂「線性(linear)」?
A15. 所謂「線性」是指兩變量之間的關係為一次方的正比例,而且比例常數須為一定值。 例如滿足Hooke定律之單軸向應力的材料點,其應力與應變滿足: ,這就是一種線性關係。
Q16. 何謂「彈性(elasticity)」?
A16. 當受力材料在卸除負載的過程中,若其應力與應變關係乃是沿著與加載過程相同的路徑進行,此種現象即稱為彈性。具有彈性行為的材料,在卸載過程中可將加載過程所儲存的應變能完全釋出。
Q17. 何謂「彈塑材料(elastic-plastic material)」?
A17. 彈塑材料乃指應力與應變關係如下圖的材料,其在降伏點Y之前為線性暨彈性段,也就是應力與應變滿足: 。超過降伏點Y之後,應力無法增加,而應變可以隨意調整 ( 注意!在此階段應變並不是無止境的不斷增加 )。其實,彈塑材料是典型延性材料的一種簡化,如此可方便理論的建立與分析。
Q18. 何謂「Poisson效應 (Poisson's effect)」?
A18. 材料點在某方向受應力,而在垂直於受力方向亦發生應變的現象稱為 Poisson效應 。
Q19. 何謂「溫度應變 (thermal strain)」?
A19. 相應於溫度變化,在材料點中所產生的應變稱之為溫度應變。當溫度變化量為時, 溫度應變為 上式中 表線膨脹係數 (coefficient of linear expansion),其為一材料性質。
Q20. 何謂「Hooke定律 (Hooke's law)」?
A20. 當應力與應變處於線性行為時,應力與應變的關係稱作Hooke定律。
對於承受 x方向之單軸向應力的材料點,其Hooke定律表為: 。
至於一般應力態的等向性材料點,其 Hooke定律為:
Q21. 何謂「體積應變(volume strain)」或「膨脹率(dilatation)」?
A21.「體積應變」或「膨脹率」乃是材料點體積變化的度量。體積應變 定義為體積變化量 除以其原體積V,如下 。在應變極小的狀況下,體積應變的近似值為「三個相互垂直方向之正向應變的代數和」,亦即 。
Q22. 何謂「中性軸(neutral axis)」?
A22. 所謂中性軸,即構件斷面中不受應力的位置(通常為一直線),其為構件內「中性面」與「斷面」的交線。在中性軸的兩側材料分別受到拉應力與壓應力的作用,所以,中性軸也可說是構件斷面中受拉區域與受壓區域的分界線。
Q23. 何謂「斷面模數(section modulus)」?
A23. 斷面模數(section modulus)係一斷面的幾何性質,其定義為「斷面對中性軸的面積慣性矩 I」 除以「由中性軸至斷面頂部(或底部)的距離」。因此,每一個斷面均有兩個斷面模數值。如下圖之斷面,其兩個斷面模數 及 分別等於
Q24. 何謂「面積慣性矩(moment of inertia of area)」?
A24. 在圖(a)所示的斷面內,面積元素 至 軸線的垂直距離為 ,我們定義斷面對 L 軸線的面積慣性矩 為
圖(a) 圖(b)
依據上式的定義,可以計算圖(b)中的斷面對座標軸線 x及 y的面積慣性矩,分別為 與 。面積慣性矩為描述面積分佈的一種度量。而由其定義可知,慣性矩恒為正值。
Q25. 何謂「面積慣性積(product of inertia of area)」?
A25. 對於如圖(a)所示的斷面,我們定義「面積慣性積」 及 為
圖(a) 圖(b)
面積慣性積為描述面積分佈的一種度量。由其定義可知,而慣性積則可能為正值、負值甚或為零。倘若斷面具有一對稱軸,例如圖(b)所示的三個斷面,則其面積慣性積必定為零(為何呢?) 。
Q26. 何謂「面積慣性矩陣(inertial matrix of area)」?何謂「面積慣性張量(inertial tensor of area)」?
A26. 對於圖(a)之斷面,將其面積慣性矩及面積慣性積組合成矩陣型式,以表之為
圖(a)
上式為「面積慣性張量」 的矩陣表示法,又稱作「面積慣性矩陣」,其為斷面對O點面積分佈的一種度量。必須特別強調的是,上式為慣性張量在座標系<xy>的表示法,當所採用的座標系不同時,慣性矩陣中的各元素值亦隨之變化 (那麼,有什麼是不變的呢?)。
Q27. 何謂面積慣性矩陣之「主慣性矩(principal moment of inertia)」?何謂「主座標系(principal coordinates)」?
A27. 當面積慣性積恰為零時,相應的面積慣性矩稱作「主慣性矩」,而此時的座標系稱「主座標系(principal coordinates)」,若以<ab>表主座標系,則面積慣性張量在主座標系的表示法將為
(其中的 及 即為主慣性矩)
我們可以透過座標轉換的方法來推求主慣性矩及主軸的方向。參照圖(a)所示,若以 表示主座標軸與 x軸線的夾角,則有
圖(a)
上式中包含兩個相差 90o 的主軸方向。而其相應的兩個主慣性矩則為
Q28. 何謂「迥轉半徑(radius of gyration)」?
A28. 因為面積慣性矩的因次為面積乘以長度的平方,所以對於圖(a)所示的斷面,一定可將其慣性矩 寫為 ,其中A為斷面總面積,而 則稱作斷面對L軸線的「迥轉半徑」。要強調的是,對於面積相同的斷面而言,其值愈大,即表示對L軸線的慣性矩愈大。
圖(a)
Q29. 何謂「面積一次矩 (first moment of area)」?
A29. 如圖(a)所示之斷面,全斷面對x軸線的「面積一次矩」定義為
圖(a)
很明顯可以看出, 為每一個面積元素 dA乘以其至 x軸的垂直距離 y,並累加全斷面的總和。其為整個斷面相對 x軸線之面積分佈的一種度量。同理,全斷面對y軸線的面積一次矩 則是 。同一斷面對於不同軸線的面積一次矩並不相同,這表示對不同軸線的面積分佈不一樣。當然必須留意的是,面積一次矩乃是一純量,其可能為正值、負值甚或為零 (何種狀況下為零?)。
Q30. 何謂「面積極慣性矩(polar moment of inertia)」?
A30. 如圖所示的斷面,設面積元素dA至點Q的距離為 ,吾人定義斷面對Q點的「面積極慣性矩」 為
很明顯可以看出,同一斷面對不同點位的極慣性矩並不相同,所以,極慣性矩為斷面對"某點位"之面積分佈的度量。
Q31. 何謂「剪力流 (shear flow)」?
A31. 當樑內彎矩有變化時,在樑內沿軸線方向也會有相應的剪力存在。此種在樑內沿軸線方向單位長度的剪力稱為「剪力流」。以 f 表示剪力流可寫為
Q32. 何謂「撓曲剪應力(flexural shear stress)」?
A32. 起因於彎矩變化的剪應力稱為「撓曲剪應力」。直樑內的撓曲剪應力公式為 ,
上式中V為斷面剪力;I 為斷面對中性軸的面積慣性矩;Q表示斷面中部分 面積對中性軸的面積一次矩;而t 為斷面的寬度。
Q33. 何謂「撓曲應力(flexural stress)」?
A33. 當樑內有彎矩存在時,斷面內相應的正向應力稱為「撓曲應力」。直樑內的撓曲應力公式為 ,上式中 M 為斷面彎矩;I 為斷面對中性軸 的面積慣性矩; y為距中性軸的垂直距離。
Q34. 何謂「剪力中心 (shear center)」或「撓曲中心 (flexural center)」?
A34. 樑承受橫向負載後,斷面上剪力之「等效單一力」作用點,稱為該斷面的「剪力中心」或「撓曲中心」。
Q35. 何謂「Saint-Venant 原理 (Saint-Venant principle)」?
A35.
所謂 Saint-Venant's principle 就是可以將作用於材料之外力改以其「等效力系」來替代,如此對於遠離施力點處的應力分佈並不會造成改變。例如下圖(a)中承受偏心負荷的桿件,我們可用圖(b)中的未偏心軸力及一力隅矩來替代,對於遠離桿端處的應力分佈而言,兩者是一樣的。
圖(a)
圖(b)
採用 Saint-Venant's principle 的主要目的在於,可用較簡單的方法作應力的分析。譬如上述圖(b)中的應力分佈,可用未偏心軸力所造成的「均佈應力」以及彎矩所造成的「線性分佈應力」來合成。這樣也就得知圖(a)中的應力分佈了。須注意的是,只有對於遠離施力點處的應力分佈才能採用 Saint-Venant's principle ,在外力作用點附近並不適用。
Q36. 何謂「重疊原理 (principle of superposition)」?
A36. 所謂「重疊原理」乃是說:多個作用同時對一系統所造成的影響,等於各個作用單獨所產生之影響的總和。在引用重疊原理時,除了要求各個作用與其所產生的影響之間為線性關係之外,同時也必須各個作用之間彼此不造成相互的影響。
Q37. 何謂「破壞理論 (theory of failure)」?
A37. 所謂「破壞理論」係指判別材料是否已達不堪使用的一種標準。 對於承受不同型式的負載,或者材料性質不同,其所適用的破壞理論亦不相同。
Q38. 何謂「靜力 (static force)作用 」?
A38. 所謂「靜力作用 」係指由零逐漸增加的作用力,而且必須使受力系統隨時都處於靜平衡狀態。理論上靜力的增加過程必須無窮的慢,以便在力量增加時,系統仍能保持靜平衡,亦即系統的變化應為「準靜態過程」。 在「靜力學」、「材料力學」及「彈性力學」等學科中,討論的主體多半都是此種類型的作用力。
Q39. 何謂「最大剪應力破壞理論 (maximum shear stress failure theory ) 」?
A39. 承受靜力作用的延性材料,乃是由剪應力控制其破壞,所以定義「剪應力降伏強度」 為 ,當材料點之三維最大剪應力 小於或等於 時為安全。或者,以安全因數 (factor of safety) F.S.表示為 ,當安全因數大於或等於 1 時為安全,反之小於 1 則為破壞。
Q40. 何謂「安全因數 (factor of safety)」?
A40. 所謂「安全因數」乃是為了定量地評估材料是否發生破壞,所定義的一項比值。若以應力作為判斷是否破壞的標準,則安全因數 F.S.可表為 ,其中為材料內的「實際應力值」, 而則為材料的「容許應力值」 。當安全因數 F.S.大於或等於 1 時,材料為安全,反之安全因數小於 1 即屬破壞。
Q41. 何謂「Mises應力(Mises stress)」?
A41. Mises應力(Mises stress)定義為
其中 、 及 為材料點的主應力。於「畸變能破壞理論」中,主要以Mises應力來判別材料是否發生破壞。若Mises應力小於或等於 降伏應力,材料為安全,反之則為破壞。
Q42. 何謂「畸變能(distortion energy)」?
A42. 所謂畸變能(distortion energy)乃是材料體內相應於形狀變化(體積未變)的應變能。若以 、 及 表示材料點的主應力,則材料內單位體積的畸變能 為
其中 G 為剪力彈性係數。
Q43. 何謂「斷面剛度(section rigidity)」?
A43. 斷面剛度為斷面的特徵值,其反應出「單位長度之桿件」抵抗變形的能力。相應於不同型式的變形,有不同的斷面剛度,分述如下:對於承受軸力之桿件的「軸向變形」而言,斷面剛度為 AE,其中 A為斷面積、E為Young氏係數。對於承受扭矩之圓形斷面桿件的「扭轉變形」而言,斷面剛度為 ,其中 為斷面對圓心的面積極慣性矩、為剪力彈性係數。對於承受彎矩之樑的「撓曲變形」而言,斷面剛度為 EI,其中 I 為斷面對中性軸的面積慣性矩、E為Young氏係數。
Q44. 何謂「相合條件(compatibility condition)」?
A44. 材料受外界影響後,可能產生「變形」,例如:伸長或縮短、彎曲、扭曲等,同時,材料點亦可能有相應的「位移」出現。為了符合系統在幾何上的限制條件,「變形」與「位移」必須能相互配合,此種關係即稱為「相合條件」。
Q45. 何謂「應變能 (strain energy)」?
A45. 材料承受外加作用力並產生變形時,外力對材料體所作的功轉變成材料內的彈性位能,此種彈性位能又稱作「應變能 (strain energy)」 。
Q46. 何謂「應變能密度 (strain energy density) 」?
A46. 材料體內單位體積的應變能,稱作應「應變能密度 (strain energy density) 」。其值等於應力與應變之函數曲線所圍面積 ,即如圖 (a)所示之陰影面積 。
圖(a)
對於滿足 Hooke定律的材料而言,其應力與應變關係如圖 (b)所示,亦即 而 。如此,則應變能密度將可寫為
圖(b)
Q47. 何謂「輔能 (complementary energy)」?
A47. 如圖所示,有數個作用力施加於材料體,其中 為力量 作用點在 力量方向的位移分量。 若繪出 與 的關係曲線,則圖中的面積 稱之為相應於 力量的「輔能」,而材料體的總輔能 ,為每一個 力量所相應之 的總和,亦即
要特別強調的是,輔能僅是一個輔助運算量,並無物理意義。其主要用於「Crotti-Engesser定理」中,來建立力量與位移量的關係式。
Q48. 何謂「卡氏第一定理 (Castigliano's first theorem)」?
A48. 對於圖示承受數個作用力的材料體,若我們能將其應變能U表為位移 的函數,則可得到下列關係
上式即為「卡氏第一定理(Castigliano's first theorem)」。其為 n 條之力量與位移量的關係式,並且可用於任意型式之材料體。
Q49. 何謂「Crotti-Engesser定理」?
A49. 所謂「Crotti-Engesser定理」乃是利用系統的輔能(complementary energy)來建立外力與位移關係的定理。對於圖示承受數個作用力的材料體,若能將其輔能 表為外力 的函數,則可得
上式即稱之為「Crotti-Engesser定理」。其為 n 條之力量與位移量的關係式,並且可用於任意型式之材料體。
Q50. 何謂「卡氏第二定理 (Castigliano's second theorem)」?
A50. 如果作用在材料體上的每一個外力 與其相應的位移 皆呈線性關係,如圖所示,則應變能 、外力 ,及其相應之位移 間的關係為
上式稱作「卡氏第二定理」。其為n條之力量與位移量的關係式。若已知位移,則可求作用力;反之若已知作用力,則可解得相應的位移。
Q51. 何謂「位法 (displacement method)」?
A51. 以「廣義座標」為參數,來表示力學中的物理量,並據以作分析的方法,稱之「位法」。 例如,在「卡氏第一定理 (Castigliano's first theorem)」中係將應變能表為位移 的函數,並進而得到力量與位移量的關係,即為一種位法的應用。 再譬如,結構學中的「傾角變位法」,係以桿件端點的「旋轉角」及「相對側移」來表示桿端彎矩,這也屬於位法。
Q52. 何謂「力法 (force method)」?
A52. 以「廣義力」為參數,來表示力學中的物理量,並據以作分析的方法,稱之「力法」。 例如,在「卡氏第二定理 (Castigliano's second theorem)」中係將應變能 表為外力 的函數,並進而得到力量與位移量的關係,即為一種力法的應用。 再譬如,以「贅力法」分析靜不定系統時,乃將所有未知數均表為贅餘力的函數,這也是屬於力法。
Q53. 何謂「廣義力(generalized force)」?
A53. 凡可對物體作功,或改變物體之運動狀態的「效應」均稱為「廣義力」。常見的廣義力為「force (力量)」及「couple moment (力隅矩)」。
Q54. 何謂「廣義座標 (generalized coordinates)」或「廣義位移 (generalized displacement) 」?
A54. 凡可表示系統「狀態」或「形態」的獨立參數,即為「廣義座標」。一般在力學中可用「位移」來表示系統的構形,所以又稱為「廣義位移 」。 例如,我們以「直角座標」表示質點的位置,所以直角座標也就是一種「廣義座標」。其實,「極座標」、「圓柱座標」、「球座標」...全部都屬於「廣義座標」。 又我們常以「壓力」、「體積」、「溫度」等來表示流體的「狀態」,所以這些也都是「廣義座標」。
Q55. 何謂「完全拘束系統(completely constrained system)」?
A55. 係指在結構系統中的拘束力數目大於或等於靜平衡方程式數目,而且沒有不當的拘束狀況,因此可承受任意型式的外加負載,並使系統保持靜平衡狀態。 完全拘束系統中又可分為「靜定系統(static determinate system)」與「靜不定系統(static indeterminate system)」兩類。
Q56. 何謂「靜定系統(static determinate system)」?
A56. 在完全拘束系統中,若拘束力的數目等於平衡方程式數目時,稱之為「靜定系統」。 譬如下圖所示的簡支樑,其中支承力、及數量(三個)與平面平衡方程式數(三條方程式)相同,所以此為靜定系統。
Q57. 何謂「靜不定系統(static indeterminate system)」?
A57. 在完全拘束系統中,若拘束力的數目大於平衡方程式數目時,稱之為「靜不定系統」。 譬如下圖所示的樑,拘束力有四個 ( 支承力、、與支承力隅矩), 其數量較平衡方程式為多,故屬於靜不定系統。
Q58. 何謂「部分拘束系統(partially constrained system)」?
A58. 所謂「部分拘束系統」即拘束力的數目小於靜平衡方程式數。也就是拘束不足,致使系統無法承受任意型式的外加負載,並保持靜平衡狀態。 下圖中的樑僅有及兩支承力,其數量少於平面靜平衡方程式數,故屬於部分拘束系統。很明顯地,此樑在負載有水平方向分力的狀況下不能保持靜平衡。
Q59. 何謂「不當拘束系統(improperly constrained system)」?
A59. 所謂「不當拘束系統」乃是:雖然其拘束力數目大於或等於靜平衡方程式數,但由於拘束力安排的不恰當,致使無法承受任意型式的外加負載,並保持靜平衡狀態。
圖(a) 圖(b)
如圖(a)所示的樑,雖有四個支承力,但均在垂直方向,所以若有水平方向的負載即不能保持靜平衡。另外,圖(b)中的支承力均指向一定點Q,倘若負載的合力不通過Q點,則系統不能保持靜平衡。
Q60. 何謂「贅餘力(redundant force)」?
A60. 在靜不定系統中,可選取多於靜平衡方程式數目之未知力,暫時視之為已知,稱之為「贅餘力」,如此可將原系統變成為靜定的結構。
圖(a) 圖(b)
譬如圖(a)中的一度靜不定樑,我們可以選用 b點支承力為贅餘力,而將樑變成為圖(b)所示的靜定結構 [又稱作原系統的基元結構(primary structure)]。靜不定系統中贅餘力的選取可有多種不同方法,但贅餘力的數目卻是唯一的,其等於系統的「靜不定度」。
Q61.何謂「靜不定度 (degree of statical indeterminacy)」?
A61.在靜不定系統中,未知之「拘束力數目」與「靜平衡方程式數目」的差值,即定義為「靜不定度 」。 我們可用系統「自由度」 D 來判別靜不定度。對於完全拘束的系統,若自由度 D 小於零,則是靜不定系統。如果自由度 D = -1,稱為「一度靜不定」;D = -2 時,稱作「二度靜不定」;其餘類推。
Q62. 何謂「自由度 (degree of freedom)」或「動不定度 (degree of kinematic indeterminacy)」?
A62. 所謂「自由度 」乃是系統中可以自由運動不受拘束的維度(dimension)。 例如,在三維空間移動的單一粒子,有三個自由度;而在三維空間移動,且彼此無拘束的兩個粒子所組成之系統,其自由度則為六。 對於平面的結構系統,系統的自由度 D 可如下計算:
其中 m為系統內構件的數目 ( 含支承 )。而C3表示提供三個拘束力的接續數目,譬如固定端即屬於此種接續。同理,C2及C1分別為提供兩個及一個拘束力的接續數目。
Q63. 何謂「基元結構(primary structure)」或「放鬆結構 (released structure)」?
A63. 在靜不定系統中除去了相應於贅餘力之拘束後,所形成的靜定結構,稱為原靜不定系統的「基元結構」或「放鬆結構 」。譬如圖(a)中的一度靜不定樑,我們可以選用 b點支承力為贅餘力,而將樑變成為圖(b)所示的基元結構 。
圖(a) 圖(b)
Q64. 何謂「三彎矩方程式 (Three-moments equation)」?
A64. 所謂「三彎矩方程式」乃是一連續樑的兩相鄰跨度中,三個桿端彎矩之間的關係式。
如上圖中的三個桿端彎矩、及,基於變形後 b點旋轉角的連續性,可導出三個桿端彎矩應滿足下列關係:
其中,A1x1為將 ab段樑上的外加負載,置於一相同長度與剛度之簡支樑上,其所得之 M/EI圖對 a端的面積一次矩;而A2x2 則是為將 bc段樑上的外加負載,置於一相同長度與剛度之簡支樑上,其所得之M/EI圖對 c端的面積一次矩。
Q65. 何謂「降伏扭矩(yielding torque)」?
A65. 對於由彈塑材料所製成的桿件,在承受扭矩作用時,使得斷面內最大剪應力恰等於剪應力降伏強度,此時之斷面扭矩稱為斷面的「降伏扭矩」。換言之,所謂「降伏扭矩」也就是使構件斷面恰發生降伏之扭矩值。 降伏扭矩係由斷面的幾何及材料性質所決定,因此其為斷面的一特徵值。對於半徑 R ,剪應力降伏強度為的圓形斷面而言,其降伏扭矩為
Q66. 何謂「塑性扭矩(plastic torque)」?
A66. 對於由彈塑材料所製成的桿件,在承受扭矩作用時,使得整個斷面恰完全降伏的扭矩稱之為斷面的「塑性扭矩」。很明顯地,塑性扭矩也就是斷面所能承受之扭矩的極限值。 塑性扭矩係由斷面的幾何及材料性質所決定,因此其為斷面的一特徵值。對於半徑 R ,剪應力降伏強度為的圓形斷面而言,其塑性扭矩為
Q67. 何謂「降伏彎矩(yielding moment)」?
A67. 對於由彈塑材料所製成的樑,在承受扭矩作用時,使得斷面內最大撓曲應力恰等於降伏應力之斷面彎矩稱為斷面的「降伏彎矩」。換言之,所謂「降伏彎矩」也就是使構件斷面恰發生降伏的彎矩值。 降伏彎矩係由斷面的幾何及材料性質所決定,因此其為斷面的一特徵值。對於寬度 b 、高度 h、降伏應力為的矩形斷面而言,其降伏彎矩為
Q68. 何謂「塑性彎矩(plastic moment)」?
A68. 對於由彈塑材料所製成的樑,在承受彎矩作用時,使得整個斷面恰完全降伏的彎矩稱之為斷面的「塑性彎矩」。很明顯地,塑性彎矩也就是斷面所能承受之彎矩的極限值。 塑性彎矩係由斷面的幾何及材料性質所決定,因此其為斷面的一特徵值。對於寬度 b 、高度 h、降伏應力為的矩形斷面而言,其塑性彎矩為
Q69. 何謂「塑性鉸(plastic hinge)」?
A69. 由彈塑材料所製成的樑,當某一斷面內的材料均發生降伏時,我們可以給予該斷面任意的撓曲變形,也就像似鉸接續一般,因此稱其為「塑性鉸」。 塑性鉸並非真正的鉸接續,因為其內彎矩不是零,而是塑性彎矩。
Q70. 何謂「彈性核心(elastic core)」?
A70. 由彈塑材料所製成的桿件,在承受外力作用後,某些部分發生降伏,而某些部分則仍處於彈性範圍。在桿件斷面內尚處於彈性範圍的部分即稱作「彈性核心」。
Q71. 何謂「破壞機構(failure mechanism)」或「崩塌機構(collapse mechanism)」?
A71. 所謂「破壞機構」或「崩塌機構」就是一種「部分拘束系統」或「不當拘束系統」,其無法承受任意型式的外加負載,並保持靜平衡狀態。 由彈塑材料所製成的結構,當結構中形成相當數量 之塑性鉸時,將會使其成為破壞機構。
Q72. 何謂「臨界負載 (critical load)」或者「挫屈負載 (buckling load)」?
A72. 所謂「臨界負載 (critical load)」或「挫屈負載」可以有下列兩種定義﹕
(1)使系統在原構形時恰為中性平衡的外加負載。
(2)使系統在稍偏離原構形時依然能保持靜平衡的外加負載。
臨界負載為一系統的特微值,其由系統本身的材料性質、幾何狀況及支承條件等因素決定。
Q73. 何謂「穩定平衡(stable equilibrium)」?
A73. 對於處在靜平衡狀態的系統,若承受輕微擾動後,作用在系統的總力能使其回復到原靜平衡狀態,則稱為「穩定平衡」。此時系統的「總位能函數」將會是一區域極小值。
Q74. 何謂「總位能 (total potential energy)」?
A74. 一個系統的「總位能」 乃指下列兩部分的總和:
(1)彈性構件的應變能 (亦即彈性位能)
(2)將系統中的非保守力視如重力一般所求得之位能 (一般稱為外力位能)
系統的 總位能主要用於判別其平衡的穩定性,另外,在以Rayleigh-Ritz法求挫屈負載時,亦需以總位能來作分析。
Q75. 何謂「不穩定平衡(unstable equilibrium)」?
A75. 對於處在靜平衡狀態的系統,若承受輕微擾動後,作用在系統的總力無法使其回復到原靜平衡狀態,則稱為「不穩定平衡」。此時系統的「總位能函數」將會是一區域極大值。
Q76. 何謂「中性平衡(neutral equilibrium)」?
A76. 對於處在靜平衡狀態的系統,如果可使系統在稍偏離平衡構形的狀態下依然維持靜平衡,則屬「中性平衡」。系統的「總位能函數」在中性平衡附近為一定值函數。
Q77. 何謂「挫屈方程式(buckling equation)」?
A77. 所謂「挫屈方程式」乃是可以解出柱體之挫屈負載的方程式。其是由考慮了柱體之邊界條件,並使柱體的變形曲線為非零函數所得之方程式。
Q78. 何謂「挫屈構形函數(buckling mode shape function)」?
A78. 所謂「挫屈構形函數」即柱體在挫屈負載作用下的變形模態函數。注意,這並非是挫屈時的變形曲線函數,因為挫屈時的變形並沒有唯一性,所以挫屈構形函數內必包含著非零且可為任意值的廣義座標。
Q79. 何謂「有效長度因數(effective length factor)」?
A79. 所有彈性柱的挫屈載重均可表成與 Euler柱相同的型式,寫為
其中 為柱體 實際的長度,而k為一無因次的常數, 稱為「有效長度因數」,其係由柱體的拘束條件所決定。
Q80. 何謂「尤拉柱(Euler's column)」?
A80. 一端為鉸支承,另一端為滾支承,且承受軸向壓力的柱體,稱之為「尤拉柱」,如下圖所示。Leonhard Euler在 1757年提出其挫屈載重的理論解,為 其中為柱體長度、EI 為其撓曲剛度。
Q81. 何謂「轉換斷面(transformed cross-section)」?
A81. 將材料性質不均一的斷面,利用其彈性係數的比值,改變成為性質均一的假想斷面,此種假想的斷面即稱為原斷面的「轉換斷面」。
Q82. 何謂「等向性材料 (isotropic material)」?
A82. 材料性質(如Young氏係數、Poisson比、剪應力彈性係數...)乃是有方向性的,而如果由某一材料點朝各個方向之材料性質均相同,則此材料點具有等向性。(注意,等向性材料未必為均質材料。)
Q83. 何謂「均質材料 (homogeneous material)」?
A83. 如果材料體內各點的材料性質,在各方向均對應相同,則稱之為均質材料。(注意,均質材料未必為等向性材料。)
Q84. 何謂「桿件勁度(stiffness)」?
A84. 桿件勁度反應出「整根桿件」抵抗變形的能力。相應於不同型式的變形,有不同的桿件勁度,分述如下:對於承受軸力之桿件的「軸向變形」而言,若其長度為L,斷面剛度 AE (A 為斷面積、E 為Young氏係數),及內力S均為定值,則桿件之長度變化量 與內力的關係為 或寫為 ,其中第二式與彈簧之Hooke定律型式相同,因此 即為桿件軸向變形的「勁度」,其相當於彈簧之彈簧常數。須注意的是,桿件勁度是屬於桿件整體的物理量,而且必須 AE
及均為定值,桿件之「勁度」才能如上表示。對於承受扭矩之圓形斷面桿件的「扭轉變形」而言,若其長度為L,斷面剛度GJ ( J為斷面對圓心的面積極慣性矩、G為剪力彈性係數),及內扭矩T 均為定值,則桿件之扭轉角與與扭矩的關係為 或寫為 ,其中 即為桿件的「扭轉勁度」。須注意的是,桿件的扭轉勁度是屬於桿件整體的物理量,而且必須 GJ及T 均為定值,扭轉勁度才能如上表示。
Q85. 何謂「偏移降服應力 (offset yield stress)」?
A85. 某些延性材料並無明顯的降伏點,如下圖所示,此時可採用偏移法( (offset method,或稱偏距法)來定其降伏應力。在應力與應變圖上取某一應變值(例如, ),並沿平行初始斜直線方向作輔助線(即圖中虛線),此輔助線與應力-應變曲線之交點即定義為「降伏點」,其相應之應力 即稱為「 偏移降服應力」。 偏移法基本上是一種經驗法則,所以上述的應變值 並非固定不變。當然,其相應之偏移降服應力也會不同。
Q86. 何謂「八面體應力(octahedral stress)」?
A86. 圖(a)所示為材料點Q之三個應力主軸所形成的主座標系<abc>,其可將空間分成八個卦限。圖中所示之三角形為在第一卦象上的一斜面,而且其外法向單位向量 與三個主軸的夾角均相同,所以可表為
圖(a)
若在每一個卦限上均取類似的三角形斜面,則可得一八面體,其特色為:每一斜面的外法向與三個主軸之夾角均相同。此八面體上的正向應力與剪應力,分別稱為八面體正向應力(octahedral normal stress)與八面體剪應力(octahedral shear stress)。由Cauchy公式,圖(a)中三角形斜面上的應力向量 T為
圖(b)
如圖(b)所示,三角形斜面上的正向應力 [即 octahedral normal stress] 為
而三角形斜面上的剪應力 [即 octahedral shear stress] 為
Q87. 何謂「塑性模數(plastic modulus)」?
A87. 樑斷面的塑性彎矩係由「材料性質」及「斷面的幾何」所決定,可表為 ,其中Z 即稱為塑性模數,其為斷面的一項幾何性質。 例如,對於寬度b、高度h、降伏應力為 的矩形斷面而言,其塑性彎矩 為 ,所以矩形斷面的塑性模數Z 即 等於 。
Q88. 何謂「形狀因數(shape factor)」?
A88. 樑斷面「塑性彎矩 」與「降伏彎矩 」的比值,稱為斷面之「形狀因數(shape factor)」,其亦等於斷面之「塑性模數 Z」與「斷面模數 S」的比值。以f 表之為 形狀因數乃是由斷面幾何所決定之無因次量,也就是說,一旦斷面形狀確定,則其形狀因數也就確定了。換言之,一斷面之塑性彎矩與降伏彎矩的比例是一固定值。對於寬度 、高度 、降伏應力為 的矩形斷面而言,其塑性彎矩 與降伏彎矩 分別為
,所以矩形斷面的形狀因數 。
Q89. 何謂「回彈模數 (modulus of resilience)」?
A89. 所謂「回彈模數」即在降伏點之前,應力與應變函數圖形所圍之面積,如下圖所示。很明顯地,回彈模數就是在降伏之前儲存在材料點內的應變能密度。所以回彈模數愈大,即表示在降伏之前材料所能儲存的能量愈多。
Q90. 何謂「韌性模數 (modulus of toughness)」?
A90. 所謂「韌性模數 」即在材料破裂(rupture)之前,應力與應變函數圖形所圍之面積,如下圖所示。很明顯地,韌性模數就是在破裂之前儲存在材料點內的應變能密度。所以韌性模數愈大,即表示在破裂之前材料所能儲存的能量愈多。
Q91. 何謂「潛變( creep)與鬆弛(relaxation) 」?
A91. 潛變( creep)是指雖然作用於材料的內力(應力)固定不變,但材料之變形(應變)卻會隨時間增加而逐漸成長的現象。例如下圖之桿件,承受固定大小之F 力作用,桿件的初始變形為 ,雖然受力不變,但其變形量卻隨時間而逐漸增加,最後會趨近於定值 。
鬆弛(relaxation) 乃指在固定的變形(應變)狀態下,材料中的內力(應力)會隨時間增加而逐漸減小的現象。例如下圖之桿件,先將其拉伸並將兩端點固定,其初始內力為 。雖然變形量不再變化,但其內力卻隨時間而逐漸遞減,最後會趨近於定值 。
潛變( creep)與鬆弛(relaxation)都是與時間有關現象,但應留其間的差異,兩者的「控制變因」不同,故不應相互混淆。
Q92. 何謂「正交性材料 (orthotropic material)」?
A92. 首先應瞭解「材料性質是有方向性」的觀念。其次當材料性質對稱於某一特定平面時,我們稱其為「彈性對稱 (elastic symmetry)」。當材料性質對稱於某三個相互垂直的特定平面時,我們稱其為「正交性對稱 (orthotropic symmetry)」,而具有正交性對稱的材料即為「正交性材料 (orthotropic material)」。對於晶體結構而言,這是常見的狀況,因為晶體中有特定的晶面存在,而使其有彈性對稱平面。 可以這樣想像 : 三個相互垂直的彈性對稱平面,將空間分成八個「卦限」,在每一個卦限中的材料性質為非等向
(anisotropic),但以彈性對稱平面相互為鏡像的卦限,其材料性質對應相同。等向性 (isotropic) 材料就是對任意三個相互垂直平面均有正交性的材料。 具有一個彈性對稱平面的材料,其獨立的材料性質數目為 13。而正交性材料的獨立材料性質數目為 9。至於等向性材料,獨立的材料性質數目為 2。
Q93. 何謂「剪力係數 (shear coefficient)」?
A93. 剪力係數(shear coefficient) 定義為:斷面內「中性軸處之剪應力」(未必是最大剪應力)與「剪應力算數平均值」的比值。其值與斷面形狀有關,矩形斷面 3/2,圓形斷面 4/3。除了定義上的用途之外,當以樑「中性面的變形曲線」來表示變形時, 用於下式
由此式可積分求剪力V 造成的變形曲線函數。
Q94. 何謂「剪力形狀因子(form factor for shear)」?
A94. 剪力形狀因子(form Factor For Shear) 定義於計算「剪力造成之應變能」的計算式中,如下
之值與斷面形狀有關,矩形斷面 6/5,圓形斷面 10/9。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.120.229.212
... <看更多>