▍中年夫妻的純友誼,只有在陪讀中,才能更持久
--「陪讀」就像夫妻倆一起辦了一項終身貸款,不管再苦、再難,最終不得不一起還債。--
俗話說「十年修得同船渡,百年修得共枕眠」,我看還得加上「千年修得共陪讀,萬年修得陪讀完了還能開心地共枕眠」……凡是能和諧陪讀還順便增進了感情的夫妻,那都是修練有道,就快成精了。
很多夫妻平淡如一潭死水,有小孩後瑣事一堆,火上加油。剛有點不想將就下去了,突然,孩子上學了,夫妻倆在陪讀中建立起新的聯盟,化身戰友,共同奮戰──五年過去了,七年過去了,夫妻倆雙雙成了擁有純友誼的學霸。
有天晚上送兒子去上樂理課,我和孩子的爸坐在路邊等孩子下課。那晚月色朦朧,微風陣陣,他陷入沉思,一言不發,像一個老實的相親男。
我主動搭訕,問:「你在想什麼?」
他說:「我在想下午兒子問我的那一題,我還是想不通到底怎麼回事。」
我說:「你可以現在趁他不在,偷偷研究一下。」
於是他含情脈脈地拉起了我的手,堅定地在我手心寫下了那道題目。
路過的大姐們紛紛投來異樣的目光,她們肯定在想:「哼,大半夜的,兩個人在這裡秀什麼恩愛。」而我,只想舉起手心讓她們長長見識──大姐別誤會,你們想歪了,我們在做數學啊。
在那個深秋的夜晚,什麼都不足以支撐起中年夫妻的內斂情感。中年夫妻間最真摯的獨白只有「這一題怎麼做」。這就叫「執子之手,與子學到老」。
如果不用教孩子,夫妻倆還能有什麼話題?──早飯吃什麼?中飯吃什麼?晚飯吃什麼?……多麼沒營養的夫妻生活啊。
但陪讀之後就不一樣了。夫妻討論的話題都是有深度和內涵的:零是有理數嗎?這個反比例函數題,是不是出錯了啊?原子光譜到底是什麼?……
他們真正成了對方的知己──知道自己這也不懂,那也不會。
老夫老妻消失多年的彼此仰慕之情,或許就在發現對方還能清晰地記得數學公式和物理定律時,重新出現。
但老夫老妻的默契、和諧,或許也就在發現對方連一句五年級古詩都背不出,或是八年級英語閱讀都看不懂的時候,轟然崩塌。
孩子的學習不是學習,那是家庭氣氛的風向球、夫妻關係的指南針啊!
試想,當你正在為看不懂孩子的考試題目發愁時,正在為配偶分擔不了教孩子的任務而生氣時,正在為別人家裡都有深藏不露的高手爸媽而懊惱時,孩子的爸突然跑出來說:「你去休息吧,這裡交給我。」
這感覺不是友誼回來了,簡直是愛情回來了。
中年夫妻在陪讀之路上,講究的是說學逗唱,哦,不,是望聞問切。隨著孩子知識量的提升和年齡的增長,我們愈來愈不敢貿然行事。
有次看到兒子趴在桌上,許久未動筆,我氣勢洶洶地跑進去準備發火,這時,兒子突然問我,「媽媽,這題怎麼做?」
我對著題目看了三分鐘,然後問他,「想吃水果嗎?吃蘋果,還是柳丁?」
這就是陪讀媽媽的道歉方式。
然後派雲配偶去干預。如果他陷入困境,我們就會產生同病相憐之情;如果他能教得好,我就會對他產生仰慕之情,甚至會把他的解題過程拍照存檔,以備生氣的時候拿出來看看,覺得又能原諒他了。畢竟,家裡需要有一個能教孩子理科的。
但不要過於樂觀。陪讀,並不一定百分百能增進夫妻感情,它也有一半的可能會摧毀友誼。
孩子念書認真、成績好,夫妻倆更容易琴瑟和諧,互相貼金;孩子念書如果吊兒郎當、成績一塌糊塗,夫妻倆只能撇清基因關係,互相抱怨,而且互相看不慣對方教孩子的方法。
有一次,孩子他爸的「陪讀體質」發作,非要教兒子一道難題。他先是一個人趴在茶几上研究半天,發到各個學霸群組裡求助,甚至求助於網路……好不容易才算出了答案。
然後他雄心勃勃地跑進房間,給孩子上課。只見他口若懸河,滔滔不絕,廢話一大堆,有用的沒幾句。
五分鐘後,我再進房間一看,聽不懂的孩子和說累了的老爸已經一起睡著了。
你看,這樣的陪讀品質,還不如放愛一條生路。
五分鐘前剛建立起來的崇拜和敬仰,隨著這一幕的到來,蕩然無存。別人家的爸爸怎麼那麼會教孩子?
不教孩子功課還好,一教就會亮起友誼的紅燈。
孩子前陣子的語文成績下滑,做閱讀理解老是跟讀天書似的。
我對孩子的爸說:「兄弟,你飽讀詩書,滿腹經綸,你去啟發啟發兒子吧!」
他說:「大妹子,你學富五車,才高八斗,還是你去教他一下吧!」
然後我們兩人搶廁所、搶做家事、搶著給貓鏟屎,能賴則賴,能溜則溜……好不容易建立起來的內部團結,在那一刻令人心酸。
當然,「陪讀」就像夫妻倆一起辦了一項終身貸款,不管再苦、再難,最終不得不一起承擔、還債。
.
本文摘自
《#了不起的硬核媽媽》
.
作者:格十三
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
各位朋友好:
我印象中,曾經看到國小孩子的「資優數學題」,感覺相當驚恐—我完全不知道該從哪裡解題下手?!
就不要說國中以上了,儘管我已經走過這個歷程,但我相信,大部分都還給老師了,新的知識也繼續累積了。生活中用不到,也就記不得了。
我很佩服某些家長,為了教孩子,真的拚了命。幾乎可以說是比孩子更認真,只為了能更容易地教會孩子。
但大部分來說,國中開始之後的考試就會難到爆,家長的努力也難回天。我記得有位作家,他的文章被選進課本了,但他拿起考他這一課的考卷時,他完全不知道該如何作答。作者本身都如此,家長也就更不用說了。
這時候,這段話還是有用的:「只要你別看,家裡就是乾淨的,只要你別聽,家裡就是平靜的,只要你別問,孩子和老公都是非常優秀的。」
祝願您,能在必要的時候,自欺欺人!
同時也有483部Youtube影片,追蹤數超過3萬的網紅李祥數學,堪稱一絕,也在其Youtube影片中提到,線上課程賣場:https://changhsumath.1shop.tw/ewkhca 成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join 追蹤我的ig:https://www.instagra...
「函數微分公式」的推薦目錄:
- 關於函數微分公式 在 Facebook 的最佳貼文
- 關於函數微分公式 在 數學老師張旭 Facebook 的最佳解答
- 關於函數微分公式 在 數學老師張旭 Facebook 的最佳貼文
- 關於函數微分公式 在 李祥數學,堪稱一絕 Youtube 的精選貼文
- 關於函數微分公式 在 李祥數學,堪稱一絕 Youtube 的最讚貼文
- 關於函數微分公式 在 李祥數學,堪稱一絕 Youtube 的精選貼文
- 關於函數微分公式 在 [佛腳] 微積分之微分的基本- 精華區AU_Talk - 批踢踢實業坊 的評價
- 關於函數微分公式 在 觀念講解| ❒ 公開課❒ 張旭微積分微分篇[03] 微分合成律(連鎖律) 的評價
- 關於函數微分公式 在 反三角函數的微分 - 通訊雜記 的評價
- 關於函數微分公式 在 三角函數微分連鎖律2023-在Facebook/IG/Youtube上的焦點 ... 的評價
- 關於函數微分公式 在 三角函數微分連鎖律2023-在Facebook/IG/Youtube上的焦點 ... 的評價
函數微分公式 在 數學老師張旭 Facebook 的最佳解答
【極限的嚴格定義?大一新生的大難關】
.
∀ ε > 0, ∃ δ > 0, s.t.,
∀ 0 < | x - a | < δ, | f(x) - L | < ε
.
這一大串看似咒語的數學敘述
是很多大一新生初學大學微積分的難關
.
而那一大串咒語所代表的意思
就是當 x 趨近 a 時,f(x) 會趨近 L
.
剛高中畢業的同學或許會覺得奇怪
函數的極限,不是看左右極限就好了?
.
其實不然,像下面這個例子:
lim_{x→0} sin(x) / x
其函數圖形不好畫
所以不容易直接從圖形看出左右極限
.
因此數學家才需要發展極限的嚴格定義
就是最前面看到的那串咒語
.
從該定義出發
先解決基本函數的極限
然後證明函數的極限公式
再搭配一些計算技巧和定理
最終就能靠計算得到大部分函數的極限
.
像剛剛提到的那個例子也行
.
知道那個例子的答案是多少嗎?
知道的同學下面刷一排答案唄~
.
#數學老師張旭
#張旭微積分
#微積分 #數學 #數學補習 #讀書
函數微分公式 在 數學老師張旭 Facebook 的最佳貼文
【指數函數的微分?高中微積分沒有教的主題】
.
a^x 的微分
高中微積分沒有教
但大學必考
且可用來研究人口增長
.
a^x 微分得 (a^x)ln(a)
這個結論一定要背!!
特別是考前!!
.
【口訣】
⭐ 指數函數微分 = 本身 × ln(底數)
.
其中 ln(x) 是以 e 為底的對數函數
就像 log(x) 表以 10 為底的對數函數
.
而 “e” 這個數字叫做自然對數
其值約 2.71,是無理數
.
關於 “e” 的來源
可以看我頻道影片
👉 導數與微分的概念(補充教材)
.
而若以 “e” 為底的指數函數微分的話
就會因 ln(e) = 1 而是微分等於自己
.
【公式整合】
1️⃣ 指數函數微分 = 本身 × ln(底數)
2️⃣ e^x 微分 = e^x
.
上面這兩個公式超重要
但其實只要背一個
知道是哪個嗎?
留言告訴我唄~
.
#數學老師張旭
#張旭微積分
#微積分 #數學 #數學補習 #讀書
函數微分公式 在 李祥數學,堪稱一絕 Youtube 的精選貼文
線上課程賣場:https://changhsumath.1shop.tw/ewkhca
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join
追蹤我的ig:https://www.instagram.com/garylee0617/
加入我的粉絲專頁:https://www.facebook.com/pg/garylee0617/
有問題來這裡發問:https://www.facebook.com/groups/577900652853942/
喜歡這支影片,記得按個"喜歡",並且分享
訂閱就可以看到最新的影片
你最棒,記得按鈴鐺^^
高中數學重要觀念解析:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkzAh5k3h-CI0-clwS7xsWm
數學思考題型:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmx__4F2KucNWpEvr1rawkw
關於數學的兩三事:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlD5ABfGtLkOhNIRfWxIRc5
真的祥知道:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmQC77bAQPdl_Bw5VK8KQc-
YouTube合作影片:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlQk7b-jDmCaUjJ57UMSXsf
高中數學講座:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmgafYQliX1Ewh2Ajun9NNn
學測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGko-fghK4k3eZJ23pmWqN_k
指考數甲數乙總複習https://www.youtube.com/playlist?list=PLOAKxvSm6LGlrdoVFRflK46Cm25CGvLBr
統測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkP_Nvl8iToZUWNfOHT42Pg
抖音精選:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmoWuzdrsxoeKQBR_GgZyIk
國中會考總複習:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlbMqjF4W6ElHM_lrFZijkg
函數微分公式 在 李祥數學,堪稱一絕 Youtube 的最讚貼文
線上課程賣場:https://changhsumath.1shop.tw/ewkhca
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join
追蹤我的ig:https://www.instagram.com/garylee0617/
加入我的粉絲專頁:https://www.facebook.com/pg/garylee0617/
有問題來這裡發問:https://www.facebook.com/groups/577900652853942/
喜歡這支影片,記得按個"喜歡",並且分享
訂閱就可以看到最新的影片
你最棒,記得按鈴鐺^^
高中數學重要觀念解析:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkzAh5k3h-CI0-clwS7xsWm
數學思考題型:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmx__4F2KucNWpEvr1rawkw
關於數學的兩三事:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlD5ABfGtLkOhNIRfWxIRc5
真的祥知道:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmQC77bAQPdl_Bw5VK8KQc-
YouTube合作影片:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlQk7b-jDmCaUjJ57UMSXsf
高中數學講座:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmgafYQliX1Ewh2Ajun9NNn
學測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGko-fghK4k3eZJ23pmWqN_k
指考數甲數乙總複習https://www.youtube.com/playlist?list=PLOAKxvSm6LGlrdoVFRflK46Cm25CGvLBr
統測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkP_Nvl8iToZUWNfOHT42Pg
抖音精選:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmoWuzdrsxoeKQBR_GgZyIk
國中會考總複習:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlbMqjF4W6ElHM_lrFZijkg
函數微分公式 在 李祥數學,堪稱一絕 Youtube 的精選貼文
線上課程賣場:https://changhsumath.1shop.tw/ewkhca
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join
追蹤我的ig:https://www.instagram.com/garylee0617/
加入我的粉絲專頁:https://www.facebook.com/pg/garylee0617/
有問題來這裡發問:https://www.facebook.com/groups/577900652853942/
喜歡這支影片,記得按個"喜歡",並且分享
訂閱就可以看到最新的影片
你最棒,記得按鈴鐺^^
高中數學重要觀念解析:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkzAh5k3h-CI0-clwS7xsWm
數學思考題型:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmx__4F2KucNWpEvr1rawkw
關於數學的兩三事:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlD5ABfGtLkOhNIRfWxIRc5
真的祥知道:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmQC77bAQPdl_Bw5VK8KQc-
YouTube合作影片:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlQk7b-jDmCaUjJ57UMSXsf
高中數學講座:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmgafYQliX1Ewh2Ajun9NNn
學測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGko-fghK4k3eZJ23pmWqN_k
指考數甲數乙總複習https://www.youtube.com/playlist?list=PLOAKxvSm6LGlrdoVFRflK46Cm25CGvLBr
統測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkP_Nvl8iToZUWNfOHT42Pg
抖音精選:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmoWuzdrsxoeKQBR_GgZyIk
國中會考總複習:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlbMqjF4W6ElHM_lrFZijkg
函數微分公式 在 觀念講解| ❒ 公開課❒ 張旭微積分微分篇[03] 微分合成律(連鎖律) 的推薦與評價
公開課❒ 張旭微積分 微分 篇[03] 微分 合成律(連鎖律)|觀念講解┄… Lagi 【摘要】 本影片主要證明合成 函數 的 微分公式 ,如果是數學系的學生應該要看,但如果是其他系的 ... ... <看更多>
函數微分公式 在 反三角函數的微分 - 通訊雜記 的推薦與評價
以下要介紹常見的反三角函數的微分方法(導函數) , 並會仔細撰寫其詳細過程, 而再開始證明之前, 你還需要先知道三角函數的微分以及一些常用的三角不等式, 我再下面都會 ... ... <看更多>
函數微分公式 在 [佛腳] 微積分之微分的基本- 精華區AU_Talk - 批踢踢實業坊 的推薦與評價
微積分考前速記
注意,本PO針對對微積分一竅不通、鴨子聽雷者。
所有的重點著重考試的計算。
所以裡面沒有申論題或證明題,不可能會討論微積分基本定理這些題目。
或許會有些人覺得很簡單,
但我也是到大二(還是微積分莫名PASS後)才……往事就讓它過去吧~
希望對大一學弟妹們的期中有幫助~
因為bbs上無法用太複雜的符號,會儘量附加中譯說明。 ps:次方 = ^。
盡量拿紙筆寫下才不會被符號搞混^^
--
(一)微分
f(x)= a(x^n) 中譯:a乘以x的n次方
f'(x)= an[x^(n-1)] 中譯:a乘以n(原次方移下)乘以x的n-1次方
ex:
f(x)= 3(x^4)
f'(x)= 3*4*(x^3)= 12(x^3)
(二)常數的微分 ╭────────╮
│ 兩者合體 │
f(x)= C(表示常數) │ │
│ f(x)= 2(x^3)+5 │
f'(x)= 0 │ f'(x)= 6(x^2) │
╰────────╯
ex: 基本中的基本,希望有好一點的老師
f(x)= 3 能配個40分在這裡(做夢吧~)
f'(x)= 0
--
(三)對數的微分
f(x)= ㏑[g(x)] 中譯:g(x)函數取自然對數,g(x)可以是x的任何形式。
g'(x)
f'(x)= ───── 訣竅:分母是原封不動的原函數,分子為原函數的微分。
g(x)
╭──────────╮
ex: │㏑(a*b)= ㏑a+ ㏑b │
f(x)= ㏑[3(x^2)+4] │㏑(a/b)= ㏑a- ㏑b │
│㏑1= 0 │
6x ← 3(x^2)+4 的微分 │㏑(x^n)= n*㏑x │
f'(x)= ─────── ╰──────────╯
3(x^2)+4 (原來的) ↑對數的"次方項"能往前搬喔~
--
(四)指數的微分
f(x)= e^g(x) 中譯:e的g(x)次方
f'(x)= e^g(x)*g'(x) 中譯:e的g(x)次方乘以g(x)的微分
訣竅:原來指數函數完整不動乘以指數次方項的微分
ex:
f(x)= e^(3x+2)
f'(x)= e^(3x+2)*3= 3*e^(3x+2)
因為怕太亂不敢用太複雜的數字,
基本上只要按照訣竅走就沒錯了。
--
(五)鏈鎖律 chain-rule
重點!以後不管看到什麼函數形式都得記住!!
一定得由外往內一層層微分,這樣才不會亂掉!
f(x)= [g(x)]^n
f'(x)= n* {[g(x)]^n-1} * g'(x) ←3.最後再乘以裡面函數的微分
↑  ̄ ̄ ̄ ̄ ̄↑
1.n在最外頭, 2.裡頭函數不變,
次方往前乘。 次方項減一。
訣竅:就像剝橘子一樣,一定要由外往內,在處理外面次方項時,千萬不要動裡面函數。
--
ex:
f(x)= 1/√[2(x^3)+3x] 中譯:分子是1,分母是2乘以x的3次方加上3x。
先稍作整理變成
f(x)= [2(x^3)+3x]^(-1/2) 中譯:開根號是1/2次方,在分母則是負號。
(應該都知道吧.....)
f'(x)= (-1/2) * [2(x^3)+3x]^(-3/2) * (6x+3)
步驟1↑ ↑步驟2 次方減一 ↑步驟3
(完整不動!!) (裡面微分)
寫完後再整理一下就是答案了,整理時小心計算錯誤。
--
(六)乘法模式微分
f(x)= g(x)*h(x)
f'(x)= g'(x)*h(x) + h'(x)*g(x)
訣竅:微前乘後 加 微後乘前
(七)除法模式微分
f(x)= g(x)/h(x)
g'(x)*h(x) - h'(x)*g(x) 微上乘下 減 微下乘上
f'(x)= ───────────── 訣竅:────────────
[h(x)]^2 分母平方
--
五六七合體常見試題
╴╴╴╴╴╴╴╴╴
√ 4(x^2)+3x 4(x^2)+3x
f(x)= [ ─────── ] 整理→ [ ─────── ]^(1/2)
5(x^3)-7(x^2) 5(x^3)-7(x^2)
微上乘下減微下乘上↓已經算好整理後
4(x^2)+3x -20(x^4)+15(x^3)-24(x^2)+42x
f'(x)= (1/2)*[ ─────── ]^(-1/2)* { ────────────── }
5(x^3)-7(x^2) [5(x^3)-7(x^2)]^2
分母平方
═════════════════════════════════════
f(x)= (3x-5)[(-5x+2)^2]
f'(x)= 3*[(-5x+2)^2] + [2(-5x+2)*(-5)](3x-5)
微前 乘後 加 微後 乘前
(↑有個鏈鎖律)
最後整理一下就是答案,我這麼寫就是不想算了……|||
--
不好意思手邊沒有題目所以數字可能設計的不太好……
我在看BBS時最不喜歡數學了,因為不像Word那麼好弄qq
希望可以被看的懂……如果有錯誤請指正^^
如果真的覺得太勉強就記住訣竅部分即可。
由外往內,乘除法、指數對數微分方式牢記,應該可以解微分80%以上的計算題了。
祝大家期中順利!
>>>會有人想要積分的速記嗎(光速逃XD)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.230.128.29
※ 編輯: fff0722 來自: 61.230.128.29 (11/03 21:24)
... <看更多>