量子電腦x量化交易!?
最近一個禮拜,我參加了台大 IBM-Q 舉辦的量子電腦黑客松,並列第一名,並且額外獲得鴻海特別獎。我們這組從零開始,只花了三天,也學到很多量子電腦的知識,還有認識新朋友,覺得非常的開心!
以前的黑客松,比較偏工程,想做什麼就做什麼,天馬行空,但是這次的黑客松,跟以往非常不一樣,有很多數理的成分,更重視理論,我們組的學歷陣容非常堅強,兩個博後,一個博士,兩個碩士,除了我以外,都是物理專長。討論的都是 Ising model、QAOA、quantum gate 等物理的概念。
我一開始真的是不懂,從 0 開始,好在 IBM 有出 Python 的 Package Qiskit,我看得懂程式和演算法,原來 Ising model 可用於解 maximum cut problem,原來 QAOA 可用於 Binary 的 quadratic optimizer,那我就把它們當成黑盒子,大概可以理解並應用了。
我很慶幸在博士班的時候,有把數學更徹底的學好一點,所以才能在這麼優秀的團隊中,貢獻所學的知識。在比賽中,我的專長,就是提供創意且實際的主題,跟寫浮誇程式介面XD,也是黑客松比賽非常重要的兩個要素。這次也很成功的繳出一張滿意的成績單!
經過這次的戰役,我人生中參加 4 次現場黑客松,4 次都有得獎,3 次是第一名,一大部分原因,是我歷史上參與比賽的伙伴,陣容都是非常堅強,有堅強的學術背景,工程技術,而且團隊向心力強,不會輕易放棄,肝也非常新鮮健康。我也有所貢獻,但是每一個人都缺一不可,都是比賽的致勝關鍵。讓我回想到那些一起熬夜寫程式的日子,真是太辛苦又太有成就感了!
雖然比賽很好玩,但我很少參加,因為平常已經夠忙了,做交易就已經很像是黑客松了!但是這次是我老婆邀請我去,剛開始勉為其難的答應,因為我真的不懂量子電腦,怕現醜。我老婆常會逼我做一些不想做的事情,但最後往往會有正向的回報,所以我常常會聽從老婆的決定,尤其是比較重大的決定XD,有她的主意,我的人生更精彩!所以既然要做,就要全力以赴,PyCon演講完回到台北,就馬上出發參加比賽。
不過這大概是我參加過,最不像黑客松的比賽了,早上七點起床,搭遊覽車到「台大溪頭自然教育園區」,都已經中午了!三天的比賽,其中半天搭車去,半天搭車回台北,都在搭車就好啦!不過搭車是活動的一部分,總比自行前往好很多吧!
於是我們就在山明水秀中討論數學、寫程式,也別有一番風味,但是物理界的黑客松風格,真的是跟一般的黑客松有很大的差異!一般黑客松,吃的都是垃圾食物,像是PIZZA,漢堡之類的,但在物理黑客松,竟然是吃合菜,很好吃!以前的黑客松,只有一間教室跟一堆二手睡袋,看你要不要睡,不睡拉倒。而這次竟然睡飯店!每個人竟然有一張雙人床可以睡,被單還可以控制溫度!
而且這個活動是免費的!!你或許會覺得,政府和學校又再浪費國家公帑了,讓學生們吃喝玩樂,花納稅人的錢,但其實,這是很聰明且省力的作法,就像是投資股票,要把錢砸在好的公司身上,讓這些頂尖的腦袋在舒服的環境下,請他們做一些科學上的突破,成效真的非常好,有鑑於這次的成果,IBM 決定在台灣2021年再辦一場,更大且國際級的量子電腦黑客松,各國頂尖學者聚集於台灣,產生的週邊效益,對於台灣科技的進步,絕對是一筆超級划算的投資!
我已經很久沒有接觸交易以外的程式了,這個禮拜出來玩三天,又可以得獎,算是一個另類的抒壓!平常都在製作交易程式,琢磨賺錢的程式很辛苦,本身的程式實力當然很重要,但有時候找到對的交易策略,就是需要長時間的琢磨,運氣成分也非常高,而最後如何判斷程式運行的是正確的?就是有沒有賺到錢囉!XD,但價格通常是隨機漫步,所以你真的很難確定,新程式能幫你賺錢,除非運行了一陣子,就算能賺錢,你還是會擔心它可以幫你賺多久,日子就在「擔心」的循環中度過。
寫一般的程式,就沒有這麼辛苦了,你得到的 feedback 是非常迅速且即時的,可以用就是可以用,不能就是不能,可以根據這個 feedback 快速優化程式,這就其實是寫程式最開心的地方,藉由不斷修正,程式變得越來越多功能,越來越好!
然而這次的比賽如何獲勝呢?量子電腦,目前真的還在傳統電腦真空管的時代,我覺得這次要得獎有兩種不同的方法,第一種,對於量子電腦的電路製作有真正的貢獻,第二種,將量子電腦做跨領域的結合。第一種對我來說比較困難,要在短時間瞭解各種不同的量子閘,並且做出量子電腦的具體貢獻,短時間不太可能,第二種,是我比較擅長的,就是做跨領域結合,將量子電腦的演算法用在不同的地方。
我們將資工系常見的感測器網路當作命題,做出車聯網的應用,利用量子力學的演算法,來做都市規劃建構感測器網路,為車聯網做提前的佈局,和計算感測器資料同步協定。另外也做了其他的應用,利用量子電腦做車輛定位(我承認這部分用量子電腦做沒有必要XD(沒有quantum advantage),但最後demo很炫就是了)。
在三天的時間裡,應用量子電腦的演算法,構建三種車聯網應用,相信是個很完整的結果!我們將競賽成果開源到github上,供大家下載下來玩,不過程式碼還有很多優化空間,請大家小力鞭策XD!
https://github.com/koreal6803/Application-of-quantum-optimization
之後會介紹跟量子電腦和這次黑客松有關的系列文章,也會講一些量子電腦用於程式交易的演算法,不過假如你期望量子電腦可以幫你拿來賺錢,看到這裡就好了,因為不太可能,量子電腦還在很早期的階段,就像是電腦在真空管的時代。但你假如你對數學不排斥,想要瞭解一些量子演算法,這個系列應該會很有趣!
附上這次比賽所有隊伍的題目和程式碼:https://github.com/qiskit-community/qiskit-hackathon-taiwan-20/issues
還有其中一組做的量子電腦遊戲線上玩讓大家體會量子電腦的奧秘,要組合quantum gate 來控制擊球的位置,我5秒內就掛了:
https://alfa871212.itch.io/qpong?fbclid=IwAR28Mw8zS3HBvNOdrf1R8z-60yW8AhVFjpvpG0nYt-lmNEw3FJxrS3bJ12k
也歡迎在下方留言,你究竟看 finlab 是想賺錢還是學程式的呢?
「台大量子計算學程」的推薦目錄:
- 關於台大量子計算學程 在 FinLab財經實驗室 Facebook 的精選貼文
- 關於台大量子計算學程 在 宜蘭縣議會議員陳文昌服務處 Facebook 的精選貼文
- 關於台大量子計算學程 在 [評價] 108-2 量子計算與資訊導論管希聖- 看板NTUcourse 的評價
- 關於台大量子計算學程 在 台大課程資訊交流區| 1. 課程類別:電機系必修(十選二實驗) 的評價
- 關於台大量子計算學程 在 量子計算實驗與實作- 臺灣大學板 - Dcard 的評價
- 關於台大量子計算學程 在 量子物理史上不可不知的10個裏程碑!量子物理 ... - YouTube 的評價
- 關於台大量子計算學程 在 【基礎量子資訊】|主題1:古典電腦與量子電腦之演化 的評價
台大量子計算學程 在 宜蘭縣議會議員陳文昌服務處 Facebook 的精選貼文
這兩天最熱門的新聞,便是台積電的股價市值創新高的消息。對於台灣的企業能達到這樣的成就,一方面是感到敬佩,一方面也會擔憂資源過度集中的問題。這裡說到的資源包含了政府政策的焦點、台灣資通訊人才的群聚而無法進入其他產業。
最近在看一份文件,由卡內基國際和平基金會的教育領域的副總裁 Evan A. Feigenbaum 所撰寫的報告,裡面內容很完善的討論到台灣過去的成功以及目前的窘況,包括少子化導致整體人力的萎縮、基礎科學及統計資工人才的不足、缺乏雙語環境及海外市場的企圖心,這都影響了下一世代新創產業誕生的可能。
另外除了問題面外,這份報告也列舉了幾項我們能思考突並作突破的部分,包含以色列整合軍事及產業的人才培育策略、APEC及美國印太平洋計畫旗下能讓台灣產生更多槓桿的子計畫、GDPR個資政策與重視未來人工智慧資安的方向,又或是台灣善用資通訊的高等教育吸納東南亞甚至全球的學生等(以目前台灣疫情的控制我個人認為有可能)。
可以看到,要營造整個有利創新的環境,不單單只是經濟部的科專或科技部的計畫等,甚至要連內政部、國防部、外交部、教育部也一起,統整出一個綿密的策略。
以下是我看了整本報告的筆記,單就翻譯品質上絕對不足的,但想說如果有興趣的朋友不妨一同討論,一起想想台灣該如何營造有利的制度,讓創新產業能踏穩及在全球有所突破。
以下筆記:
「台灣新創未來該如何突破?」
Carnegie Endowment for International Peace
卡內基國際和平基金會
Evan A. Feigenbaum
VICE PRESIDENT FOR STUDIES
https://carnegieendowment.org/experts/719
原文連結:https://carnegieendowment.org/…/assuring-taiwan-s-innovatio…
一、台灣五大未來創新上會面對的挑戰:
(一)STEM(科學、科技、工程、數學)人才跟人力的資本問題
(二)市場規模太小的問題
(三)硬體至上思維如何改變?
(四)如何為台灣增加附加價值?
(五)政府政策該如何幫助產業?
二、STEM(科學、科技、工程、數學)人才跟人力的資本問題:
(一)台灣必須加強STEM的人才訓練,特別是新創者的數學、統計、資工、資料科學的技能。
(二)在PWC 2018年的新創調查中,僅13% 工程背景、 7% 科學背景、13% 資訊背景,六成的創辦人為文學及商業背景。
(三)因為過去資通訊的成功,也磁吸了大部分相關人才到TSMC跟MTK。
(四)台灣少子化非常嚴重(全球最低),總體勞動力人口也不斷在萎縮,連帶的影響各種專業人力的總量,以及投入到科技領域的人數。
(五)台灣越來越少科學及工程的畢業生,從2007到 2014,每年相關的畢業生減少了快一萬名(從92167到83394)。
(六)綜上,每年透過教育體系產出的人才庫越來越萎縮恐會供給不足。
(七)台灣到美國就學的畢業生及在學生也都在萎縮,以2000跟2017來比較,在學生總數從10668到7003,畢業生從15022到9236 。
(八)出國留學者越來越少比例的人願意回台灣,2004到2007約65%留在美國,2012到2015約75%留在美國。
(九)留學美國者回台灣的重要性是在,過去80、90年代會形成一個美國跟台灣間的「腦力連結」,而塑造一個學術及業界的台美連結機制,對下一代人才的塑造是重要的。留學回國的數目下降,對形成前述的機制是不易的。
(七)人數減少,長期來說也會影響下一代重要技術,例如AI的競爭力。
(八)此外,台灣的學程所教授的內容通常距離最新的科技相隔三到五年。
(九)來自北京的人才競爭也不可小覷,它能透過薪資及市場的誘因來吸引台灣人才。
(十)台灣應思考如何透過生活品質及民主政體來吸引留住人才。
三、市場規模太小的問題
(一)人口萎縮也持續影響市場規模。
(二)即使本國市場小,還是有機會成為較大規模市場的服務跟平台,例如、來自瑞典的spotify,但這也關乎了台灣在前個主題的人才庫的養成。
(三)因為產業西進及人力成本的提升,目前台灣已經無法單一區域就完成一個完整的製造生態系。就連富士康及和碩,仍要跟中國的製造商合作。
(四)台灣的VC資源仍強壯,但也有VC反應近十年來台灣缺乏足夠的可成為投資標的新創團隊。也因此,有些投資單位也會開始物色中國的新創團隊。
(五)一大挑戰,便是吸引美國及國際的投資人,且過往台灣的市場資本曾經有被高估過,也是加深了這挑戰的原因。(這句得求證)
(六)另外一個台灣的大挑戰是,如何創造對投資人有誘因的下世代科技,然而台灣也面臨這部分的問題,包括AI領域的資料不足,或是量子計算的人才不足等。
(七)目前有許多中國的AI研究人員在美國的單位工作,這帶來兩個層面的影響:在八零九零年代台灣跟矽谷間的連結,取而代之的是中國跟矽谷的連結。未來美國諸多領域的AI的形塑方向,也會與中國有關。另外,基於華盛頓跟北京的競爭趨勢,也將有許多在美國的AI人才回流到北京。
(八)如果未來華盛頓跟北京的競爭加劇,世界將會分成兩大陣營。而北京也會持續運用各種方面的壓力來影響台灣、吸收台灣人才。
四、硬體至上思維如何改變?
(一)台灣另一個必須面對的問題是,過往硬體製造的成功經驗,也影響了下一代台灣的軟體硬體整合的發展可能。
(二)以中國大疆無人機為例,無人機算是軟硬整合的成慣例,除硬體外,有必須搭載不斷突破的演算法,同時,透過無人機拍攝的資料,又能持續改善演算法。這解決方案也吸引了許多全球跟美國的單位,包括美國,運用大疆的無人機再開發更新的軟體技術。
(三)台灣的切入點仍存在的,考量有些國家,包括美國,可能會對中國打造的AI科技有所疑慮,在這部分台灣應有潛力來取代服務。
(四)但即使要做到前述這點,用過往硬體生態系的思維來面對也並不合適,得直接有軟硬整合的思維基礎來面對。
(五)台灣必須找到基於硬體及軟體的優勢來發展,像是以色列及愛沙尼雅的做法。
(六)以生物晶片作為基礎建設發展的生物科技,並整合硬體、韌體及軟體,也是可考慮發展的方向。
(七)要如何用硬體優勢、結合軟體,以彈性的工程概念迅速打造下一世代的高科技的基礎建設,對台灣來說是必須發展及規劃的。
五、如何為台灣增加附加價值?
(一)東亞的製造供應鏈正迅速在轉變,,從中國轉移到越南、馬來西亞或印尼,因為中國的工資成本也在上漲。2017年爆發的美中貿易戰也正加速此進程。
(二)有些供應鏈的轉移並不容易,例如廣東富士康的微電子零組件生態系,而泰國或越南也難以吸收這樣的產業移入。而富士康的印度基地是轉移的其中一個例子,同時製造印度人口所需的手機已經小米的機體。
(三)台灣的挑戰包含了:
A.必須瞄準新科技(AI及量子技術)的其中一部分製造鏈,而這些新科技的廠商包含雅馬遜、GOOGLE或是中國的百度、阿里巴巴等。
B.台灣可以尋找一些目前平台大廠尚未提供服務的領域,而這服務是針對消費者市場的。包括醫療、教育、資安的部分,都仍有發展軟體、人工智慧的空間。
(四)在台灣,雖然礙因於資料量,較難發展大量資料所產生的人工智慧企業,但有許有機會發展少資料型的人工智慧演算法。
(五)除了ICT跟半導體,大部分產業過去都聚焦在低毛利的製造,也造成未來轉移至高值化的障礙。
(六)台灣必須綜合國際趨勢、尖端科技及研發能量,找到對台灣來說高附加價值的產業發展。也能參考美國未來市場所需的人工智慧及量子計算來發展。
六、政府政策的幫助
(一)許多台灣政府的政策或計畫停留在陳述的階段,即使有加強對人工智慧的投資力道,但並沒有有效地針對特定領域訂定策略。相對來說,美國及歐洲都有進行規劃策略,以日本發展AI醫療為例,政府便有計畫建立十處以AI為基礎的醫院來發展AI醫療,投入金額將在2025達到100 million美元。中國也發展人工智慧人臉辨識,進而誕生出獨角獸Megvil,此公司最近也沒加入美國商務部的Entity list。
(二)這說明了,過往台灣在硬體的成就,難以讓台灣在未來的科技競爭上穩穩站足。
(三)政府應引導整個台灣發展市場上有興趣的項目,讓國外的投資者能不斷投注資源,並且不讓法規或稅制造成這類投資的障礙。
七、台灣應針對上述五點問題進行解決,並且也在國際間找到能一同解決的合作夥伴。像是過去台灣跟矽谷的合作,應該與美方產生一種新世代的合作模式來解決前述問題。
以下是討論建議參考的解決策略:
八、STEM(科學、科技、工程、數學)人才跟人力的資本問題:
(一)雙語經濟是能加強的方向,透過英語的加強來征服區域及全球的國際化挑戰。
(二)台灣可做為一個區亞洲域型的高等英文工程相關課程(電機、機械)的中心,吸引東南亞學生,以相較於美國及歐洲、澳洲更低價的課程來吸引東南亞電機人才,並透過策略留住這些學生在台灣電機相關領域。
(三)從此刻,為了往後十年到二十年的STEM人才庫做努力,同時這樣的人才庫得累積包括科技、商業、軟硬整合,讓台灣能發展人工智慧、量子計算及資安等領域。
(四)針對5+2產業,應在大學建立相關的新創加速器。先從政府資源挹注,後續再由業界資源銜接。這些加速器應扶植跟聚焦的技術,並不是短期投資市場所關注的,反而應關注長期有潛力發展的技術。
(五)政府應鼓勵學校,引導商學院學生加強科技的應用技術,同時也加強理工、電資學院學生商業及金融的知識,培養綜合型人才。
(六)台灣在各方面都有人才,然而國際交流型的人才還是太薄弱。
(七)按照PWC 2019新創的調查,60%的新創團隊並沒有聘用能推展國際化的人才 ; 54%的團隊沒進行投遞或參加國際的展演及投案 ; 只有30%有針對國際市場進行評估。
(八)即使台灣團隊嘗試培養很前端的科技技術,然而終究會因為缺乏國際的管理者,而導致難以開發台灣以外的市場。
(九)以色列模式:
A.瞄準遠期尖端科技,特別是數年後才會帶來收益的科技。
B.策略並不會雨露均霑,而是選擇有足以作為特色及槓桿的項目,像是基礎科學及資工便是投入好幾年資源的項目。
C.透過政策及策略銜接軍事單位、軍種及業界,讓好的人才在當兵時能得到更完整的培訓及成為業界能善用的人才。
D.許多以色列人能流暢的使用英文,因此台灣也能考慮雙語政策,同時許多以色列的企業會企圖發展更國際化的市場(美國及歐洲),及具備有國際化的眼界。
(十)台灣能持續推動的國家政策:
A.有利國際創新的簽證
B.引入國際的產業導師制度,用公私協力的方式,引入國外特訂領域的導師,來觀察及督考台灣各領域的發展,可能的領域包含量子計算、資安、生物科技。
C.擴充gAsia Pass的應用情境(再研究)
D.建立一個跨太平洋的諮詢平台,把投資、需求、選題及台灣的研發能量對接起來。
E.承上面諮詢平台的建立,也同步在教育層面建立,將學術能量引入。
九、市場規模太小的問題
(一)三種策略:台灣做為一個中繼站(hub)、一個值得信任的供應商、以及一個高效能的導管。
(二)台灣做為一個中繼站(hub)
A.不只資料數量重要,資料的處理、資料的合成、資料的部署同樣重要。也可從以色列跟愛沙尼雅的案例看到,如何善用各政府單位及民間單位的能力及優先緒,來增進工業的價值鏈。
B.政府可作為高品質資料的提供方。此外,台灣也能善用法治基礎,來加強資料保護及個資保護的標準。
C.作為APEC中的領導角色,目前APEC中有在討論物聯網跟數位經濟的資安標準,台灣應扮演主導角色來引導框架及提供處理上的案例。
D.成為GDPR標準在亞洲施行的最佳案例。
E.美國的印太平洋策略中包含資安環節,台灣及華盛頓應保持交流溝通管道,在全球及APEC上一同推動。
(三)台灣作為一個值得信任的供應商
A.政府應針對5+2產業旗下的各創新計畫進行TVCP(trusted vendor certification program)認證,加強這些計劃的品質及可信任度,活用優勢,與國外的合作單位共同開創新科技的標準。
B.作為美國的新科技產品的場域實測基地。
(四)台灣作為一個高效能的導管
A.美國團隊也同樣對東南亞快速擴張的市場感到興趣,台灣能成為比中國更信任的夥伴,連結美國進入東南亞市場。
B.美國目前有 New Southbound Policy及 U.S. Indo-Pacific strategy,加入旗下的數位及資安相關的計畫,目前南韓已有加入。
十、硬體至上思維如何改變?
(一)應挑選前瞻的重點軟體科技領域,進入扮演重要的角色(AI、IoT)。
(二)台灣在量子運算上仍未有具規模的使用者,然而學界目前有美國IBM合作的計畫。
十一、如何為台灣增加附加價值?
(一)美國正調整供應鏈對中國的依賴,並尋找下一階段科技上的夥伴,特別是在AI及物聯網、生物科技技術上無資安疑慮的合作夥伴。而這是台灣的機會,台灣應盡可能在這些領域的安全技術標準上佔有一席之地。
十二、政府政策該如何幫助產業?
(一)從半導體的經驗來看,政府政策的投放必須是長期持續、且眼光放遠、針對先進科技的。
(二)台灣在研發上的投入資金比例上越來越少。
(三)調整政策讓基礎研究能成功商業化非常有必要。
(四)接下來三年到五年有些美中的合作計畫有可能停止,台灣必須成為有潛力的取代對象。
(五)台灣目前有加入APEC Cross-Border Privacy Rules,目前該組織的方向趨向歐盟的標準,台灣可先針對GDPR系統預作準備。
(六)台灣應該更積極加入更多科技業標準的制定,特別是接下重要的科技如物聯網、資安等。
台大量子計算學程 在 台大課程資訊交流區| 1. 課程類別:電機系必修(十選二實驗) 的推薦與評價
最後我想幫皓中教授推薦他下學期(111-2) 開授的「量子資訊與計算」Quantum Information and Computation (QIC),我去年有聽過這門課,非常推薦,學完會具備獨立自學研究 ... ... <看更多>
台大量子計算學程 在 量子計算實驗與實作- 臺灣大學板 - Dcard 的推薦與評價
如題請問有人修過量子計算學程的這堂選修課嗎想請問loading如何具體課程內容大概是什麼? - 課程,請益. ... <看更多>
台大量子計算學程 在 [評價] 108-2 量子計算與資訊導論管希聖- 看板NTUcourse 的推薦與評價
※ 本文是否可提供臺大同學轉作其他非營利用途?(須保留原作者 ID)
(是/否/其他條件):是
哪一學年度修課: 108-2
ψ 授課教師 (若為多人合授請寫開課教師,以方便收錄)
管希聖
λ 開課系所與授課對象 (是否為必修或通識課 / 內容是否與某些背景相關)
物理所選修
先備知識: 線性代數(Friedberg CH1~CH2 & CH5)
量子力學(J.J Sakurai CH1~CH3)
以上先備知識非必須,課本會從頭開始講,但如果想更清楚
理解這門課的理論架構,上述會很有幫助。
δ 課程大概內容
1. Four Postulates of Quantum Mechanics
(State space, Time evolution of state,
Measurement, Composite system)
2. Quantum Entanglement
3. EPR Paradox and Bell's Inequality
4. Quantum Circuit Model (Quantum gates)
5. Superdense Coding
6. Quantum Teleportation
7. Function evaluation by quantum gates
8. Quantum Parallelism
9. Deutsch's algorithm
10. Quantum Fourier transform
11. Quantum phase estimation
12. Shor's Algorithm
13. Grover's Algorithm
Ω 私心推薦指數(以五分計) ★★★★★
★★★★
η 上課用書(影印講義或是指定教科書)
Quantum Computation and Quantum Information,
10th Anniversary Edition, by M. A. Nielsen and I. L. Chuang
μ 上課方式(投影片、團體討論、老師教學風格)
板書。老師會把課本上的內容抄到黑板上,抄到一個
段落會開始講解,老師會鉅細靡遺將所有過程告訴我
們,包括思考方式和代數操作,如果嘴上說說看我們
還是聽不懂,那就會寫在黑板上。
修這門課要先有個心裡準備,就是老師他很愛上課,
絕對不會準時下課
本學期管老師最精彩的操作如下,
17:20 管:「這邊我們快上完了,我們上到燈關好了。」
17:40 電燈電源被切掉了(物理系教室這時間會切燈)
管:「疑?怎麼那麼快?比我想像中還快」
學生歡聲鼓舞,但此時管老師拿出他的教職員證
走向黑板右側,狠狠的插進卡槽,燈又亮了。管
老師一語不發,回到黑板繼續上課,戰到18:00。
所以後面千萬不能排課喔XD
σ 評分方式(給分甜嗎?是紮實分?)
作業(七次) 30%
考試(約在學期結束前兩週) 40%
期末報告 30%
ρ 考題型式、作業方式
作業是課本習題,一次10題,大約1~2週出一次,我還蠻
喜歡這個部份的,因為物理課通常問題是實作量不足,而
老師使用作業去強迫你唸書和實用知識,每週作業我大概
會花三、四個小時,從量子力學、線性代數、量子邏輯閘、
質因數分解等都會寫到作業,還蠻紮實的。
考試是教完Shor's Algorithm後,考題七成和考古題一樣,
大約考前一兩週助教會傳考古題,基本上就通通背起來,
進去抄下來XD 老師比較希望別人問你量子電腦怎麼做質
因數分解時,你能夠把流程背給他聽,不要修完這門課什
麼都不知道。
期末報告就是找paper,用量子電腦來實作,不過我還沒
開始做XD 組員加油~
ω 其它(是否注重出席率?如果為外系選修,需先有什麼基礎較好嗎?老師個性?
加簽習慣?嚴禁遲到等…)
全簽,不點名。
下面這份是我的上課筆記,希望能幫助到有需要的人,
不用再把課本抄一次,不過期末我有點耍廢懶的打下去,
所以如果有人真的用到這份筆記,希望你們能幫忙把後面
補完,造福後人XD
https://github.com/jacky00dd/Quantum-Computaion-NTU-2020
Ψ 總結
這門課比較像是概覽量子計算,這個領域有什麼人做了
什麼事這種感覺,以後如果想要投入這個領域的人,這
門課會是個不錯的入門,可是如果目的性不夠來修的話,
大概之後就會忘記了,就跟我的電子學一樣XD
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.231.132.30 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/NTUcourse/M.1592673175.A.260.html
... <看更多>