邊緣AI 2026將成 IoT晶片發展核心
04:102021/05/02 工商時報 集邦科技資深分析師曾伯楷
隨著智慧工廠、城市等場景對數據分析越發需要精準、即時且大量處理的需求,AI與IoT結合已是現在進行式。在AI晶片助益下,IoT邊緣與終端裝置可透過機器學習或深度學習等技術加值,同時帶出無延遲、低成本、高隱私等優勢,顯示出AI晶片的重要性。預估全球AI晶片產值至2025年將達720億美元。
與此同時,邊緣運算透過AI使終端設備於運行上更加智慧,不僅保有邊緣運算於延遲性、隱私性、連接性、功耗、成本等優勢,並進一步使系統具有主動性與智慧性。若以場景角度切入,邊緣AI相較傳統邊緣運算,其主要帶來的效益包括數據處理過濾和邊緣智慧分析,此也將成為兩技術持續結合的動能。
一、MCU、連接晶片、AI晶片為IoT晶片產業鏈三大關鍵零組件。 物聯網在傳統上多以感知層、網路層、系統層與應用層作為架構堆疊,主要經濟效益雖來自應用層的智慧情境發展,然感知層所需的產業鏈之上游零組件仍是支撐終端場景運作重要核心,其中又以微控制器(MCU)、連接晶片與AI晶片最關鍵。
MCU方面,建立在高效能、低功耗與高整合發展主軸下,IoT MCU現行從通用MCU演化成特定為IoT應用或場景所打造,如2021年3月STMicroelectronics推出新一代超低功耗微控制器STM32U5系列,可用於穿戴裝置與個人醫療設備;Silicon Labs同期推出PG22 32位元MCU,主打空間受限且須低功耗的工業應用、Renesas RA4M2 MCU著眼IoT邊緣運用等。
連接晶片方面,受物聯網設備連線技術與標準各異影響,通訊成物聯網晶片中相當重要的一環,從蜂巢式的4G、5G、LTE-M、NB-IoT,到非蜂巢式的LoRa、Sigfox、Wi-Fi、Wi-SUN等,從智慧城市、工廠、家庭至零售店面皆被廣泛運用,範圍擴及至太空,如2020年下旬聯發科與國際航海衛星通訊公司(Inmarsat)合作,成功以NB-IoT晶片完成全球首次5G物聯網高軌衛星資料傳輸測試。AI晶片方面,隨著智慧工廠、城市等場景對數據分析越發需要精準、即時且大量處理的需求,AI與IoT結合已是現在進行式。此外,Microsoft在其2021年3月舉辦的年度技術盛會Ignite 2021上指出,2022年邊緣運算市場規模將達到67.2億美元,與深度學習晶片市場相當吻合,亦提及市場預估至2025年全球深度學習晶片市場將有望達663億美元。同時,Microsoft認為至2026年全球AI晶片有3/4將為邊緣運算所用,顯示出IoT晶片於邊緣運算的發展將成未來廠商重要布局之一。
二、邊緣AI效益顯著,成長動能仰賴數據處理過濾、邊緣智慧分析。
首先,從邊緣運算定義來看,市場雖已談論數年但定義與類別始終未統一,原因是各廠商於邊緣託管工作的目的不盡相同。例如對電信商而言,初步處理數據的微型數據中心是其邊緣端,而對製造商來說邊緣裝置可能是生產線的感測器,此也造就邊緣運算的分類方式略有出入。另外,例如IBM有雲端邊緣、IoT邊緣與行動邊緣的類別,ARM多將邊緣視為雲端與終端間的伺服器等裝置,亦有個人邊緣、業務邊緣、多雲邊緣等類型。
其次,從邊緣運算類別來看,現行分類趨勢和研究方式尚有以數據產生源為核心,藉由設備與數據源的物理距離作為分類參考,並將其分為厚邊緣(Thick Edge)、薄邊緣(Thin Edge)與微邊緣(Micro Edge)。厚邊緣多用以表示處理高數據流量的計算資源,並配有高階CPU、GPU等,例如數據中心的數據儲存與分析;薄邊緣則包含網路設備、工業電腦等以整合數據為主要目的,除了配有中間處理器外,也不乏GPU、ASIC等AI晶片;微邊源因與數據源幾無距離,故常被歸類為生成數據的設備或感測器,計算資源雖較為匱乏,但也可因AI晶片發揮更大效益。
整體而言,邊緣運算透過AI使終端設備於運行上更加智慧,不僅保有邊緣運算於延遲性、隱私性、連接性、功耗、成本等優勢,並進一步使系統具有主動性與智慧性,在平台管理、工作量合併與分布式應用也更有彈性。若以場景角度切入,邊緣AI相較傳統邊緣運算,其主要帶來的效益提升包括數據處理過濾和邊緣智慧分析,此也將成為兩技術持續結合的動能。
數據處理與邊緣分析於過往邊緣運算時已可做到,並在AI加值下進一步提升效益。以前者而言,數據透過智慧邊緣計算資源可在邊緣處預先處理數據,且僅將相關資訊發送至雲端,從而減少數據傳輸和儲存成本;從邊緣分析效能來看,過往多數邊緣運算資源處理能力有限,運行功能時往往較為單一,而邊緣智慧分析透過AI晶片賦能,進而能執行更為繁複、低延遲與高數據吞吐量的作業。
三、全球大廠搶攻IoT晶片市場,中國加重AI晶片發展力道。
IoT晶片於邊緣運算所產生的效益,使其成為廠商重要策略布局領域,雲端大廠如Google、AWS等紛紛投身晶片自製;傳統晶片大廠如ARM最新產品即鎖定邊緣AI於攝影機和火車的辨識應用、Intel亦投資1.3億美元於十餘家新創AI晶片設計廠商,NXP Semiconductors、Silicon Labs、ST則陸續在其MCU或SoC添加邊緣AI功能。此外,新創企業Halio、EdgeQ、Graphcore皆以AI晶片為主打。整體而言,若以區域來看,歐美大廠聚焦加速AI運算效能,但最積極發展AI晶片產業的則屬產官學三方皆支持的?心,代表性廠商包含地平線、華為旗下海思等代表;台灣則由產業聯盟領頭與聯發科和耐能等重要廠商。
(一)中國產官學助力,2023年AI晶片產值估將逼近35億美元。
AI產業是中國發展重點之一,其輔助政策如2017年《新一代人工智能發展規劃》、《2019年促進人工智能和實體經濟深度融合》,至「十四五」與「新基建」,都將AI視為未來關鍵國家競爭力。各大廠也因此陸續跟進,如百度發布AI新基建版圖著眼智慧雲伺服器;阿里宣布未來至2023年將圍繞作業系統、晶片、網路等研發和建設,騰訊則聚焦區塊鏈、超算中心等領域。
產官學研加重AI的發展力道也反映於AI晶片上,ASIC(特殊應用基體電路)廠商比比皆是。其中,AI晶片布局物聯網領域的廠商眾多,包含瑞芯微、雲天勵飛、平頭哥半導體、全志科技等,主要面向雲端運算、行動通訊、物聯網與自動駕駛四大領域。其中,物聯網領域進一步聚焦於智慧家庭、智慧交通、智慧零售與智慧安防部分,執行語音、圖像、人臉與行為辨識等應用。若進一步聚焦於邊緣運算領域,則以地平線、寒武紀、華為海思、比特大陸、鯤雲科技等最為積極。整體而言,TrendForce預估,中國AI晶片市場有望從2019年13億美元增長至2023年近35億美元。
綜觀中國AI晶片發展,雖有中美貿易摩擦導致設計工具、製造封測等環節較受限制,且開發成本始終居高不下,然而,藉由產官合作以及中國內需市場需求動能,仍能有效支撐該產業成長。若以邊緣運算來看,鑒於AIoT市場持續茁壯,特定應用的ASIC將是重要發展趨勢,尤以汽車、城市與製造業來看,相關場景應用如人身語音行為辨識、人車流量辨識、機器視覺等需求皆相當明朗,預期也將成廠商中長期發展主軸。
(二)台灣人工智慧晶片聯盟積極整合,監控與機器人為邊緣AI應用兩大方向。
台灣廠商聯發科和耐能同樣結合邊緣運算與AI兩技術作策略布局,就整體產業而言,2019年由聯發科、聯詠、聯電、日月光、華碩、研揚等廠商共同組成的台灣人工智慧晶片聯盟(AITA)發展迄今已越趨成形,各關鍵技術委員會(SIG)亦訂定短中長期發展目標。
邊緣AI發展則由AI系統應用SIG推動,其第一階段至2020年著眼半通用AI晶片發展與智慧監控系統應用平台的裝置端推論,2021年則聚焦以裝置端學習系統參考設計,以及軟硬體發展平台的裝置端學習為主,並規劃在2023年能以多功能機器人為主體,發展多感知人工智慧和智慧機器人AI晶片發展平台。
換言之,藉由業界在智慧裝置、系統應用與AI晶片的串聯,短期至2022年都將是台灣邊緣AI大力發展階段,並朝智慧監控、多功能機器人深化,預期此也將帶動系統整合的凌群、博遠,終端設備的奇偶、晶睿碩,以及晶片設計的聯發科、瑞昱等邊緣AI商機;但相較中國廣大內需市場,台灣仍需藉由打造讓晶片廠和系統商充分整合的互補平台,以利降低晶片開發成本,並從其中尋求更多可供切入的大廠產業鏈。
附圖:2019~2023年中國AI晶片市場推估
AI於IOT流程主要著眼數據處理與分析之效
台灣人工智慧晶片聯盟系統應用SIG發展架構
資料來源:https://www.chinatimes.com/newspapers/20210502000153-260511?fbclid=IwAR0zlvUv8MKpcHrbgpa3xRAFaQXaxZuep9TCeZ-75myILNjuDV4SWEIdKZ8&chdtv
同時也有2部Youtube影片,追蹤數超過7萬的網紅電腦學習園地,也在其Youtube影片中提到,【加入】支持電腦學習園地 https://www.youtube.com/channel/UCYkWZY6-NlkU6qEkEtK3s0Q/join ✅購買完整課程內容 https://shopee.tw/alyoou ✅請【訂閱】我們的頻道 如果這部影片對你有幫助的話,請幫我按個讚,給我點...
「合併圖層ai」的推薦目錄:
- 關於合併圖層ai 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
- 關於合併圖層ai 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於合併圖層ai 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於合併圖層ai 在 電腦學習園地 Youtube 的精選貼文
- 關於合併圖層ai 在 電腦學習園地 Youtube 的精選貼文
- 關於合併圖層ai 在 [問題] 請問如何不讓人變動AI檔?? - 看板Digital_Art 的評價
- 關於合併圖層ai 在 【illustrator CC AI教學】83 圖層使用說明 - YouTube 的評價
- 關於合併圖層ai 在 【Illustrator CC AI教學】064 路徑合併20170802 - YouTube 的評價
- 關於合併圖層ai 在 提問illustrator 怎麼把兩個不同顏色的圖案合併? - 設計板 - Dcard 的評價
- 關於合併圖層ai 在 Illustrator CC基本課程5 合併線條【中文字幕】 - YouTube 的評價
- 關於合併圖層ai 在 ai合併圖層的問題包括PTT、Dcard、Mobile01,我們都能挖掘 ... 的評價
- 關於合併圖層ai 在 ai合併圖層的問題包括PTT、Dcard、Mobile01,我們都能挖掘 ... 的評價
- 關於合併圖層ai 在 ai合併圖層的問題包括PTT、Dcard、Mobile01,我們都能挖掘 ... 的評價
- 關於合併圖層ai 在 illustrator合併路徑 - Mobile01 的評價
- 關於合併圖層ai 在 靠北設計師3214... - Facebook 的評價
- 關於合併圖層ai 在 ai 合併圖層的推薦與評價,YOUTUBE、PTT - 最新趨勢觀測站 的評價
- 關於合併圖層ai 在 ai 合併圖層的推薦與評價,YOUTUBE、PTT - 最新趨勢觀測站 的評價
合併圖層ai 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
IBM 大名鼎鼎的 Watson 也要被賣了,人類的 AI 夢該醒了?
作者 品玩 | 發布日期 2021 年 02 月 22 日 8:45 |
人類豐滿的 AI 夢,正撞上冰冷的現實。1 月 19 日,據《華爾街日報》引用知情人士報導,IBM 考慮出售 Watson Health 業務,可能的方案包括賣給私募股權公司、醫療企業或與特殊目的收購公司(SPAC)合併。
Watson Health 部門主要負責使用 AI 幫助醫院、保險公司和製藥企業處理數據。《華爾街日報》援引知情人士報導,年收入約 10 億美元,但目前未盈利。
IBM 在 2020 年 4 月迎接新 CEO 阿爾溫德‧克里希納(Arvind Krishna)。上任後,克里希納著手簡化公司業務線,使雲端計算更有競爭力。如 Watson Health 真的出售,對 IBM 的 AI 業務來說,無疑是不小的挫折。
曾想替人類解決腫瘤治療
長久以來,Watson 都是 IBM AI 業務的招牌,也是人類最初充滿野心的 AI 夢代表。
2011 年,深度學習方法剛重新定義,仍未掀起 AI 浪潮。但此時 IBM 的 Watson 就在美國最受歡迎的智力競答節目《危險邊緣》,擊敗節目史上最成功的兩位人類選手。
Watson 展現出強大的自然語音理解能力。要贏得比賽,必須分析大量文字找到線索,然後搜尋大量資料庫,檢索可能的答案。擊敗兩位人類冠軍後第二天,IBM 宣布 Watson 的新職業目標:AI 醫生。
從邏輯看,Watson 在節目展現的能力,似乎可移植到醫學領域──都是先理解自然語言(患者的電子病歷),然後檢索資料庫(治療方案和最新醫學文獻),最終得出答案。此方案的價值在於,每天有近 8 千篇醫療文章發表,醫生一篇篇讀不可能,AI 能幫助醫生閱讀最新醫學成果。
2013 年,IBM 更將研究重心聚焦於腫瘤治療,人類還無法攻克的醫學挑戰。2015 年,IBM 成立專部門:Watson Health,可見當時決心。IBM 前 CEO 羅睿蘭(Virginia Rometty)曾把 Watson Health 稱為公司的「登月計畫」。
眾所周知,AI 的基礎是大量訓練資料。為了獲得數據,IBM 花費約 40 億美元收購 4 家醫療領域數據驅動型公司,分別是 Phytel、Explorys、Merge Healthcare 和 Truven Health Analytics。2016 年,成立僅兩年的 Watson Health,員工規模達 1 萬多人。
發展重點的腫瘤治療領域,Watson Health 吸引許多著名合作機構,包括安德森癌症中心、紀念斯隆─凱特琳癌症中心、梅奧診所、奎斯特診斷公司。2016 年 8 月,Watson Health 還進軍中國,推出「健康中國」生態圈共贏計畫。
聲勢壯大的宣傳、數額龐大的併購、權威機構合作,IBM 透過一系列動作讓外界對 Watson Health 的期待非常高。畢竟,用最尖端的 AI 技術解決最困難的醫療問題,聽起來就非常性感。
不過,後來發展事與願違。安德森腫瘤中心曾與 IBM 合作,為腫瘤學家創建諮詢工具,是利用自然語言處理技術彙整患者的電子健康紀錄,然後匹配資料庫提供治療建議。安德森癌症中心投入 6,200 萬美元,但最終結局卻是雙方 2017 年 2 月終止合作。
業界開始對 Watson Health 產生懷疑,問題也接踵而至。2018 年 5 月,美國媒體 The Register 報導,Watson Health 部門要解僱約 50%~70% 員工,引發巨大震動。不過後來科技媒體 IEEE Spectrum 報導,被裁員工主要來自收購的三家公司 Phytel、Explorys 和 Truven。大量收購使公司面臨人力過多問題,為裁員埋下了伏筆。
但這些都是表面現象,歸根究柢,Watson Health 的致命點在於,診斷結果不準確。
2018 年 8 月《華爾街日報》報導,沒有任何發表的研究表明,Watson 提升患者的治癒率。有十幾位使用過系統的機構和醫生回饋,癌症應用收效甚微,某些情況下還會出錯。且由於缺乏罕見病例數據,Watson 的更新速度跟不上癌症治療的發展速度。
丹麥某醫院研究指出,Watson 的診斷方案,與專家僅 30% 重疊,因此拒絕採購 Watson 系統。德國媒體也曾報導,德國兩家機構實際應用後發現,Watson 對症狀特殊的病人會開給致命藥物。2018 年 10 月,IBM Watson Health 當時 CEO Deborah DiSanzo 宣布離職。
一切都不可逆轉指向最終結局,如今終於傳出 IBM 尋求出售 Watson Health 的消息。失去業界信心,再丟掉雄厚資金後援,人類最早的 AI 明星前景,不再明朗。
AI 夢該醒了?
目前 AI 應用於醫療最普遍的場景是辨識醫療影像,如視網膜眼底影像。而 Watson 挑戰的是診斷,且還是醫學難度最大的腫瘤治療領域,Watson Health 面臨資料和 AI 智慧的雙重挑戰。
資料層面,大部分醫療資料是非結構化資訊,如醫生撰寫病歷和出院總結。雖然 AI 的自然語言理解能力進步飛快,但比人類依然差很多。圖靈獎得主約書亞‧本希奧(Yoshua Bengio)曾表示,AI 無法理解醫學文本歧義,也無法找到人類醫生會注意到的細微線索。
另一方面,有些罕見病例的數據往往難以取得。《中國工業和資訊化》雜誌 2020 年篇文章指出,分析 Watson 數據發現,罕見病例研究中,本來應該餵給 Watson 大量真實數據找到新治療方法,但罕見病例本就缺乏,Watson 被灌入一堆沒什麼用的假設數據,並不是真正的病人數據。這種透過假設數據學習的 AI,準確性可想而知,更出現罕見病例 Watson 誤診。
全球領先的醫學資訊平台 Medscape 2018 年報導指出,Watson 學習根源有問題──並沒有使用足夠真實病例學習,負責訓練它的人,僅是紀念斯隆‧凱特琳癌症中心的腫瘤學家和 IBM 工程師。Watson 大量訓練時間用於掌握上述腫瘤學家設計的理想化病例和治療方案。訓練用真實病例數量很少,最多的肺癌也僅 635 例,最少的卵巢癌更只 106 例。
IBM 曾努力取得資料,花 40 億美元收購 4 家公司,但融合面 IBM 低估了複雜程度。《中國工業和資訊化》雜誌文章指出,IBM 前員工和前客戶的醫院管理人員說,雖然收購大量資料,但融合時發現需要花費難以想像的人力物力,還沒開始訓練就讓人筋疲力盡。巨大的經濟壓力和暗淡前景之前,各合作夥伴只能選擇終止合作,留個爛尾。
AI 目前的智慧程度,難以配合腫瘤治療的複雜性。AI 的本質是統計學,得出的結論局限於人類訓練員提供的數據,無法像專業醫生,獨立生成新的見解。
也就是說,Watson 只能比人類專家更快得出相同結果,無法治療人類醫生治不了的病。
巨大的風險面前,醫生只會將 Watson 的診斷結果當參考,依然要進行大量臨床研究。IBM 的宣傳說,Watson 能憑著強大的計算能力發現人類看不到的地方。但事實證明,AI 的智慧遠未到這程度。Watson 對醫生的意義,也就大打折扣。
Watson Health 的挫折反映出 AI 用於醫學診斷的困難重重,但並不意味 AI 醫療領域沒有前景。圖像分析、基因分析和製藥領域,都有不少公司探索 AI 的應用場景。即使是診斷領域,IBM 的 Watson 沒做好,也不意味其他人做不好。至少,後來者可在 Watson 基礎上學到一些經驗。
資料來源:https://technews.tw/2021/02/22/ibm-watson-ai/?fbclid=IwAR0Z-nVQb96jnhAFWuGGXNyUMt2sdgmyum8VVp8eD_aDOYrn2qCr7nxxn6I
合併圖層ai 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
AI加值智慧製造 鋼鐵傳產乘浪而起
芮嘉瑋/專欄 2021-01-28 02:45
2020年面對COVID-19(新冠肺炎)的襲擊,疫情籠罩之下各行各業幾乎空轉一年,投資購買設備及原料的腳步也都放緩,預期新的一年,隨著疫情穩定與經濟復甦,許多企業勢必加速添購設備和增加庫存料,鋼材需求可望隨著市場回升而轉強,且至少旺到第2季。
舉例來說,在汽車的構造上,有相當高的比例是使用鋼板,包括車門、引擎蓋、後車箱、底盤、車頂等,所以汽車業的好壞,間接影響了鋼材的需求。這2年汽車上游原材料反應了因電動車興起所展開的換車潮,從而鋼市好轉、鋼價高漲,幾乎各國都是如此。
隨著消費型態轉變,產品生命週期縮短,各行各業面臨客製化的挑戰,並在智慧工廠生產流程的訴求下,往往需要智慧機械、智慧製造設備以從事更複雜的生產工作,鋼鐵傳產業也不例外。然而,現有機器人或製造機台受限於原本功能單一又無法擴充的窘境,必須藉由人工智慧、物聯網、大數據等各種新興技術多元化功能的整合,以利製造業數位轉型升級,因應瞬息萬變的市場挑戰,凸顯「智慧製造」的概念是企業轉型升級的唯一出路。
何謂智慧製造?
經歷4次工業革命的演進,第4次工業革命被視為「工業4.0」,且因智慧製造是工業4.0的核心部件,在製造產業兩者幾乎可劃上等號,從而「工業4.0」常被稱為「智慧製造」。
在工業4.0的時代驅動下,現今製造業不斷與數種新興技術結合,從而工業4.0被定義為「製造技術中整合了網路安全(cybersecurity)、擴增實境(AR)、大數據、自主機器人(autonomous robots)、積層製造(additive manufacturing)、模擬(simulation)、系統整合(system integration)、雲端運算(cloud computing)和物聯網等技術使之具有自動化、聯網、數據交換以及智能工廠所需功能的系統平台」 。
因此,智慧製造實際上需要整合以上所述之各種關鍵領域技術的同步發展以建構出相應的產業生態體系,並在生產過程的每一個環節都能達到高度自動化、客製化與智慧化的先進製造模式,使生產環境具備自我感知、自我學習、自我決策、自我執行以及自我適應的能力,以適應快速變化的外部市場需求。
如何利用AI加持智慧製造
由於智慧製造包括連網(connection)、轉化(conversion)、虛擬(cyber)、認知(cognition)和自我配置(configure)等能力 ,其中利用機器學習、深度學習等AI技術使機器具備自我診斷並即時做出判斷的認知能力,就是AI之所以成為智慧製造核心技術之所在,它可以從大量原始數據中自動提取關鍵特徵及製造業中規律性的模式,進而學習過往曾經發生過的錯誤,以提前作預測及預警,藉此不僅可降低停機時間、提升製程效率,也可適時的根據產線作調整。
至於該如何利用AI加持智慧製造,讓我們看看國內鋼鐵龍頭中國鋼鐵股份有限公司(簡稱中鋼公司),在其智慧生產技術中導入AI實現智慧製造的專利布局,提供製造業者掌握AI加值智慧製造,讓工廠轉型升級邁向智慧工廠。
中鋼發明一種透過人工智慧演算模組在生產製程中進行估測及控制的系統(TWI704019),具體而言,係透過人工智慧演算模組所產生的估測鋼帶翹曲模型對鋼帶翹曲量進行估測,而該人工智慧演算模組係利用機器學習模組、深度學習模組或者使用一雲端伺服器模組評估該製程參數及該翹曲量。
該專利提供一種包含熱浸鍍鋅設備100、矯正機構130、感測模組150、人工智慧演算模組160以及最佳化演算模組165的熱浸鍍鋅鋼帶翹曲量估測系統。其中,該人工智慧演算模組160連接該感測模組150及該熱浸鍍鋅設備110,用以收集且評估該熱浸鍍鋅設備110中諸如產線速度、張力、鋼帶鋼種、鋼帶寬度、鋼帶厚度、鋼帶剛性等製程參數及翹曲量,進而可產生估測鋼帶翹曲模型,且該估測鋼帶翹曲模型包含一矯正干涉量,用以供矯正機構130矯正鋼帶。
經過大量數據的累積,該估測鋼帶翹曲模型還可以包含來自該最佳化演算模組165的製程參數最佳值,當類似或相同的製程參數(例如類似或相同鋼種)的鋼帶需要進行熱浸鍍鋅時,該估測鋼帶翹曲模型就會顯示諸如最佳張力、最佳產線速度、最佳矯正干涉量等製程參數最佳值,供操作者參考,從而獲得翹曲量最少且鍍鋅厚度一致的鍍鋅鋼帶。
再者,由於一般的鋼捲產品需要經過諸如煉鋼、熱軋和冷軋等許多生產階段,為了讓產品的機械性質符合預定的規範,過去往往依賴人為經驗調整生產階段的製程參數,然而,人為經驗難以即時反應生產線狀況,中鋼就此發明一種適用於一軋延系統之製程參數的調控方法(TWI708128),當執行完一部分的生產階段以後,可以即時地計算下一個生產階段的製程參數,其中之製程參數的調控方法包括根據歷史資料建立一機器學習模型,後續並將測試資料輸入至機器學習模型以預測目前產品的機械性質等步驟。
在該專利之軋延系統的運作流程示意圖中,在步驟220,可根據這些歷史資料來建立一個機器學習模型221,此機器學習模型221是要根據生產參數來預測產品諸如拉伸強度、降伏強度和伸長率等的機械性質,換言之在訓練階段中生產參數是作為機器學習模型221的輸入,機械性質則作為機器學習模型221的輸出。機器學習模型221可以是卷積神經網路、支持向量機、決策樹或任意合適的模型。
在步驟230,對目前在線上的產品執行部分的生產階段。在步驟240中,將測試資料輸入至機器學習模型221以預測目前產品的機械性質,並判斷所預測的機械性質是否符合一規範。在步驟250中,依照預設生產參數進行下一個生產階段。
如果步驟240的結果為否,則執行一搜尋演算法以取得最佳的生產參數,並據此實施下一個生產階段(步驟260)。其中,執行搜尋演算法以取得調控後參數的步驟包括:設定一利益函數;將尚未完成生產階段的可調控參數與線上資料合併後輸入至機器學習模型以取得預測機械性質,並根據利益函數計算出預測機械性質的誤差值;以及取得最小誤差值所對應的可調控參數以作為調控後參數。
此外,中鋼亦發明一種設備監診方法(I398629),係在設備故障監診分析流程的邏輯下導入類神經網路(neural network)之人工智慧,以便在決策分析時有效解決故障類型分類方面問題。
給台灣製造業的建議與展望導入AI技術、配合感測器收集各類數據以及大數據分析進行諸如產線異常診斷或品質監控,以維持機器正常運作無虞是智慧工廠有效運作的基礎。然而,智慧製造除了藉由智慧機械建構智慧生產線、透過雲端和物聯網分析資料、AI自主監測診斷調整產線產能之外,虛實整合系統(或稱網路實體系統,Cyber-physical systems)也是構成工業4.0創建智慧製造所需的功能之一,整合物理模型、感測器資料和歷史數據,在虛擬空間即時模擬呈現生產狀態,透過遠程監視或跟踪與工廠現有的資訊管理系統緊密整合,建立完整資訊生態系統才能透過AI即時彙整資訊進行決策。
未來製造業仍將是全球產業不可或缺的一環,隨著工業4.0的蓬勃發展,台灣製造業在邁向智慧製造過程中,所有智慧化的步驟都需要運用AI來執行分析、診斷、預測或決策等工作,欣見國內鋼鐵龍頭已率先落實AI加值智慧製造,然而若能整合虛擬(Cyber),強化與工業物聯網之整合,更可提升透過AI提高組織運作效率及效能的目的。
過去製造業藉由大量生產與低價競爭已非決勝關鍵,如何協助國內產業在後疫情時代轉型升級,是當前的重要議題。持續強化在地製造業與資訊業領域的技術整合優勢,透過機器學習、類神經網路或深度學習等AI技術的導入,並與使用者/消費者連結形成完整的製造服務體系,將可望從傳統製造體系中依賴人為經驗、人力需求及規格一致的常態,轉換為自動化、客製化、智慧化和靈活彈性化的智慧製造。本文以鋼鐵龍頭之典範轉移為例,以期台灣所有製造產業均應具備智慧製造的軟硬實力,才能持續在全球製造體系中發光發熱。
附圖:鋼帶翹曲量估測及控制系統結構示意圖。芮嘉瑋
台灣專利號I708128之軋延系統的運作流程示意圖。芮嘉瑋
資料來源:https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&cat=140&id=0000602586_r1c6gnef7wl2247ink60m
合併圖層ai 在 電腦學習園地 Youtube 的精選貼文
【加入】支持電腦學習園地
https://www.youtube.com/channel/UCYkWZY6-NlkU6qEkEtK3s0Q/join
✅購買完整課程內容
https://shopee.tw/alyoou
✅請【訂閱】我們的頻道
如果這部影片對你有幫助的話,請幫我按個讚,給我點鼓勵,也多分享給需要的朋友們喔~
➡️訂閱我們的頻道
主頻道:https://pse.is/pclearncenter
OFFICE辦公室應用: https://pse.is/office
AutoCAD電腦製圖: https://pse.is/AutoCAD
美工設計: https://pse.is/PSAI
軟體應用: https://pse.is/soft
影片剪輯: https://pse.is/mclip
➡️FB粉絲團
https://www.facebook.com/pclearncenter
推薦課程
【illustrator CC AI基礎教學】
https://www.youtube.com/watch?v=fA4LTxGpOH0&list=PLwwPq48LW7z-2MFp-jA1a_IQLU7fe9ZjT
【PowerPoint PPT教學】
https://www.youtube.com/watch?v=rKNStKEFoW0&list=PLwwPq48LW7z-Rp_6BCqHTXha3F-BPpAPw
【Microsoft Excel教學】
https://www.youtube.com/watch?v=Vl0febV7Kmc&list=PLwwPq48LW7z_uFzBKXFsU0KZqSP7Ky_Up
【Excel VBA程式設計教學】
https://www.youtube.com/watch?v=bUNP9lVbSWc&list=PLwwPq48LW7z_vK171m2neLyz0GzyqRCZH
【Micorsoft Word教學】
https://www.youtube.com/watch?v=J8PpOwwcK7Q&list=PLwwPq48LW7z86-TqMtDejWBKjZD9u1_Rj
【PS教學Photoshop】
https://www.youtube.com/watch?v=kbMyyt8WS6M&list=PLwwPq48LW7z9lyFs6xEiae4uDddWJ1x9e
【會聲會影X9 影片剪輯教學】
https://www.youtube.com/watch?v=QfcXIC_l33Q&list=PLwwPq48LW7z8CNIHEPi3lrQwJMAv-ceiW
【AutoCAD製圖教學】
https://www.youtube.com/watch?v=W7kGvMBgdEs&list=PLwwPq48LW7z_g02sbOzipI3_y1HIyXEUN
#電腦教學 #軟體教學 #教學影片
合併圖層ai 在 電腦學習園地 Youtube 的精選貼文
【加入】支持電腦學習園地
https://www.youtube.com/channel/UCYkWZY6-NlkU6qEkEtK3s0Q/join
✅購買完整課程內容
https://shopee.tw/alyoou
✅請【訂閱】我們的頻道
如果這部影片對你有幫助的話,請幫我按個讚,給我點鼓勵,也多分享給需要的朋友們喔~
➡️訂閱我們的頻道
主頻道:https://pse.is/pclearncenter
OFFICE辦公室應用: https://pse.is/office
AutoCAD電腦製圖: https://pse.is/AutoCAD
美工設計: https://pse.is/PSAI
軟體應用: https://pse.is/soft
影片剪輯: https://pse.is/mclip
➡️FB粉絲團
https://www.facebook.com/pclearncenter
推薦課程
【illustrator CC AI基礎教學】
https://www.youtube.com/watch?v=fA4LTxGpOH0&list=PLwwPq48LW7z-2MFp-jA1a_IQLU7fe9ZjT
【PowerPoint PPT教學】
https://www.youtube.com/watch?v=rKNStKEFoW0&list=PLwwPq48LW7z-Rp_6BCqHTXha3F-BPpAPw
【Microsoft Excel教學】
https://www.youtube.com/watch?v=Vl0febV7Kmc&list=PLwwPq48LW7z_uFzBKXFsU0KZqSP7Ky_Up
【Excel VBA程式設計教學】
https://www.youtube.com/watch?v=bUNP9lVbSWc&list=PLwwPq48LW7z_vK171m2neLyz0GzyqRCZH
【Micorsoft Word教學】
https://www.youtube.com/watch?v=J8PpOwwcK7Q&list=PLwwPq48LW7z86-TqMtDejWBKjZD9u1_Rj
【PS教學Photoshop】
https://www.youtube.com/watch?v=kbMyyt8WS6M&list=PLwwPq48LW7z9lyFs6xEiae4uDddWJ1x9e
【會聲會影X9 影片剪輯教學】
https://www.youtube.com/watch?v=QfcXIC_l33Q&list=PLwwPq48LW7z8CNIHEPi3lrQwJMAv-ceiW
【AutoCAD製圖教學】
https://www.youtube.com/watch?v=W7kGvMBgdEs&list=PLwwPq48LW7z_g02sbOzipI3_y1HIyXEUN
#電腦教學 #軟體教學 #教學影片
合併圖層ai 在 【illustrator CC AI教學】83 圖層使用說明 - YouTube 的推薦與評價
【最新課程】Excel VBA |自動化表單、大量資料處理與股票分析https://mastertalks.tw/products/vba-x-excel?ref=VBACH用EXCEL打造自動化人資系統:排 ... ... <看更多>
合併圖層ai 在 【Illustrator CC AI教學】064 路徑合併20170802 - YouTube 的推薦與評價
【最新課程】 Excel VBA |自動化表單、大量資料處理與股票分析https://mastertalks.tw/products/vba-x-excel?ref=VBACH 用EXCEL打造自動化人資系統: ... ... <看更多>
合併圖層ai 在 [問題] 請問如何不讓人變動AI檔?? - 看板Digital_Art 的推薦與評價
請問各位大大.
有沒有辦法讓人沒辦法更動AI檔裡面的內容?
像Photoshop記得有類似"平面化"(還是合併可見圖層@@?有點忘了)
的功能,讓全部圖層變成一張圖層.
但AI好像沒有辦法@@||..
此外....如果用AI畫一張名片.
轉成TIF (350dpi) 這樣印刷出來的效果會不會很顆粒呢??
謝謝~^^~
--
左半邊持續殘廢中....右半邊不斷進化中....
學術名詞稱為"不協調"....( 汗.... )
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.132.56.124
※ 編輯: LCDbest 來自: 220.132.56.124 (09/28 15:49)
... <看更多>