[Accelerate State of DevOps 2021 快速摘要]
找一些自己有興趣的地方, 快速用 Google 翻譯一下
主要發現
1. 表現最好的人正在成長並繼續提高標準
在我們的研究中,優秀的執行者現在佔團隊的 26%,並且縮短了他們對生產變更的準備時間。該行業繼續加速發展,團隊從中看到了有意義的好處。
2. SRE 和 DevOps 是互補的理念
利用我們的站點可靠性工程 (SRE) 朋友概述的現代運營實踐的團隊報告了更高的運營績效。優先考慮交付和卓越運營的團隊報告了最高的組織績效。
3. 越來越多的團隊正在利用雲,並從中看到了顯著的好處
團隊繼續將工作負載轉移到雲中,而那些利用雲的所有五種功能的團隊會看到軟件交付和運營 (SDO) 性能以及組織性能的提高。多雲的採用也在增加,因此團隊可以利用每個提供商的獨特功能。
4. 安全的軟件供應鍊是必不可少的,也是驅動性能的驅動因素
鑑於近年來惡意攻擊的顯著增加,組織必須從被動實踐轉變為主動和診斷措施。在整個軟件供應鏈中集成安全實踐的團隊快速、可靠和安全地交付軟件。
5. 良好的文檔是成功實施 DevOps 功能的基礎
我們第一次測量了有助於這種質量的內部文檔和實踐的質量。擁有高質量文檔的團隊能夠更好地實施技術實踐並整體表現得更好。
6. 在充滿挑戰的情況下,積極的團隊文化可以減輕倦怠
團隊文化對團隊交付軟件和實現或超越組織目標的能力有很大影響。在 COVID-19 大流行期間,具有生成性 1,2 文化的包容性團隊經歷較少的倦怠。
=========================================================
Technical DevOps capabilities
我們的研究表明,通過採用持續交付進行 DevOps 轉型的組織更有可能擁有高質量、低風險和具有成本效益的流程。
具體而言,我們衡量了以下技術實踐:
• 鬆散耦合架構
• 基於主幹的開發
• 持續測試
• 持續集成
• 使用開源技術
• 監控和可觀察性實踐
• 數據庫更改管理
• 部署自動化
我們發現,雖然所有這些實踐都改進了持續交付,但鬆散耦合的架構和持續測試的影響最大。
例如,今年我們發現,達到可靠性目標的精英執行者採用松耦合架構的可能性是低績效同行的三倍。
松耦合架構 (Loosely coupled architecture)
我們的研究繼續表明,您可以通過努力減少服務和團隊之間的細粒度依賴關係來提高 IT 性能。事實上,這是成功持續交付的最強預測因素之一。使用鬆散耦合的架構,團隊可以相互獨立地擴展、失敗、測試和部署。團隊可以按照自己的節奏前進,小批量工作,減少技術債務,並更快地從失敗中恢復。
持續測試和持續集成
與我們前幾年的發現類似,我們表明持續測試是成功持續交付的有力預測因素。達到可靠性目標的精英執行者利用持續測試的可能性是其 3.7 倍。通過在整個交付過程中結合早期和頻繁的測試,測試人員與開發人員在整個過程中一起工作,團隊可以更快地迭代和更改他們的產品、服務或應用程序。您可以使用此反饋循環為您的客戶提供價值,同時還可以輕鬆整合自動化測試和持續集成等實踐。
持續集成還改進了持續交付。達到可靠性目標的精英執行者利用持續集成的可能性是其 5.8 倍。在持續集成中,每次提交都會觸發軟件的構建並運行一系列自動化測試,這些測試會在幾分鐘內提供反饋。通過持續集成,您可以減少成功集成所需的手動和通常複雜的協調。
持續集成,由 Kent Beck 和它起源的極限編程社區定義,還包括基於主幹的開發實踐,接下來討論。
基於主幹的開發
我們的研究一致表明,高績效組織更有可能實施基於主幹的開發,其中開發人員小批量工作並經常將他們的工作合併到共享主幹中。事實上,達到可靠性目標的精英執行者使用基於主幹開發的可能性是其 2.3 倍。低績效者更有可能使用長期存在的分支並延遲合併。
團隊應該每天至少合併他們的工作一次——如果可能的話,一天多次。基於Trunk的開發與持續集成密切相關,所以你應該同時實現這兩種技術實踐,因為它們一起使用時影響更大。
部署自動化
在理想的工作環境中,計算機執行重複性任務,而人類專注於解決問題。實施部署自動化可幫助您的團隊更接近此目標。當您以自動化方式將軟件從測試轉移到生產時,您可以通過實現更快、更高效的部署來縮短交付週期。
您還可以降低部署錯誤的可能性,這在手動部署中更為常見。當您的團隊使用部署自動化時,他們會立即收到反饋,這可以幫助您以更快的速度改善您的服務或產品。雖然您不必同時實施持續測試、持續集成和自動化部署,但當您將這三種實踐結合使用時,您可能會看到更大的改進。
數據庫變更管理
通過版本控制跟踪更改是編寫和維護代碼以及管理數據庫的關鍵部分。我們的研究發現,與表現不佳的同行相比,達到可靠性目標的精英執行者進行數據庫變更管理的可能性要高 3.4 倍。此外,成功進行數據庫變更管理的關鍵是所有相關團隊之間的協作、溝通和透明度。雖然您可以從特定的實施方法中進行選擇,但我們建議,無論何時您需要對數據庫進行更改,團隊都應在更新數據庫之前聚在一起並審查更改。
監控和可觀察性
與前幾年一樣,我們發現監控和可觀察性實踐支持持續交付。成功實現可靠性目標的精英執行者的可能性是其 4.1 倍
擁有將可觀察性納入整體系統健康狀況的解決方案。可觀察性實踐讓您的團隊更好地了解您的系統,從而減少識別和解決問題所需的時間。我們的研究還表明,具有良好可觀察性實踐的團隊會花更多的時間進行編碼。對這一發現的一種可能解釋是,實施可觀察性實踐有助於將開發人員的時間從尋找問題的原因轉移到故障排除並最終回到編碼上。
開源技術
許多開發人員已經利用開源技術,他們對這些工具的熟悉是組織的優勢。閉源技術的一個主要弱點是它們限制了您將知識傳入和傳出組織的能力。例如,您不能聘請已經熟悉您組織工具的人,開發人員也不能將他們積累的知識轉移到其他組織。相比之下,大多數開源技術都有一個社區,開發人員可以使用它來提供支持。開源技術具有更廣泛的可訪問性、相對較低的成本和可定制性。達到可靠性目標的精英執行者利用開源技術的可能性是其 2.4 倍。
我們建議您在實施 DevOps 轉型時轉向使用更多開源軟件。
source: https://cloud.google.com/devops
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
工程 計算機 對數 在 Facebook 的最佳貼文
醫療健康是現階段AI绝佳的應用場景
今年開始我分享比較多醫療相關的文章,特別最近台灣疫情仍在緊繃狀態,分享這篇我談 AI 在醫療健康領域能創造哪些價值,提供大家參考。
最近,我出席了第五屆醫療健康產業投資50人的「H50年度峰會」,就「人工智能醫療醫藥領域的應用機遇與挑戰」進行一場主題演講。我認為,傳統產業「+AI」的時代已經到來,AI將像電一樣穿透各行各業為其降本提效,創造巨大的經濟價值。醫療健康是現階段AI絕佳的應用場景。創新工場將結合自身TECH VC基因,以醫療市場化、數字化及AI應用等方向為切入口,一起探索發掘醫療產業重塑的機會。
以下是來自峰會的現場報導,文章經21世紀經濟報導授權轉載。
「多年前,如果你問我人工智能最好的應用會是什麼,我可能在不同的時期會說是語音識別或者計算機視覺、自動駕駛、金融領域。但今天如果你問我這個問題,我覺得人工智能最好的應用場景,毫無疑問是醫療的場景。」李開復說。
也正因如此,創新工場在兩年多前設立了醫療投資團隊。這個團隊從2019年起以醫療市場化、數字化及AI應用等方向為切入口,目前已經投資了鎂信健康、艾登科技、英矽智能、沃比醫療、予果生物等20多個項目,涵蓋了數據AI、服務、器械、生物製藥等多個領域。
「隨著團隊的擴張,現在醫療投資團隊已經比人工智能團隊還要大了。創新工場將按照原有Tech VC 基因結合度,搭建醫療生物領域專業化團隊,接下來的1到2年,醫療技術領域的投資將是我們的重中之重,我們會把火力集中在IVD(In Vitro Diagnositcs)體外檢測和高值耗材兩個大賽道。」李開復說。
本次分享中,李開復談到人工智能發展的現狀、深度學習的要點及相關要求,同時,重點給大家分享了AI在病理分析、藥物研發、大數據、以及其他特定領域與場景的應用場景,並結合創新工場在醫療AI投資方面的實踐,給參會嘉賓提供了相關建議。
▎AI賦能傳統行業的時代已經到來
李開復認為,現階段能夠做AI的科學家和工程師數以百萬計,AI技術已經普及化。在過去的人工智能1.0時代,大家把AI當「黑科技」,可能最開始並不知道技術具體能創造什麼價值,就先投資進去公司,再幫牠找應用。
但現在情況已經發生改變,AI賦能傳統產業的時代到來,這裡所謂的「傳統行業」並不是說真的很傳統,而是指任何沒有AI的行業,其中也包括醫療產業。
人工智能發展到今天已有60多年歷史,李開復認為其中最重要的成果是深度學習技術的發明。對此,他總結出了深度學習最重要的四個特點。首先,深度學習能夠針對一個目標函數優化到最佳,如識別腫瘤的正確率;其次,數據量越多,結果越好;第三,千人千面,運營在醫療領域可以根據不同患者的家庭背景、基因等信息精準醫療;第四,文字、圖像、視頻等不同數據都可以作為深度學習的內容。這是此前人工智能算法做不到的,因而近年來深度學習取得了很多突破。
李開復也指出了深度學習需要滿足的五點要求:
第一,需要海量的數據;
第二,數據不能是網上爬來的,而是客觀、精準、自動地標註或打好標籤;
第三,只能在單一領域內工作;
第四,需要比較大的計算力;
第五,需要一些AI專家的參與。 AI擅長運用海量數據針對目標函數進行優化,但無法取代人抽象、分析、嘗試的能力和創造力。
至於AI是否適合用在醫療領域,李開復認為,當下醫療領域正在開始產生海量的數據。可穿戴設備、新的醫療方法、基因排序等都提供了多樣化的數據來源,他對AI+醫療的未來有非常大的信心。
但同時他也提到,AI+醫療在當前的發展過程中遇到了一些問題。首先,AI不擅長做「全科大夫」,只能解決某一特定領域的問題,不可過份神話這一技術。其次,傳統醫療需要的是小而精的數據,而AI對數據的要求是海量、結構化、精準化、閉環,因而現成的數據無法完全滿足AI的需求。
此外,李開復指出,醫療是非常神聖的,關乎人的生命與健康,與金融領域、互聯網領域不同。AI+醫療特別要尊重客戶和他們的服務或產品引進方式,而不是盲目教育市場。很多AI科學家創業會把醫療領域想得過於簡單,而李開復建議創業者需要用更嚴謹的方法適應醫院的採購流程,讓醫院現有的負責人意識到AI技術是在幫助他們,而非取代他們。
▎AI+醫療的細分落地場景
李開復認為,目前AI+醫療在一些細分領域有很多具體的落地場景。第一,病理方面有特別巨大的需求。每年會有成千上萬的病理樣本產生,而註冊的病理醫生缺口則很大。在這方面AI雖然不能做最終判斷,但可以幫助更好的篩選,提供更好的建議。
第二是藥物研發方面,最近國際上已經有了一些成果,如美國一家公司做的蛋白質折疊,以及創新工場所投資的 Insilico Medicine英矽智能,已經開始用AI技術幫助科學家發現新藥。 AI技術的加入可以幫助節約90%的新藥研發時間,對未來製藥行業會帶來很大的顛覆。
第三是大數據與AI的結合,近年來有各種新數據產生,如基因、轉錄、蛋白、代謝等等,都可以用來做新的分析,創作更多新的應用和價值,針對每個患者背景做出更精準的診斷。
此外,李開復還提到在骨科手術、神經介入、種植牙等領域,AI都可以創造價值。
AI+醫療是創新工作的醫療團隊所關注的方向之一。創新工場借助自身的AI工程院以及在AI、醫療領域的深入研究,擁有較為豐富的專業知識。李開復認為,做AI最重要的是有海量數據,創新工場會關注真正數據源頭的掌握者,獲得脫敏數據後再思考如何激活,如何做出新的產品,產生更大的價值。此外,團隊也願意接觸一些產業投資人和產業公司,因為這些人更懂醫療的具體流程,大家的合作將產生價值。
工程 計算機 對數 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
德勤發佈2020技術趨勢報告:五個新趨勢可引發顛覆性變革
北京新浪網 10-26 18:12
來源:產業智能官
「2020 年的趨勢將顛覆整個行業,並在未來十年重新定義業務,即使數字創新已成為各種規模企業的常規行為。」德勤管理諮詢新興技術研究總監兼政府及公共服務首席技術官 Scott Buchholz 在一份報告中如是說。
近日,《德勤 2020 技術趨勢報告》(中文版)正式發佈(以下簡稱《報告》),報告指出了五個可能在短期內引發顛覆性變革的關鍵新興趨勢:「數字孿生:連結現實與數字世界」;「架構覺醒」;「技術道德與信任」;「人感體驗平台」;「財務與 IT 的未來」。
值得注意的是,這是德勤第十一年發佈技術趨勢年度報告。今年的技術趨勢報告繼續在開篇回顧了 11 年來的技術趨勢發展,展示了技術趨勢隨時間推移的演進全過程以及最新宏觀科技力量作為業務轉型基礎帶來的共生效益和不久的未來的新興科技力量。與此同時,《報告》還指出,未來三大顛覆性技術(即環境體驗、指數智能和量子技術)正蓄勢待發,我們將在本世紀20年代末開始感受到它們的影響。
一、九大宏觀科技力量
隨著以技術為驅動的創新的空前擴張,一場高風險的「打地鼠」的競爭遊戲由此展開,企業利用技術保持先進的能力將決定其生死存亡。
過去十年內,數字化體驗、分析技術和雲技術為各項技術賦能,展現了他們自身的價值,已然成為眾多企業有效地推進戰略和新商業模式的核心基礎。接下來十年中,數字現實、認知技術和區塊鏈將成為企業變革的顛覆性驅動力。它們的應用範圍將越來越廣,各行各業的案例成倍增加。技術業務、 風險和核心系統現代化是驅動企業變革和創新的基礎技術,它們需要保持穩定、強勁、可持續發展。
基於此框架下討論新興技術,可以簡化技術進步對企業所造成的顛覆性影響。同時,圍繞九大宏觀科技力量衍生更多細分領域和更加細化的技術創新點和趨勢點。
十年前我們首次探索數字化體驗、分析技術和雲技術之時,只能看到其中的可能性,並不能確切地估測 它們的影響。現如今,這些技術已經為大家所熟知,並在對業務、運營模式和市場造成了顛覆性影響之 后,發展勢頭依舊迅猛。
(1)數字化體驗
數字化體驗依然是企業變革的重要驅動因素。實際上,在德勤 2018 年全球 CIO 調查報告 中,64% 的參與者表示接下來的三年裡,數字化技術將對他們的業務造成影響。在去年的超越營銷:體驗重塑中,我們已經審視了這一趨勢,企業正逐漸摒棄傳統意義上以獲客為核心的營銷模式,轉而致力於創造更多以人為本的互動——包括與其員工和商業夥伴的互動。
(2)分析技術
分析技術包括能夠提供深刻洞察的基本技術和工具。數據管理、數據治理以及數據運營體系這些重要因素不僅僅是人工智慧項目的核心基礎。同時,鑒於企業內對數據儲存、數據隱私和數據使用的嚴格要求,這些重要因素也是必須面對和考慮的重大策略點。
60%的首席信息官(CIO)表示,在未來的三年內, 數據和分析技術將對他們業務帶來影響。但這個問題正變得更具挑戰性。「靜止的數據」 和「使用的數據」這兩個久經考驗的概念被「動態數據」所連接,藉助工具和平台動態數據進而支持數據流、數據攝取、數據分類、儲存和訪問。值得欣喜的是,雲技術、核心系統重塑、認知技術和其它技術正在為異常複雜的挑戰帶來全新的解決方案。
(3)雲技術
雲技術已經全面深入企業。90% 的企業在使用基於雲技術的服務,並且這一比例有增無減。實際上,就信息技術領域的投資預算來看,接下來三年內對雲技術的投資會翻倍。正如我們 2017 年所預計的那樣,雲技術已經不僅僅只是作為基礎應用,它帶來了 「一切即服務」 的藍海,使任何 IT 能力都可以變成基於雲的服務供企業使用。在眾多企業當中,少數超大規模企業主宰了公有雲和雲技術服務市場,在雲技術的賦能下,為其它宏觀力量的進一步創新提供基礎和平台,例如分析技術、雲技術、區塊鏈、數字現實,以及未來的量子技術。
雲技術還驅動我們思考並重塑一些陳舊的企業管理和業務職能。
當今的顛覆性驅動力(即數字現實、認知技術和區塊鏈)都是由體驗、分析技術和雲技術發展而來。未 來十年,這些新的趨勢雖然不再新鮮,但它們將和過往的重大趨勢一樣,在人們持續深刻的理解和應用 中,推動重要的變革。
(4)數字現實
數字現實技術,包括 AR/VR 、混合現實、語音交互、語音識別、普適計算、360°全方位攝像和沉浸式技術等,幫助用戶突破鍵盤和屏幕的禁錮,與用戶感知無縫銜接,用戶可更加自然地參與互動。數字現實的目的是打破傳統的空間界限,讓人與底層技術進行自然、本能、甚至下意識的互動。
(5)認知技術
機器學習、神經網路、機器人流程自動化、機器人程序、自然語言處理、以及更廣泛的人工智慧領域等認知技術可能推動所有產業變革。這些技術將人機互動個性化、場景化,通過 定製化語言或圖像信息,驅動業務流程,實現無人值守。
企業對認知技術的需求大幅增長一一互聯網數據中心(IDC)預測 2022 年 企業此項支出將達 776 億美元,與此同時,信任和技術道德問題也迫在眉睫。
(6)區塊鏈
德勤 2019 年全球區塊鏈調查報告中,超過半數的參與者表示區塊鏈技術至關重要,較前一 年增長了 10% 。83% 的人能夠明確構思區塊鏈技術的實際應用,較前一年增長了 9% 。調查結果顯示,2019 年,企業已經不再討論「區塊鏈是否可行?」,轉而關注「我們該如何利用區塊鏈?」
金融服務和金融科技公司持續領航區塊鏈技術的發展,但其它領域也開始推行區塊鏈技術, 尤其是政府、生命科學與醫療健康、科技、媒體、通訊等領域。
再提技術業務、風險和核心系統重塑似乎有些枯燥無味,但不可否認,它們是業務的核心所在。企業在這些已經發展很成熟的領域,依然繼續進行著可觀的投資。綜合來看,正是因為它們不僅為數字化轉型、創新與增長提供了可靠的、可規模化的基礎,也是在分析技術、認知技術、區塊鏈等顛覆性技術成功投資的必要條件。
(7) 技術業務
隨著技術應用與業務戰略的融合,技術業務也在不斷發展。隨著企業更多地通過重塑 IT 來實現運營效率提升和與業務部門合作者一起進行價值創造,很多 IT 團隊通過實施促進跨業務協作的開發體系(如敏捷和 DevOps ),逐漸將傳統的項目制交付調整為產品化運營。
強大的技術功能讓企業更敏捷地響應技術驅動的市場和業務的變化。一隻強大的數字化技術運營團隊能夠幫助企業迅速回應技術對市場的影響以及相關業務挑戰。
(8)風險
在以創新為驅動力的時代,企業面臨的風險遠遠超越了傳統的網路風險、監管風險、運營風險及財務威。2019 年的 CEO 和風險管理調查報告指出,企業最大的風險廣泛涉及新顛覆性技術、創新、生態系統合作夥伴、企業品牌及名譽、文化等。對此,很多公司清楚地意識到他們還未對此類風險做好準備,或沒有想法在管理此類風險方面進行投資。
除合規和安全的必要要求,企業還面臨新興技術對產品、服務和商業目標的潛在影響,這些使得企業正在把更為廣泛的信任作為企業戰略。
(9)核心系統現代化
核心系統現代化體現了數字化轉型、用戶期望及數據密集型演算法給核心系統的前台、中台和後台帶來的持續性壓力。無論是在財務數字化、實時供應鏈,還是在客戶關係管理系統,核心系統都承載了關鍵業務流程。
在如今這個即時、持續和定製交互的時代,企業需要降低整體的技術負債。實現核心系統 現代化的成熟舉措,比如重塑現有的遺留系統,更新 ERP 系統及重寫其他系統,這些目前來講尤為重要。
二、未來三大顛覆性技術
隨著三大顛覆性技術(即數字現實、認知技術和區塊鏈)崛起,並準備在未來十年為業務做出重大貢獻 的同時,未來三大技術發展和創新的新星(環境體驗、指數型智能和量子技術)正蓄勢待發。我們將在 本世紀 20 年代末開始感受到它們的影響。
a:環境體驗
環境體驗展望了這樣一個構想:在未來,技術只是環境的一部分。計算設備的功率不斷增加,體積不斷縮小。這些越來越小的設備將我們的輸入從非自然的(指向、點擊和滑動) 演變為自然的(說話、手勢和思考),它們與我們的交互從被動的(回答問題)變成主動的(提出意料之外的建議)。
隨著設備變得無縫和無處不在,它們和我們越來越密不可分。想像未來的世界,一些微小的,已連接的,內容感知的設備被嵌入辦公室、家中或者其他地方,成為背景活動的一部分。例如,你如果在腦海中想「我要在一個小時之內出發去機場」,就能觸發一系列背景活動,包括安排航班值機,準備可供生物特徵識別的虛擬登機牌,將無人駕駛汽車目的地設置為正確的航站樓,將家中的智能系統狀態調為「離開」,以及暫停出差期間的快遞服務等等。
b:指數智能
指數智能建立在當今認知技術能力上。如今,機器智能能夠發現數據中蘊藏的規律,但是無法判斷這些規律是否有內在的意義。同時,它目前還缺乏識別和響應人類互動和情感的細微差別的能力。而且,機器智能的認知能力還非常有限,比如機器能夠打敗國際象棋大師,卻不能理解房間發生了火災需要逃跑。
未來有無限可能。隨著對語義和符號識別的理解,機器逐漸能從假想的相關中梳理出真實的因果關係。藉助來自人感訥驗平台的技術組合,我們的虛擬助手將越來越能夠識別並適應我們的情緒。隨著研究人員開發出更廣義的智能,指數智能將超越統計和計算的層面。我們敢說,最終,這將導致更有能力的人工智慧誕生。
c:量子技術
量子技術利用亞原子微粒的反直覺特性處理信息,進行新型計算,實現「不可非法侵入式」 交流,技術微型化等等。量子計算中,這些量子比特(或量子位)的特殊屬性有可能發生 指數型變化。通過操縱單個粒子,量子計算機將能夠解決某些高度複雜的問題,這些問題 對於目前的超級計算機來說,太大,太雜亂,包括從數據科學到材料科學。
隨著研究者們不斷突破技術限制,量子計算機將逐漸取代傳統的計算機。數據科學家將能 夠處理前所未有宏大的數據量,並從中獲取相關性信息。材料科學家利用量子比特模擬原 子,這是無法在傳統計算機上實現的。同時,在通訊、物流、安全、密碼學、能量等不同領域,我們都能預見無限可能。
為了幫助大家更好的理解各類前沿技術動態,基於宏觀科技力量及其可被預期的時間範圍,報告歸納整理了一張完整的統一化視圖。
三、五大關鍵新興趨勢
一)技術道德與信任
技術變革常態化的同時,贏得全方位的信任變得更具挑戰——但也充滿機遇。
隨著數字技術的出現,企業要用戶以新的更深層次的方式信任他們,過去是獲取用戶個人信息,現在則是通過數字痕迹追蹤用戶的線上行為。同時,技術引起的問題也經常成為新聞頭條,例如安全漏洞、不當或非法監視、個人信息濫用、虛假信息傳播、演算法歧視、缺乏透明度等等。這些事件導致利益相關方之間不信任(包括客戶、僱員、合作 夥伴、投資者和管理者),嚴重損害企業聲譽。的確,消費者對商家的信任正在逐漸下降,人們對公共機構的態度也越來越謹慎,員工則要求企業明確闡述其核心價值觀。
德勤 2020 年全球市場趨勢報告中提到,當今時代,品牌信任對企業來講尤為重要,關係到企業的方方面面。無論是客戶、監管機構,還是媒體,都期望品牌商在其開展業務的各個領域都是開放、誠信和始終如一,從產品生產、促銷活動、到員工文化和合作夥伴關係維護等。
被技術顛覆的企業,它的每一個方面都意味著可以贏得或失去任何一個客戶、員工、合作夥伴、投資者和/或監管機構信任的機會。如果領導者能夠充分貫徹企業價值觀和技術道德觀,努力履行「做好事」的承諾,企業就能夠與利益相關者建立長期牢固的信任關係。在這種情況下,信任就變成了一個全方位的 承諾,並且確保信任是企業的技術,流程,人員都在共同努力維護的基礎。
技術道德這一術語指的是不局限於或側重於任何 一項技術的綜合價值觀,這個價值觀是指導企業對技術使用的整體方法及通過部署這些技術驅動業務戰略和運營企業應考慮主動評估如何以符合公司宗旨和核心價值觀的方式使用技術。
在數字時代,信任是個複雜的議題,企業面臨著無數的生存威脅。雖然顛覆性技術通常會給企業帶來指數型增長,但僅憑技術卻無法建立長期信任。因此,領先企業們正在通過全方位的維持利益相關者所期望的高度信任。領先企業們正在嘗 試通過各種方式,來維持利益相關者所期望的高度信任。
人工智慧、機器學習、區塊鏈、數字現實和其它 新興技術正以前所未有的速度和深度融入我們的 曰常生活。企業該如何通過客戶、合作夥伴和員工使用這些技術來構建信任呢?
解讀企業價值觀。
如今,技術根植於業務,機器學習也驅動著業務決策和行為,因此,必須先了解企業的技術解決方案,才能進一步解讀和評價企業價值觀。數字化系統可以被設計用來減少偏差,讓企業能夠遵循自己的原則運 營。
保障措施可以防止用戶以不健康或不負責任的方式使用技術,從而幫助提高利益相關者的利益。例如,一家公司對可能成癮的遊戲強制限定遊戲時間和遊戲花費一個內容提供商提醒用戶關注信息來源的準確性;雲計算提供商在 戶超出其預算之前自動發出警報。
建立強大的數據基礎。
如果不能系統性地、統一地追蹤數據內容及來源,並確定可訪問數據的人員,就沒有辦法營造良好的信任環境。強大的數據基礎讓利益相關者擁有共同的願景, 為數據負責,採用安全的技術手段實現有效的數據管理。管理者需要讓利益相關者了解他們提供的數據將如何運用,此外,除非為了法律或監管的目的,在利益相關者要求時須刪除相關數據。
強化防護措施。
德勤 2019 年未來網路調查報告顯示,管理者為網路問題花費的時間越來越多,網路防禦體系意味著您要 保護您的客戶、員工和商業合作夥伴,讓他們遠離與他們——或者說你們——的價值觀不同的群體。從最開始就需要建立並實施網路安全風險策略略,並將其貫穿於商業運營和政策制定的全過程,這絕不僅僅是信息技術部門的問題。企業領導者應當與信息技術部門一起制定全面的數字安全風險策略,考慮安全、隱私、 誠信和保密等各方面,增強利益相關者的信任,提高企業競爭力和優勢。因此,需要評估企業的風險容忍度,明確弱點所在,並判斷企業最具價值的數據和系統,制定風險緩解策略和恢復計劃。
二)財務與 IT 的未來
IT 和財務領導者共同努力為創新融資尋找靈活的途徑。
德勤的研究發現,56% 的首席信息官(CIO)期望應用 Agile, DevOps 或類似的靈活 IT 交付模式,來提高 IT 的響應能力並激發更廣泛的創新的雄心。
但目前有些難以克服的障礙阻礙這些努力:資金的來源和分配。IT 的運營和開發流程正變得越來越靈活,更加側重產品,而財務部門仍舊按照過去數十年的方式來制定預算、融資和財報。結果顯而易見:IT 需求與財務流程之間的矛盾。若這個問題得不到解決,那麼它可能會破壞首席信息官(CIO)的創新計劃,乃至整個企業的戰略目標。
IT 對資金的需求與財務的漫長流程之間的矛盾並非形成於一夜之間。而是在過去十年中曰漸累積。雲技術和平台技術一步步地顛覆了傳統運營模式,迫使財務部門不得不重新評估財務管理方法。
《報告》指出這種變革體現在三方面:
從資本支出轉向運營支出
從在現場轉型到基於雲的系統,涉及大量的支出從資本支出轉移到運營支出。事實上,團隊一直都有一些資本支出和運營支出。新的準則是「誰開發誰管理」。從會計的角度而言,短期運營支出增長會影響季度財報。
衡量難以捉摸的投資回報率。
技術創新舉措通常是難以達到內部收益率預期的嘗試,可能產生正回報也可能不會。在財務及短期收益上, 創新投資通常不具備傳統 IT 項目的信心水平, 因此這類投資往往也很難通過標準管理流程獲得有力支持。在某些情況下,這會導致財務部門難以建立精確的流程,來跟蹤長期投資回報率。例如,對於無限期重複使用的平台這類的固定預算投資,跟蹤其投資回報率更是難上加難。
計算交付價值。
根據德勤《 2018 年全球首席信息官(CIO)調查報 告》,65% 的受訪者表示他們在評估 IT 投資時, 通常採用具體案例具體分析的方法,而不是遵循常規財報流程。顯然,在評估 IT 帶來的價值這件事上,首席信息官 (CIO )與首席財務官 (CFO)不在同一立場。
作為財務與未來的T趨勢的一部分,我們預計有更多首席信息官(CIO)、首席財務官(CFO)以及他們各自的團隊,將會積極探索解決這些及其他在融資、會計與財報上所面臨的挑戰的方法。
三)數字孿生技術
利用下一代數字攣生技術助力企業設計、優化和轉型。
當下,企業正以多種方式使用數字彎生技術。在汽車和飛機製造領域,數字彎生技術逐漸成為優化整個製造價值鏈和創新產品的重要工具;在能源領域,油田服務運營商通過獲取和分析大量井內數據,建立數字模型,實時指導鑽井作業在醫療保健領域,心血管研究人員正在為臨床診斷、教育、培訓,創造高模擬的人類心臟的數字彎生體;作為智慧城市管理的典型案例, 新加坡使用詳細的虛擬城市模型,用於城市規劃、維護和災害預警項目。
數字彎生可以模擬物理對象或流程的各個方面。它們可以展現新 產品的工程圖和尺寸,也可以展現從設計到消費者整個供應鏈中 所有子部件和相應環節——即」已建成「數字彎生,也可採用 「即維護」模式——生產車間設備的實物展現。模擬模型可以捕獲 設備如何操作,工程師如何維護,甚至該設備生產的產品如何與客戶關聯。數字彎生可以有多種形式,但它們無一例外都在捕獲和利用現實世界的數據。
數字孿生髮展勢頭迅猛,得益於快速發展的模擬和建模能力、更好的互操作性和物聯網感測器, 以及更多可用的工具和計算的基礎架構等。因此, 各領域內的大小型企業都可以更多地接觸到數字孿生技術。IDC 預測,到 2022 年,40% 的物聯網平台供應商將集成模擬平台、系統和功能來創建數字孿生,70% 的製造商將使用該技術進行流程模擬和場景評估。
與此同時,通過訪問大量數據,使得創建比以往更為詳細、更為動態化的模擬成為可能。對於數字孿生的長期用戶而言,這就好比從模糊的黑白快照過渡到彩色高清數碼照片一樣,從數字源中獲取的信息越多,最後呈現的照片就越生動逼真。
長期來看,若想要實現數字孿生技術的全部潛力, 可能需要集成整個生態圈內的系統和數據。創建 一個完整的客戶生命周期或供應鏈(囊括了一線供應商和其自身的供應商)的數字化模擬,可以提供富有洞察力的宏觀運營觀點,但仍然需要將外部實體整合到內部數字化生態系統內。直至今曰,大多數企業仍對點對點連接之外的外部集成感到不滿意。克服這種猶豫可能是一個長期挑戰, 但最終,所有的付出都將是值得的。未來,期望企業會利用區塊鏈打破信息孤島,繼而驗證信息並將其輸入數字孿生體中。這可以釋放先前無法訪問的大量數據,從而使模擬更加細節化、動態化、更具潛在價值。
四)人感體驗平台
通過Al、神經科學、人本設計重塑人機聯接。
人感體驗平台趨勢顛覆了傳統的設計方法,它首先確定我們想要實現的人性化和情感體驗,而後決定使用何種情感和 AI 技術組合能夠達成這一效果。企業將面臨的一大挑戰是,如何針對不同的客戶群體、員工群體和其它利益相關者,確定能引起他們共鳴和引發他們情緒的具體響應或行為,並進一步開發情感技術,使其能夠識別和複製某一段體驗中的特質。
在不久的未來,我們將會看到人們對人性化的技術需求曰益增長。在數字化革命進程中,我們目前進入到一個階段,就是每個人之間未必有 接,但每個人一定都與技術有聯結。我們正在消除流程和交互,直接與機器互動。因此,我們渴望我們正在迅速失去的東西:有意義的聯結。為此,我們期望技術能夠用更 加人性化,更人道化的方式跟我們互動。設計能夠滿足這一期望的技術需要對人的行為有更深刻的洞察,並不斷創新,以提高我們預測和響應人們需求的能力。不久的將來,人感體驗很有可能會帶來長久的、可持續的競爭優勢。
五)架構覺醒
演進架構師角色,從而轉變系統架構並支持業務 發展的速度。
越來越多的技術領導層和高管們逐漸意識到,如今,技術架構領域的科學在戰略上比以往任何時候都更加重要。事實上,為了在技術創新顛覆的市場中保持競爭力,已成立的企業需要不斷演 他們的架構一一這一過程可以從改變技術架構師在企業內扮演的角色開始。
這種轉變的目的非常明確:把經驗最豐富的架構師安排到最需要他們的地方——即加入到設計複雜技術的軟體開發團隊中。一旦這些架構師被重新部署和賦能,他們便可幫助簡化技術棧, 提升技術敏捷性,從而為新興企業獲得市場優勢。另外,他們還可以直接負責實現業務成果,解決架構難題。
此外,擁抱架構覺醒這一趨勢的企業將開始重新定義架構師角色,使其更具協作性、創新性,並能對利益相關者的需求做出回應。具有全局觀的架構師可能會發現,自己正在多部 門混合的項目團隊中,與專注於應用程序的架構師 以及來自 1T 和業務部門的同事共同作戰。未來,他們的使命將不僅是利用傳統的架構組件,還要利用顛覆性力量(如區塊鏈、AI、及機器學習)大胆創新。
資料來源:https://m.news.sina.com.tw/article/20201026/36690918.html