【數感生活——成長率、幾何平均數,偶爾還有算術平均數】
最近成長率又成為熱門的時事議題。某位教授先用相加的算術平均數,得出台灣4年來的成長率為2.44%。被抨擊「怎麼可以用算術平均數來算成長率,成長率是類似複利的概念,要用相乘再開根號的幾何平均數才對」
之後,該教授又貼了一則文章,解釋算術平均數跟幾何平均數在這個情況下是很接近的,所以方便起見他用算術平均數,並附上了數據與程式碼。
當然程式驗證是沒問題的,不過比起程式,數學上的驗證同樣重要且有趣。許多網友已經指出,若是要講究嚴謹,使用「泰勒展開式」會是一個不錯的工具,來證明在面對成長率這種議題時,當成長率不大,算術平均數的確是幾何平均數的近似值。
在這邊,我們提供一個更簡單的,必然曾經出現在各位國高中黑板上的算式來解釋。
首先,
(1+a)(1+b)=1+(a+b)+ab
當a、b都很小,以台灣成長率來說最高不超過0.03。你可以想像ab的值最大也只有0.0009,小到可以忽略了。所以我們可以得到
(1+a)(1+b)≈1+(a+b)
同樣的道理,推展到4個年度的成長率相乘(是不是覺得數學能夠推展的特性真是很棒很好用呢?),成長率分別是a、b、c、d,可以得到
(1+a)(1+b)(1+c)(1+d)≈1+(a+b+c+d)
假設這四年的(幾何)平均成長率是g,同樣可以寫出
(1+g)(1+g)(1+g)(1+g)≈1+(g+g+g+g)=1+4g
整理後就能得到
g≈(a+b+c+d)/4
的結果,近似符號右邊是算術平均數,左邊的g則是幾何平均數。
以上,就是為什麼算術平均數跟幾何平均數在這個狀況下,答案會差不多的原因。不過我們要強調,兩者的根本意義完全不同,不能只因為「在某些狀況」答案很接近,就覺得選哪個都無所謂,不明究裡的方便主義會出問題的。舉個反差很大的例子,倘若某年成長100%,隔年衰退50%。
則算術平均數是(100-50)/2=25,平均成長25%。可真正的成長狀況是2x0.5=1,根本沒有成長,幾何平均數是0%。
這時候就差很多了。數據可以有不同的解讀,但回到數學本身,正確答案只有一個。
PS: 感謝 張宏彬 (Hung-Bin Chang)博士協助勘誤XD 也歡迎網友熱心補充泰勒展開式版的說明 ( Sean Huang博士不來一下嗎) ~
PS2: 我們沒有要幫該教授辯護的意思,基本上我認為在沒有解釋清楚的前提下就使用算術平均數去近似,是有失嚴謹的,儘管事後他有補充說明。撰寫這篇文章的本意只是試圖用數學的角度,讓大家理解為什麼,以及在什麼情況下,算術平均數與幾何平均數得到的結果近似。
同時也有1部Youtube影片,追蹤數超過1萬的網紅CMmath,也在其Youtube影片中提到,重點: 算術平均 中位數 眾數 幾何平均 平均成長率 . 影片免費看 實體講義,請到「微補習商店」購買: https://cmmath.com/product/108newb2ch3/ (還可以加入FB學習社團,獲得更多模考題...等學習資源唷!!) . 好書推薦 [圓圓的三角函數]: ht...
幾何平均成長率 在 CMmath Youtube 的最讚貼文
重點: 算術平均 中位數 眾數 幾何平均 平均成長率
.
影片免費看
實體講義,請到「微補習商店」購買:
https://cmmath.com/product/108newb2ch3/
(還可以加入FB學習社團,獲得更多模考題...等學習資源唷!!)
.
好書推薦
[圓圓的三角函數]: https://lihi1.com/LXkrp
[學好高中數學必看]:https://lihi1.com/YqKVs
.
更多資訊請追蹤陳名老師 IG: cmmath
#108最新課綱 #微補習 #高一 #集中趨勢統計量