好書推薦《#人慈》部落格文末抽書兩本
想像一下,如果有兩個星球,你認為自己住在哪一個?星球A:飛機墜機後,生存者禮讓最需要救援的人。星球B:事故發生後,生存者爭先恐後地往出口擠,不惜將他人踩在腳下。這個問題被用來問過許多學生,幾乎所有人都選了星球B。但事實是,我們住在星球A。這個世界真正面臨的威脅在於我們對人性太過悲觀。
部落格文章 https://readingoutpost.com/humankind/
Podcast 用聽的 https://readingoutpost.soci.vip/
.
#這本書在說什麼?
.
《人慈》這本書的作者是歐洲最著名的年輕思想家之一羅格.布雷格曼(Rutger Bregman),他是同時也是一位歷史學家、作家、記者。有鑑於報章媒體、政治宣傳、普羅大眾對於「人性」的偏誤解讀,他想透過這本書傳達一個核心訊息:「大部分的人在內心深處,其實是相當正派的」。
作者在書中旁徵博引,以詳盡的事實和深入的查證,說明了人類無論是出於天性、身為孩童時、在無人島上、當戰爭爆發、當危機來襲,對於自己「好」的一面,有著強烈偏好。如果你至今仍然認為,人類就是天生自私、貪得無厭、陰險狡詐,那麼這本書絕對會讓你大為改觀。
這本書讓我感到大為驚喜的,是作者既大膽、又謹慎的考證態度,他勇於對歷史上知名的眾多案例(例如《蒼蠅王》、《史丹佛監獄實驗》、《米倫格爾電擊器實驗》)提出反面看法,而且其證據令人信服。在媒體慣用人性「惡」的一面吸引眼球的世界裡,這是一本思想激進的書,只不過是偏向人性「善」的那面光譜。這種書很罕見,卻彌足珍貴。
.
#人性本惡?三個精彩翻案
.
人類有考據的數萬年歷史以來,充滿了大大小小的衝突和鬥爭,我們也從故事裡看到領導人無論為了私利、國家的經濟、民族的情節而發動戰爭。難道,人類不就是天性好鬥嗎?只要有誘因存在,人們就會甘願殺得你死我活嗎?從歷史的考據裡面,我們會發現人性跟我們想得很不一樣:絕大部分的人不願意傷害另一個人。讓我們先從書中三個精彩的翻案來找到線索。
.
1.#蒼蠅王小說的翻案
.
《蒼蠅王》是一本膾炙人口的小說,在我國中的時候,老師也放過翻拍的影片當作社會科學的教材。內容大意是在說,因為飛機墜機,六個英國男孩漂流到一座無人島上,在沒有大人的情況得自立求生。過程發生了許多權力爭執、失去理智、弱肉強食的情節,最後只剩下兩個孩童倖存的故事。這個虛構故事在感嘆「人心的黑暗」,也被列為標準的社會教材讀物。
作者把持著一個懷疑的態度,他深入瞭解了虛構的《蒼蠅王》小說作者威廉.高汀(William Golding)的生平。作者發現高汀是一名有憂鬱傾向的酗酒者,他還會打小孩,他也曾說過:「我瞭解納粹,因為本質上來說我也是那一類」,這才讓作者明白,原來寫出《蒼蠅王》的作家是一個多麼不快樂的人。
因此,作者根據事實為主,追尋了一條實際發生過的類似案例,六名少年在太平洋落難,漂流到阿塔島(`Ata)的真實故事。這則故事跟小說大相逕庭,六名少年在荒島上發揮團結的本領,協調出遇到衝突的處理方式,還彼此在受傷時互相照顧。受困15個月後,六人獲救時仍氣色飽滿,而且士氣高漲地不可置信。真實版的《蒼蠅王》,其實是一個友情和忠誠的故事。
發現阿塔島生存的船長彼得.華納(Peter Warner):「人生教了我許多事,其中包括了一個經驗,就是你永遠要尋找人的善良光明面。」
.
2.#史丹佛監獄實驗的翻案
.
我讀過許多談到心理學的書籍,都喜歡引用一個知名的案例,那就是《史丹佛監獄實驗》。實驗主持人飛利浦.金巴多(Philip Zimbardo)教授把24名參加的學生隨機分成兩組,12人當囚犯,12人當獄卒,觀察人類當囚犯的反應,以及擔任獄卒的人施加權力的表現。整個實驗因為囚犯精神狀態快速崩潰、獄卒施加的處罰越來越過火,結果實驗到第六天就被迫中止。
這個實驗的結論彷彿要告訴我們:「當你給予人們權力,他們就會開始為惡,發展出一些不人道的規則」。作者深入考察之後發現,這簡直是一場天大的騙局。實驗並不是任憑12名獄卒自己決定如何處以,而是金巴多本人直接給獄卒灌輸思想:「你們要創造一種挫折感,製造恐懼,要剝奪他們的個體性…」,最後獄卒定的17條規則裡,有11條根本是實驗團隊給予的意見。這簡直是引導式的邪惡。
你或許也會好奇,那如果是實驗團隊「完全不介入」的狀況會怎樣?兩個英國心理學家2002年在電視節目上複製了一次同樣的實驗,但這次沒有告訴獄卒該怎麼管理、該怎麼懲罰。結果呢?節目無聊到不行。第二天,獄卒把食物分給囚犯。第五天,一名囚犯提議設立民主制度。第六天,獄卒跟囚犯一起抽菸。最後一集,大部分人一起坐在沙發上消磨時間。這麼無聊的故事,難怪我們都沒聽過。
.
3.#電擊器實驗的翻案
.
還有一個更出名的《米倫格爾電擊器實驗》,目的是為了測試受測者,在面對權威者下達違背良心的命令時,人性所能發揮的拒絕力量到底有多少。受測者身為「老師」,當隔壁房間的「學生」答錯題目時,就要按下電擊器,懲罰坐在電椅上面的學生。「學生」是由實驗人員假冒的,受電擊所發出的哭喊也是演出來的,但受測的「老師」並不知道,他們會「以為」這些電擊都是真的。
每一次學生答錯,懲罰的電壓伏特數就要提高,實驗主持人史丹利.米倫格爾(Stanley Milgram)教授會要求老師繼續施罰。120伏特時學生會開始喊痛,150伏特時尖叫並喊著退出實驗,200伏特時大叫大叫血管裡的血都凍住了!超過320伏特時開始撞牆並失去聲音。結果,有65%的受測者一路聽從指揮,開到了450伏特,幾乎是把學生電死的程度。實驗的結論幾乎告訴我們,只要有權威要求,連普通人都願意電死一個路人甲?
作者考核過後的翻案顯示了另一種事實。幾乎所有受測者都曾抗命,想要停手,但實驗方會加強壓力逼迫就範,從錄音檔聽起來更像是霸凌和脅迫。事後調查,只有一半的受測者認為隔壁的學生是真的在受苦,其他人覺得只是實驗效果。許多受試者也表示,因為他們真心「信任」米倫格爾教授的實驗對人類一定有幫助,所以即使當下不忍心,也願意咬著牙繼續做下去。
綜合以上三個翻案結果,大部分的人在內心深處,其實是相當正派的,但引用作者所說的:「如果你催促地夠用力,給予足夠刺激、又拐又騙,許多人確實是有能力做惡。但是邪惡通常不是在表面之下,它是需要費盡功夫才能扯出來的。」邪惡得要披上善良的外衣才行。
.
#人怎麼會互相傷害?
.
所以,人真的是天性好鬥、殺得你死我活的物種嗎?綜觀歷史大小戰爭,這個說法似乎成立,但是當我們把尺度放到人與人面對面的相處,就是另一種樣貌。舉戰爭為例,兩軍人馬大動干戈的時候,所有人一定都是拔刀互砍、舉槍互射吧?在那種生死存亡的關頭,不是敵死,就是我亡了,不是嗎?
真實的戰爭傷亡統計很有意思,例如二戰英國陣亡的軍人死因中,10%是子彈和反坦克地雷;15%是詭雷、爆破和其他;75%是手榴彈、迫擊砲和空投炸彈。大部分的士兵都是隔個一定「距離」被殲滅的。真正喊著敵人是「害蟲」,一旦碰面就格殺毋論的,通常是離戰場最「遙遠」的政客和領導人。
根據研究,二戰的生存老兵超過一半從未殺過人,只有20%的軍人曾經擊發過武器。美國南北戰爭最激烈的蓋茨堡戰役中,回收的27,000把火槍,還裝有彈藥的比例達到90%。12,000把裝有兩顆彈藥,其中6000把超過三顆。但火槍設計成那樣,就是一次只能射出一顆子彈,那幹嘛裝那麼多顆子彈?因為大部分的士兵都『沒有』在試圖殺敵。人,打從心底不喜歡傷害另一個人。
.
#如何改善?三種範例
.
在這本書的下半部,作者有一則引述徹底震撼了我的思想。這句引言來自英國哲學家暨諾貝爾文學獎得主伯蘭特.羅素(Bertrand Russell),他給未來世代這個建議:「當你學習任何東西或者思考任何哲學問題時,只該問自己事實有哪些,那些事實證明什麼是真實。永遠別被自己希望相信的事、或者自以為如果別人信了就對社會有益的事所分心,只要專心一意去看事實是什麼。」
這個非常理性的觀念,一開始相當很吸引我,但作者及時把我拉了回來。他提到除了探究事實之外,你本身「相信」什麼,才是以改善世界的動力來源。
第一種相信的力量,叫做「畢馬龍效應」。科學家做過一種實驗,把兩群同樣普通的老鼠,分別標示聰明和愚笨。請不知情的學生照顧老鼠,然後進行迷宮遊戲,看哪一組比較快逃出迷宮。結果聰明的那組獲勝,事後發現學生「相信」這些老鼠比較聰明,給予比較好也溫柔的待遇。同樣的實驗在一群小學生上進行,不知情的老師對聰明組的學生更關注、更鼓勵,事後結算成績,聰明組的孩子其智力表現提高了最多。
第二種相信的力量,叫做「魔像效應」。曾經有科學家在美國做過一個不道德的實驗,他把二十個孤兒分成兩組,跟其中一組說他們是善於表達的人,跟另外一組說他們注定要變成口吃者。這個實驗結果害得許多口吃組的受測孩童,一輩子患有語言障礙。這種效應常導致貧窮學生更加落後、無家可歸者失去希望、已經被孤立的青年人更加極端。
一如正面的期待能夠引發好的結果,負面的期待也能夠讓惡夢成真。接下來介紹書中三個真實世界的例子,來看看如何運用「相信」的力量,來改善我們的工作、教育和民主運作。
.
1.#論工作的內在動機
.
研究發現,外在誘因例如紅利會減低員工的內在動機和道德標準。給予外在誘因會獲得相等的回報:按照工時給付,就會增加更多的工時(無論是否裝忙)。按照發表數目給予稿費,就會得到更多的發表文章(無論品質優劣)。按照手術量來給付,手術就會更多(無論是否必要)。
荷蘭的最大的鄰里照護平台「博祖克」(Buurtzorg)採取逆向而行的策略,這個組織沒有業績目標或分紅,沒有管理階層,沒有客服中心。運作的自主權下放給每一個十二人的團隊,團隊自己定行程表,自行雇用同事。省去的營運費用和會議時間都回歸到團隊本身。
執行長喬斯.德.柏洛克(Jos de Blok)是從最基層出身的人,他相信員工內心會選擇做「正確」的事。他說傳統的管理階層「喜歡憑空想像一些計畫給那群工蜂做」,還說「拿掉管理階層,工作還是照常進行」,他認為讓團隊自我導向、動手執行腦中想法,是最實際的做法。博祖克沒有人資部,被評為最佳雇主;沒有行銷部,卻獲得最佳行銷獎。
(延伸資源:在台灣有「台灣居護」引進了這套照護模式)
.
2.#論教育的玩耍本質
.
自古以來,愈是聰明的動物愈會玩耍,玩耍更深植於人類天性當中。創造力和學習力來自於自由地玩耍,孩子會自然地渴望探索這個世界。當社會工業化之後,學校的體制越來越制式化,學生的課表被排滿,家長連下課的時間也不放過。最近針對十個國家的民調顯示,監獄囚犯待在戶外的時間比孩子還要多。研究也發現一個趨勢,孩子愈來愈覺得「自己的生命被他人所決定」。這是一個快要忘記怎麼「玩耍」的世代。
荷蘭的「阿哥拉」(Agora,希臘語「市集」的意思)是一個沒有年級、班級、教室的學校,也沒有功課和成績,一組學生團隊就只有配一位「輔導員」,但自主權在學生身上,他們自己決定要學什麼。整個學校就像一個主題樂園,學生透過玩耍和探索,找到自己當下有興趣的題目攻讀,學校提供對應的資源給他們學習。相較於傳統教育把孩童當植物灌溉,這所學校將孩童當「人」看待。
在這裡,與眾不同是常態,一千個學生就有一千種學習路徑。這裡幾乎找不到霸凌的蹤影,因為不以年齡和能力區隔孩童,沒有誰的進度會落後,沒有誰的表現太過突出,每個人都在綻放當下最好的自己。作者引述道:「玩耍的相反不是工作,玩耍的相反是抑鬱。」問題不是孩子能不能掌控自由,而是大人有沒有勇氣給他們自由?我們是否問過自己,教育的意義究竟是什麼?
(延伸閱讀:Agora: Meet the school with no classes, no classrooms and no curriculum,英文文章)
.
3.#論民主政體的模樣
.
作者提到,世界上愈來愈多的民主政體正遭受七種瘟疫侵襲:政黨持續腐化、公民不再信任彼此、少數人遭排除、選民失去興趣、貪贓枉法的政客、有錢人逃稅、人們發現當代民主充滿貧富不均(怎麼跟我住的地方這麼像!?)。但世界上有地方嘗試了解法,簡單到令人難以置信,卻很少上新聞(你應該猜得到為什麼)。
委內瑞拉的托雷斯市(Torres)的民選首長胡立歐.查維茲(Julio Chávez)選擇一種嶄新的信念,他相信:「每個人心中都有一位積極認真的公民」。他的競選政見只有一個,下放權力給所有托雷斯市民,而且他遵守了承諾。所有的政府集會邀請全體居民參加,不只是討論,還要決議城市所有預算的使用。
結果人們空前踴躍參與政治,在最需要的地方蓋起了住宅和學校,有效地鋪整馬路清掃街區。因為預算透明,大幅削減了貪污和權威的弊病。市民們還一起要求提高稅收,並且說道:「過去我們不瞭解市政稅要用來支付那麼多東西。」這個被稱為「參與式民主」的方式,深受民眾喜愛,卻鮮少在新聞上被提及。
(在台灣我還沒聽過類似的試營運模式,有人聽過嗎?)
.
後記:#相信善的一面
.
《人慈》是我今年讀過最意猶未盡的一本書,作者的大膽思想,配上嚴謹的查證,讓人讀來格外痛快。從這本書中,我也慢慢體認到,問題不是二元化的「人性本惡或本善」選擇題。反而,透過這些精采的正反論述,猶如偵探小說抽絲剝繭般的分析,我理解到的是人性真正的「複雜」。
如同現在人工智慧和大數據這麼發達,如果只讓電腦演算法來判決,那麼歷久不衰的《蒼蠅王》人心黑暗論肯定佔據上風;《史丹佛監獄實驗》和《米倫格爾電擊器實驗》無以計數的論文和書籍引用,肯定讓演算法覺得這才是人性的真理。無數對人性帶有扭曲和偏誤的描寫佔據了媒體的版面。然而,事實呢?
這本書中段的畢馬龍和魔像效應教我們的就是,人們「相信」的事情往往會發展成「事實」,更是一個令人驚醒的提點。無論是書中獄卒和囚犯的故事、老師和學生的故事、老闆和員工的故事、父母和子女的故事,一再說明了:「當你把一個人當人看,他就會表現得像一個人。」反之。讀完這本書後,你可以踏實地選擇自己相信的那一面。
瞭解事實,讓我們得以明辨是非。擁有信念,才能以行動改變世界。原來,關於人性,我讀過的許多論點幾乎都是錯的。永遠別被自己希望相信的事所分心。只管去看,事實是什麼。然後在事實背後,找出值得相信的事情,讓它成為新的事實。這絕對是一本必讀之書。
.
Kobo電子書7折代碼:WAKIKIND
Kobo 購書連結:https://bit.ly/3z7sRHr
使用期限:9/12~9/18
.
感謝 時報出版|商業人文線 提供抽獎贈書
「排程演算法範例」的推薦目錄:
- 關於排程演算法範例 在 Facebook 的精選貼文
- 關於排程演算法範例 在 Facebook 的最佳貼文
- 關於排程演算法範例 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於排程演算法範例 在 [教學影片] 基因演算法在工廠生產排程的實作 - YouTube 的評價
- 關於排程演算法範例 在 分享排程力Schedule Z:演算法介紹|VIG_VNS for TSPTW 的評價
- 關於排程演算法範例 在 《排程演算法開發工程師》 一、工作內容: 1. 開發平行機台 的評價
- 關於排程演算法範例 在 2023 Facebook封面尺寸全攻略!社群圖片這樣調整就對了 的評價
- 關於排程演算法範例 在 [OS] CPU 排程方法 的評價
排程演算法範例 在 Facebook 的最佳貼文
【疫情期間的電商社群人員】
疫情期間的電商社群人員如果遇到 work from home,要怎麼規劃自己的社群內容?可以怎麼操作 Instagram?
首先,持續不斷的更新內容是目前最好的經營方式,很多人待在家裡難免會影響工作進度,提早做準備與加強排程能力就變得更重要。
現在幾乎大部分的商業帳號、粉專都可以使用「商務套件電腦版」的功能,裡面不僅可以直接同時操作臉書和 IG,更可以利用它排程貼文和限時動態。
✦ 如何排程限時動態:連結放留言。
- - -
先題外話一個,目前臉書的流量紅利很低,然後疫情期間多數電商會投入更多預算在廣告投放,所以:
❶ 雖然一天發多篇貼文觸及率不高,但仍可以在貼文中安排各種不同關鍵字讓有需要的消費者透過搜尋找到內容,例:防疫組合、口罩抗痘⋯等。
❷ 廣告費會變貴真的很正常,首先可能要重新檢視自己的廣告素材,如果沒辦法在云云貼文中脫穎而出或是更吸睛,一定要嘗試 AB 素材測試再抉擇投放。
- - -
再來就是要讓自己的每一個動作都有意義,不管是貼文、發限時動態、發優惠訊息、互動內容等等⋯都要知道每一個環節的作用。這裏也舉一個例子,很多品牌覺得找 KOL 業配,就能同時達到轉換、曝光、導流、導購等各種目的,這個是不對的。
每一個動作都要有安排它的意義,今天發這篇貼文最重要的目的是什麼?儘量把每一動都賦予它最主要的一個目的,比如今天發一則貼文做新品曝光,那麼增加一則限時動態做互動、再來增加一擊說服力加強的消費者體驗心得做導購、 KOL 合作建立可信度⋯等(範例操作不是一定,請依自己品牌所需分配)。
不管是在臉書還是 IG 都要各有目標,不同版位也要妥善安排,而不是以賭博的心態想說今天發一則貼文看看好了會怎麼樣,這樣不確定性太高。
- - -
另外,沒有要打廣告的意思,只是想要補充解答很多人的疑問,我的書《社群圈粉思維》是給初心者一個全方位的社群經營認知,讓品牌經營初期可以有完整操作面的認識;而線上課程《 IG 增粉攻略》則是比較屬於進階版的模型、健檢和實作方法,所以有些老手覺得看書太簡單、新手覺得線上課程太困難,都可以參考說明頁面選購自己所需。
書:入門
線上課:中階
- - -
好話說回 WFH 期間的操作,這陣子不少民生品牌銷售量大漲,為了能在疫情期間提供消費者所需,以下幾點必知:
❶ 物流狀況
❷ 需求提供
從各地疫情變嚴重之後陸陸續續都收到合作的物流傳來通知,超商多間門市閉店、大宗貨運有一些狀況⋯等,雖然這樣的情形基本上品牌內部都知道,但我發現部分消費者仍然不曉得這個情形,協助並告知物流的狀況是電商社群人員的第一步。
在目前的環境之下滿足需求提供是增加品牌好感度的機會,照料民生問題也要關注消費者情緒,尤其是部分品牌受眾是父母的話,用字用語都應注意安排處理。
✦ 這個期間大家會搜尋什麼關鍵字?這些關鍵字和你的品牌有沒有關係?你的貼文內容如何運用這些關鍵字?
- - -
最後是 Instagram 社群內容規劃,會建議大家做一個類似樹狀圖的安排列表,如:
臉書發文*2
↓
IG 發文*1
↓
限時動態(產品內容)*2
限時動態(生活內容)*1
↓
安排每日互動內容(投票貼紙、問與答⋯)
↓
做圖、小短片
↓
聯繫網紅合作⋯
把每天的動作安排下來,而不是每天發文都是投機的形式(蠻多人這樣的)有系統有效率安排自己的內容,也更能知道哪裡出了問題。
再來目前 Instagram 內容若提及疫情相關資訊,都會被官方加註相關疫情資訊的提醒語,如果內容不想讓粉絲看起來覺得有點嚇到,用語就要稍微避免相關疫情用詞。
在 WFH 的期間更應該要花一點心思嘗試不同的素材表現,很多人覺得把圖片做美就沒事了,殊不知這是基本到消費者根本不在乎的事情,不管是短片也好、逐格影片或是動畫也好,大家待在家時間多了自然有空可以選擇自己要看的東西,那你的內容會是大家想看的嗎?
現在的 Instagram hashtags 流量和曝光表現已經不如以往,所以不要再看我兩年前提出的金字塔模型了(我也講過很多次甚至文章內就已經說過時,還是很多人在執行),流量曝光的各種方法一直都會變來變去的,有時候是演算法的變化有時候是觀眾的口味變了,不管哪一種都很快,不要再迷信了。
疫情期間最忌諱什麼事情都跟你沒關係的樣子,也有不少品牌因此引發大小公關危機,在規劃內容之前更應該注意用字遣詞到底合不合乎目前局勢現況。
Stay safe.
排程演算法範例 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
佈署 IoT Edge 和霧運算技術以開發智慧建築服務
2021年2月19日 星期五
《3S MARKET》這篇報導把物聯網的架構與實作,描寫的非常詳細,雖然在建築的細節上描述不多,但報導中也提及這是個實際驗證,可適用在很多的場域。不知道,有多少人真正看得懂?當然,連這篇都看不懂的人,就別說他真正了解物聯網、Edge 與 Cloud。
事實上這篇報導的描述不難了解,真正物聯網與邊緣運算的挑戰,是在實作。實作真正面臨的,是這些數據處理、融合、分析上的完整度,還有 —— 找到實作的場景!
摘要
基於 SoC 架構的嵌入式系統的進步,使許多商業設備的開發變得足夠強大,足以運行操作系統和複雜的算法。這些設備整合了一組具有連通性、運算能力和成本降低的不同感測器。在這種情況下,物聯網(IoT)的潛力不斷增加,並帶來了其他發展可能性:「事物」現在可以增加數據源附近的運算量;因此,可以在本地系統上,佈署不同的物聯網服務。
這種範例稱為「邊緣運算」,它整合了物聯網技術和雲端運算系統。邊緣運算可以減少感測器與中央數據中心之間,所需的通信頻寬。此方法需要管理感測器、執行器、嵌入式設備,和可能不連續連接到網路的其他資源(例如智慧手機)。這種趨勢對於智慧建築設計非常有吸引力,在智慧建築設計中,必須整合不同的子系統(能源、氣候控制、安全性、舒適性、使用者服務、維護和營運成本)以開發智慧設施。在這項工作中,分析和提出了一種基於邊緣運算範例的智慧服務設計方法。
這種新穎的方法,克服了現有設計中與服務的互操作性,和可伸縮性有關的一些缺點。描述了基於嵌入式設備的實驗架構。能源管理、安全系統、氣候控制和資訊服務,是實施新智慧設施的子系統。
1. 簡介
建築自動化系統使用開放式通信標準和介面,可以整合多種不同的建築控制規則,例如供暖、通風、空調、照明和百葉窗、安全功能和設備。但是,現有建築物通常不具有這些系統。
通常,每種安裝類型都提供特定的服務:供暖通風和空調(HVAC)控制氣候服務,攝影機和感測器提供安全服務等。僅當設計能源管理系統時,不同的子系統相關,但僅透過以下方式,連接建築物的能源管理系統。能源管理服務,集中在專用軟體中。
對於使用者和維護技術人員來說,提供不同服務的不同製造商,發現很難整合新的服務和功能。自動化建築將用於控制和數據採集的軟體,與工業協議和介面整合在一起。此外,將新服務整合到這種解決方案中並不容易,這取決於已安裝軟體的開發。
這些工業發展還為能源管理,提供了雲端連接解決方案和智慧服務。這些服務,也在集中式電腦系統中開發。數據被傳輸到這些系統或雲端進行分析。本文提出使用佈署在物聯網(IoT)技術中的邊緣和霧運算範例,主要有兩個目的:
A. 在自動化和非自動化建築物中,促進新的智慧和可互操作服務的整合(整合)。
B. 允許在建築物的所有子系統之間,分配智慧服務(互操作性)。
透過該建議,可以促進建築物子系統之間的關係。它還促進創建新的智慧服務(例如,新的分佈式智慧控制算法;使用電源管理捕獲的數據,來檢測人類活動;捕獲設備連接的模式辨識,運算可再生電力預測,在安全服務中使用電力數據等)。在這項工作中,我們設計了一個中間軟體的體系結構,該體系結構具有兩個主要層,這些層基於嵌入式設備、IoT 通信協議和硬體支援,來開發人工智慧算法(圖1)。
為了實現這一目標,我們在建築物的設施中添加了兩個概念等級:邊緣節點和霧節點。每個等級都有不同種類的設備和功能。我們佈署並實現了基於層的中間軟體的體系結構,以對模式進行實驗。
本文的組織結構如下:第 2 節回顧了智慧建築技術,建築物中的 IoT 佈署以及邊緣運算範例。第 3 節提出了一種在建築物(自動與否)中佈署邊緣和霧運算範例的方法。第 4 節介紹了進行的實驗。最後,第 5 節介紹了結論和未來的工作。
2. 相關工作
本節介紹與這項工作相關的主要研究領域。首先,我們在分析雲端運算層之後,回顧了基於邊緣運算範例的資源和服務供應。最後,我們研究了實現智慧建築的技術,並在最後的小節中,總結了先前研究的貢獻。
2.1. 邊緣運算資源和服務供應
最近,網路在兩端被標記為「邊緣」和「核心」,以查明處理發生的位置。邊緣端靠近數據源和使用者,核心端由雲端伺服器組成。透過這種方式,邊緣運算範例將運算推送到 IoT 網路的邊緣,以減少數據處理延遲,和發送到雲端的數據數量。基於雲端的後端,可以處理對時間不太敏感,或源設備本身不需要結果的處理請求(例如,物聯網網路狀態下的大數據分析)。
在邊緣運算資源供應方面,正在進行的 Horizon 2020 RECAP 項目,提出了一種整合的雲端 - 邊緣 - 霧端架構,目的在解決應用放置、基礎架構管理和容量供應。雲端/邊緣基礎架構監控功能豐富了應用,基礎架構和工作負載模型,這些模型又被回饋到優化系統中,該系統可以協調應用並持續配置基礎架構。
徐等人進行的研究。 提出了一種用於邊緣運算的實用感知資源分配方法,稱為 Zenith。借助 Zenith,服務提供商可以與邊緣基礎設施提供商,建立資源共享合同,從而允許延遲感知資源調配算法,以滿足其延遲需求的方式,來調度邊緣任務。
邊緣節點資源管理(簡稱 ENORM),是管理邊緣/霧節點資源的框架,可透過監控應用需求,來自動擴展邊緣節點。可以透過靜態優先等級分配,來確定特定應用的優先等級。供應和自動縮放機制,是基於線性搜索的相對簡單的實現。
當源本身是可行動的時,邊緣雲範例也是可行的。 Chen 等人研究了行動設備向邊緣節點(特別是在無線電接入網路邊緣)的智慧運算分流。在這項工作中,作者提供了任務卸載算法,將分佈式運算卸載決策表述,為多使用者運算卸載功能。在同一項工作中,Wang 等人研究了聯合協調卸載任務,到多個邊緣節點的問題,並提出在邊緣等級引入及准入控制,以及兩階段調度方法,與傳統的最近邊緣選擇方法相比,改進了卸載性能。
2.2. 雲端運算服務配置
就社會和行業採用資訊技術而言,雲端運算範例是最具創新性的策略之一。提供的優勢提高了效率,並降低了成本,同時提供了可透過 Internet,普遍存取訪問的按需 IT 資源和服務。
當前,雲端運算服務種類繁多,甚至如何提供,這是一個受到廣泛研究的主題,正在提出許多的方案。甚至有評論總結了雲端運算範例的相關研究。
本小節介紹了有關以下問題的先前工作,這些問題與本手稿的主題有關:(i)安全性; (ii)服務品質(QoS); (iii)提供邊緣服務。
(i)安全是雲端運算中一個具有挑戰性的問題。雲端服務位於應用環境之外,並且超出了防火牆的保護範圍,因此,需要附加的安全層。另外,邊緣和霧運算應用的行動性和異構性,使得難以定義單個過程。因此,需要一種分佈式安全策略。
此外,必須有一個標準化的環境,才能正確解決此問題,並指定霧運算和邊緣設備,如何相互協作。網路邊緣上的多個霧節點之間的敏感數據通信,需要資源受限的事物的輕量級解決方案。另一個與安全性相關的問題是數據位置。在雲端中運行數據分析是很常見的。因此,關於數據安全或隱私的公有雲與私有雲的爭論就出現了。
(ii)分配給雲端應用的資源,通常是根據合同規定的服務水準協議(SLA)所設置的。但是,實際上,由於偶爾執行大量事務,而導致分配的基礎結構飽和,可能會出現瓶頸。為了解決此問題,可以在資源可用時,動態擴展雲端基礎架構。當前,最具創新性的趨勢,目的在建構自動 SLA 合同合規系統。在 Faniyi 和 Bahsoon,以及 Singh 和 Chana 進行的研究中,可以找到與品質服務管理相關建議的詳盡綜述。考慮到這一點,提出了幾種策略來預測,應用的資源需求和 QoS 的要求。最近的工作試圖將安全性和 QoS 問題結合起來,以提供全面的性能指標。
(iii)最後,濫用雲端服務,是該領域的另一個問題。物聯網環境是霧和邊緣設備不斷加入或離開,動態的執行前後關聯。因此必須在網路邊緣提供彈性的服務。為此,在網路的可用設備之間,共享應用工作負載,可以為高階運算應用提供靈活性。提出了可靠的服務供應方法,來為系統提供更高的彈性,並提供靈活和優化的雲端服務。
在本主題中,將雲端框架和中間軟體技術,設置為與雲端層,以及具有不同介面操作系統,和體系結構的設備之間,進行通信的平台。
2.3. 物聯網在建築服務工程中
物聯網開發為在建築物上,開發數位服務提供了新資源。建築物中常見的物聯網應用,包括節能的過程環節、維護改進、雜務自動化和增強安全性。由於全球變暖,建築物的節能是一個重要的課題。
物聯網技術引入智慧建築,不僅可以減少本地溫室氣體排放,還可以將減少溫室效應擴大到更大的領域。目前,物聯網還被用於建築領域,以協助設施管理。物聯網使營運系統能夠提供更準確和更有用的資訊,從而改善營運,並為房客租戶提供最佳體驗。有基於物聯網的建議,這些建議顯示建築系統,如何與雲端進行通信,並分析所獲取的數據,以開發新的業務見解,從而能夠推動真正的增值和更高的績效。
實驗研究顯示,物聯網平台不僅可以改善,工業能源管理系統中實體的互連性,而且可以降低工業設施的能源成本。 FacilitiesNet 表示,建築物聯網(BIoT)正在推動我們獲取資訊,彼此互動和做出決策的方式發生重大轉變。BIoT 不僅與連接性或設備數量有關,而且還與交付實際和相關結果有關。當前,有很多基於物聯網的智慧家庭應用的例子。
然而,智慧設備或「物」,僅僅是連接到網路的設備或嵌入式系統。增值來自設計協調系統,和提供智慧服務,以提供實際收益的能力。這些特徵基本上,取決於對不同類型連接事物的異質性,及其互操作性的管理,並取決於數據處理提供的情報潛力。
Tolga 和 Esra 進行的研究得出的結論是,就智慧家庭系統中的軟體和硬體而言,物聯網技術尚未變得穩定。原因之一,有可能是物聯網技術仍處於發展階段。McEIhannon 所撰寫有關物聯網應用的邊緣雲和邊緣運算的未來,其評論得出了類似的結論。這篇評論提到概念和發展,目前還處於早期階段,從學術和行業的角度來看,許多挑戰都需要解決。
物聯網帶來了新的機會,但許多企業仍在尋求了解和分析,其將如何影響,並與現有的 IT 結構和管理策略整合。為此,必須創建專門的使用模式和技術,來彌合這一差距。
2.4. 發現
以下結論闡明了這項研究建議的新穎之處:
雲端運算作為「實用」的一般概念,非常適合智慧家庭應用的常規需求。但是,在某些情況下,將所有運算都移到雲端中,是不切實際的。
邊緣計算作為一種計算範例而出現,可以在物聯網設備生成的數據附近執行計算。這種範例可能有助於滿足最新應用的安全性和 QoS 的要求。
當前,控制子系統的高級建築設施,通常使用 Internet、IoT 協議和 Web 服務。專有系統是使用標準的 Internet 通信協議設計的,用於管制和監控。先前的工作顯示,基於無線感測器網路、Web 介面和工業控制模式,用於氣候控制、電源管理或安全性的控制系統,使用不同的監視和控制技術。監控應用分析,得自監控和數據採集系統中的這些子系統。對於不同的子系統,有不同的解決方案。考慮到上述情況,本工作中提出的模式,引入了以下新穎元素:
A. 介紹了一種分層架構(整合了邊緣和霧端等級),以及提供子系統之間互操作性,以及在建築物控制中開發智慧服務的方法,該方法使用了邊緣和霧端範例,這些範例將 IoT 協議整合在一起,並在本地 Intranet 中操作 AI 技術,讓雲端服務的通信層,完善了該層的架構。
B. 介紹了一種基於使用者為中心的方法,用於在互操作性需求下設計、驗證和改進新服務。
C. 該提案允許使用可以在已建的建築物中,實施的非專有硬體和軟體系統。
3. 計算模式設計
建築物中的設施子系統分為有照明、氣候、能源、安全、警報、電梯等。在自動化建築中,這些子系統由專門的控制技術控制和監控。在非自動化建築物中,不存在這些服務,並且子系統透過電子和電氣方式進行控制。在這兩種情況下,所有子系統都為建築營運,提供必要的服務。
從邏輯上講,每個子系統都在其場景中起作用,並且不能與其他子系統互操作。嵌入式電子控制器和連接的不同感測器,可以使每個子系統自動化。這些服務都是基於直接反應性控制規則。除了嵌入式控制系統和感測器之外,通信技術(基於 Internet 協議)和新的行動設備還為開發管制、監控和數據訪問服務,提供了新的可能性。
在智慧型動設備上開發,並連接到 Web 伺服器的人機介面和專用應用,是近年來已實現的服務的範例。每個子系統中的專家(氣候、安全性、電源等),都具有可以轉換為專家規則的知識。這些規則被轉換為用於管理、維護、控制、優化和其他活動的控制算法。這些規則是可以,在可程式設備上編程和實現的。但是,它們是靜態的,不會在出現新情況時發生變化,並且不能互操作,也無法適應每個安裝的特性。
例如,氣候或安全專家決定,如何使用標準啟動條件,來配置每個子系統。每個控制規則僅在一個子系統(此範例中為氣候或安全性)中工作,因此,這些子系統之間沒有互操作性。考慮到這種情況,提出的模式有助於並允許,基於不同子系統的互操作性,來整合新的數位服務,並將人工智慧(AI)技術的新服務,引入當前設施。
例如,諸如電梯控制的設施,可以用於安全服務或建築能源管理服務。氣候控制設施,可以與安全子系統整合在一起。整合到模式中的天氣預報軟體系統,可以由能源管理服務,或建築物空調服務使用。
目的是讓每個子系統中的專家,參與設計整合服務,並將所有子系統轉換為可互操作的系統。該模式會開發自動規則,並允許在考慮安裝行為本身的情況下進行決策。該模式基於一個過程,該過程包括四個開發階段(圖2)和分為不同級別的硬體 - 軟體體系結構(圖3)。該體系結構的主要等級,是邊緣等級和霧等級。這兩個層次介紹了在建築物中,應用物聯網技術的新穎性。下面介紹了模式的各個階段(分析、設計、實施和啟動)。
.分析:在此階段確定了不同的專家使用者(氣候、安全、電力、水、能源、管理人員,以及資訊和通信技術(ICT)技術人員)。諮詢專家使用者,以指定需要控制的主要過程。資訊通信技術專家作為整合環節,參與了這一過程。第一種方法產生了設計控制規則,和潛在服務所需的事物(對象)。在此階段,使用以使用者為中心的方法,並捕獲子系統的需求。
.設計:我們提出了一個三層架構(邊緣、霧端和雲端),如圖 3 所示。
.實施和數據分析:在此階段中已安裝和整合了子系統。服務基於每個子系統中的規則,分析事物(對象)生成的數據,以設計基於機器學習的服務。
.啟動:最初,在每個子系統的監督下制訂專家規則。然後,使用回饋過程安裝規則。最後,透過人工智慧技術,可以推斷出自動的和經過調整的規則。
3.1. 分析與設計
專家使用者對此過程,進行不同的審查。以使用者為中心的技術,用於設計整合流程。目的是獲得所需的所有事物(對象),它們之間的關係,以及潛在的服務。一旦指定了事物(對象)和服務,就必須關聯通信協議和控制技術。選擇了物聯網協議和嵌入式控制器;提出了人機介面;指定了邊緣層和霧層及其功能;分析專家規則和智慧服務。最後,提出了維護和操作方法。所有這些任務在專家技術人員,和資訊技術專家之間共享。
結果是事物的定義,它們之間的關係,以及與邊緣和霧層的交互作用。該過程中代表了建築物的所有子系統,數據感測器、執行器、控制器、規則和過程經過設計,可以整合所有子系統。數據集、對象和設備,由物聯網概念表示。事物由具有狀態和配置數據的實體,和前後關聯組成。事物數據位於霧和邊緣節點中,儲存的不同配置中的關聯性。
事物以數據向量表示:[ID、類型、節點、前後關聯情境]。
– ID是辨識碼。
– 類型可以是感測器、執行器、變量、過程、設備、介面、數據儲存,或可以在 IoT 生態系統中寫入、處理、通信、儲存或讀取數據的任何對象。
– 節點指定建築物子系統、功能描述、層類型(邊緣、霧端、通信或雲端)、IoT 協議和時程存取訪問。
– 前後關聯表示在 IoT 生態系統中,用於發布或讀取數據的時間、日期、位置,與其他事物的關係、狀態和訪問頻率。
表 1 是由事物([ID、類型、節點])。所有事物都可以訪問配置文件(CF),以了解如何使用可用數據,以及如何使用適當的訪問權限配置新數據。前後關聯數據位於內建記憶體,或是靜態儲存。使用定義的事物,設計不同的控制規則。這些控制規則是分佈在連接到網路的不同嵌入式系統中,控制過程的一部分。事物表示佈署在安裝的不同子系統中,所有的可用資源。在此等級上,設計師對所有事物進行分析、指定和關聯。基本控制算法是使用此資訊實現的。配置關聯性允許層和設備之間,所有事物的互操作性。
在此階段的另一級設計,必須提出物聯網管理中,使用的節點要求和規範。設計的流程和服務,將在邊緣或模糊節點中實施。必須指定每個節點,以確定其內部功能、通信及其服務。在獲取數據的地方,開發了智慧和處理能力。邊緣和霧層的節點,位於數據感測器、執行器和控制器附近。本文提出的方法,使用具有兩個功能的兩層(邊緣和霧端)。每一層都可以佈署互連節點的網路,以促進互操作性。
邊緣和霧層的功能是:
邊緣層功能:在連接感測器/執行器的嵌入式設備上,開發的控制軟體。某些 AI 算法可以安裝在邊緣節點上。中央處理器(CPU)和計算資源有限。安裝了通信介面,以允許在本地網路中進行整合。
霧層功能:局域網級別的通信、AI 範例、儲存、配置關聯性和監控活動。霧節點透過處理、通信和儲存,來處理 IoT 的Gateway、伺服器設備,或其他設備中的數據。在此等級實施本地、全球的整合服務。利用這些節點的硬體、軟體和通信功能,開發了基於機器學習範例的算法。霧層設備還可以在很少單位的設施或服務中,執行邊緣節點功能。
透過這兩個等級,可以優化建築設施,以獲得不同子系統之間的整合和互操作性。
表 1 顯示了每件事與關聯性配置,和節點規範的關係。節點標識其所屬的子系統(控制、能源、氣候等),層(霧端、邊緣、通信和雲端)及其執行的功能。
3.2. 架構設計
在分析和設計階段,獲得對象(事物)及其關係。規範和要求用於實現每個層。實施取決於提供所需功能的設計,和現有技術(硬體、通信和軟體)。在此階段,開發了一種適合現有設施的體系結構。物聯網協議提供互操作性,而 AI 範例則提供了適應性和優化性。邊緣運算節點用於控制設備,霧運算節點安裝在本地網路節點上。這些等級為配置、安裝和運行新流程,提供了強大的資源。
物聯網協議,傳達所有子系統數據。每個子系統由對象/事物(虛擬等級)組成,安裝為可連接的感測器/執行器/控制器設備(硬體等級)。
物聯網通信中,針對建築場景建立的要求是:標準協議、低功耗、易於存取訪問和維護、支援整合新模組,非專有硬體或軟體,以及低成本設備。
MQTT 協議,是目的在用於提供整合和互操作性資源,異構通信場景的主要物聯網協議之一。該協議被提議作為感測器、執行器、控制器、通信設備,和子系統之間的通信範例。
MQTT 協議的一些主要功能,在不同的著作中有所顯示,這使其特別適合於這項研究。他們之中有一些是:
.它是針對資源受限的場景開發的發布 - 訂閱消息協議。
.它具有低頻寬要求。
.這是一個非常節能的協議。
.編程資源非常簡單,使其特別適合於嵌入式設備。
.具有三個 QoS 等級,它提供了可靠和安全的通信。
MQTT 開發了無所不在的網路,該網路支持 n-m 節點通信模式。任何節點都可以查詢其他節點,並對其進行查詢。在這些情況下,任何節點都可以充當基地台的角色,能夠將其資訊傳輸到遠端處理位置。無處不在的感測器網路(USN)中的節點,可以處理本地數據。如果使用 Gateway,則它們具有全局可訪問性;他們可以提供擴展服務。
節點(邊緣或霧),可以具有本地和全局存取訪問權限。這些設施具有不同的可能性和益處。本地數據處理,對於基本過程控制是必需的,而全局處理則可用於模式檢測和資訊生成。從這個意義上講,擬議的平台使用了組合功能:連接到 IoT 雲端服務,本地網路區域上不同的 USN。在這種情況下,運算層(邊緣或模糊等級)將用作控制流程和雲端服務之間的介面。該層可以在與雲端進行通信之前,進行處理數據。
實現邊緣和霧端運算節點需要執行三個操作:
.連接和通信服務:所有設備必須在同一網路中,並且可以互操作。所有感測器和執行器都可用於開發服務。此活動的一個示例,是在 Internet 上遠端讀取建築物的電源參數、環境條件和開放的天氣預報數據。此活動中應實現其他功能,例如連接的安全性、可靠性和互操作性。
.嵌入式設備(邊緣運算層)中的控制算法和數據處理:在此活動中,這些設備中實現的基本控制規則和數據分析服務,可以開發新功能。此階段可以應用於數據過濾、運算氣候數據或分析功耗、直接反應控製,或使用模式辨識技術檢測事件。
.Gateway 節點(霧運算層)上的高階服務:此等級使用和管理 AI 範例,和 IoT 通信協議。霧運算節點對數據執行智慧分析,對其進行儲存,過濾並將其傳遞到不同等級,以糾正較低級別的新控制措施,或者生成雲端中服務感興趣的資訊。此階段的應用示例,包括分析新模式、預測用水量,或功耗、智慧檢測和其他預測服務。
3.3. 測試與回饋
在測試階段使用標準方法,邊緣和霧層提供不同的功能。提出了針對不同子系統的機器學習模式,並且可以將其安裝在邊緣或霧節點上。必須執行以下操作,來測試機器學習應用:
A. 定義和捕獲數據集:必須辨識、捕獲和儲存主要變量。在不同的建築子系統中,過程數據集是由連接到邊緣層的感測器捕獲的數據。使用通信協議監控和儲存數據集。一個案例是電表,該電表在配電盤中連接到嵌入式設備(邊緣節點),該嵌入式設備傳送電力數據,以在霧節點設備中儲存和處理。
B. 訓練數據集和形式辨識模式。先前數據集的一個子集,用於訓練不同的模式。評估針對從未用於訓練的數據測試模式,此過程的結果已由專家使用者驗證。目的是獲得一組代表性的結果,以了解模式在現實世界中的表現。
C. 實際場景中的驗證:必須在邊緣和霧節點上,實施新的服務和控制算法。這些模式具有用於分析數據,實施特定模式,並使用結果開發最佳參數的算法。在此階段,可以修改或進行改善模式。
D. 用統計術語和模式演變,得出測試結果:基於 AI 算法的模式而將產生近似值,而不是精確的結果。分析應用結果以確定置信度,並允許模式演化。該活動支持開發新的 AI 服務,或對已實現的算法進行修改。有監督的自動更改,是維護和改進系統的過程。此階段的過程,包括所有模式層。
建議對使用邊緣和霧,任何的安裝進行這些活動。如前所述,該模式既可以安裝在既有舊的建築物中,也可以安裝在新建築物中。對於新建築設計,基於建議模式的安裝更易於整合。此外,可以提供的服務的潛力,也使其對於既有建築物具有吸引力。
4.在建築子系統中,實施智慧服務
該模式在預先存在的住宅建築物上,進行了測試。設計和實施電源管理、管制和監控服務。物聯網協議(MQTT 和 HTTP)和 ML 範例,用於建議的層體系結構。基於 KNN 的機器學習方法,和樹決策算法用於管理功耗(家用電器),和可再生能源發電(風能和太陽能)。使用房屋中的霧節點,在雲端平台上實現監控和統計數據。該節點連接到控制可再生,和家用電器子系統的不同邊緣節點。
在圖 6 中,邊緣節點,整合在先前安裝的可再生子系統中。透過邊緣層上的這種新設備、電源管理、安全控制和操作流程得以整合,並且可以與其他子系統互操作。可以設計新的智慧服務。邊緣節點將數據傳輸到霧節點 Gateway,該 Gateway 管理功耗和發電,並控製家用電器。該節點中的輸入,是可再生能源發電的數據。輸出控件是 ON-OFF 開關,用於優化發電、安全性和操作。
4.1. 分析與設計
分析了住宅建築,以設計電源管理,安全和控制服務。 在第一種方法中,所需的主要事物(對象),它們之間的關係和不同的服務,如表 2 所示。
4.2. 執行
分析房屋中的建築子系統,以整合這個執行模式層:邊緣控制、霧服務,與雲端的通信和雲端服務。 選擇了本實驗工作中使用的感測器、執行器和控制過程(事物)。 表 3 列出了使用的嵌入式設備。
家庭服務中的控制過程,需要反應時間和互操作性。人機介面、數據存取訪問和分析服務,是本地和雲端運算上的服務。上面提到的兩個需求,都使用不同的協議處理:控制/通信上的 MQTT,和雲端服務上的 HTTP(RESTful API)是用於整合,並使所有子系統互操作的 IoT 協議。在提出的該層模式中,還使用 MQTT 協議、控制、數據處理,以及使用 RESTful 協議,到雲端的數據通信,來開發機器對機器(M2M)應用。
MQTT 使用開放的消息協議,該協議可以將遙測樣式的數據(即在遠端位置收集的測量結果),以消息的形式,從設備和感測器,沿著不可靠或受約束的網路傳輸,到伺服器(BROKER)。消息是簡單、緊湊的二進制數據包,有效載荷(壓縮的標頭,比超連結傳輸協議(HTTP)少得多的詳細資訊),並且非常適合推送簡單的消息傳遞方案,例如溫度更新或移動通知。例如,消息也可以很好地用於,將受約束的或更小的設備,和感測器連接到 Web 服務。
MQTT 通信協議,使所有對象可以互操作。透過此協議實現的發布者和訂閱者模式,可以互連所有設備和事物。該通信層由安裝在霧節點上的代理設備管理。不同的發布者和訂閱者,在不同的節點上實現。安裝了一個 Gateway 設備(霧節點)和兩個嵌入式控制器(邊緣節點),來控製家用電器和電源管理。事物和流程佈署在所有節點上。
邊緣節點控制子系統,霧節點根據決策樹,以及專家定義的規則,實現 AI 範例。霧設備將數據傳輸到雲端平台,以開發儀表板螢幕,來監看子系統的狀態。
可以開發新的雲端平台服務:事件檢測、機器學習處理、統計分析等。專家使用者設計基本的控制算法。在學習和訓練過程之後,將根據專家系統的結果,對這些算法進行調整和修改。在這項工作中,目標是在不損失生產力的情況下優化資源(控制和能源)。在邊緣或霧節點中,執行不同的控製過程;分類過程和決策樹在霧節點中實現。算法以 Python 語言實現。此語言的開源庫用於不同的應用。
4.3. 佈署與測試
對於現有建築物,邊緣節點交錯插入已安裝的控制器、配電板,以及感測器和執行器中。如果在分析階段指定了新的東西(電錶、氣候和控制器),則會安裝一些新的感測器/執行器。這項工作中佈署的邊緣節點具有以下優點:
.請勿干擾先前的安裝操作。
.他們使用新的專家規則和自動規則,引入新控件。
.他們測試和重新配置,在分析、學習和測試驗證中,設計更新的專家規則。
圖 7. 佈署在配電盤中的節點。 使用 IoT 協議通信,在不同節點中開發數據捕獲、控制算法、數據分析、儲存和通信服務
在電力管理過程中,專家使用者根據電力消耗、發電量、消耗負荷曲線、氣候數據和氣候預測數據,對具有選定流程的時間表,進行可程式處理。邊緣節點捕獲數據,並將其發送到霧節點。
霧節點處理室內和室外環境的日記數據,以及天氣狀況。霧節點還可以捕獲其他感測器數據。對房屋中的這些數據消耗和生成方式,進行檢測和分類。消費和發電結果,作為數據添加,以便與儲存的數據一起進行分析。可以使用機器學習方法開發,作為家用電器或人類活動檢測的智慧服務(圖8)。
4.3.1. 機器學習:數據捕獲過程(邊緣節點)和家用電器分類(霧節點)
連接在主配電盤中的電表,用於捕獲數據,並使用標準的 K 近似值,最近鄰(KNN)分類算法,來開發形式辨識模式。 KNN 是機器學習系統中最常見的方法之一。電表捕獲電流;如果連接了新的家用電器,則電流數據會更改。不同的家用電器具有不同的變化等級。
用於辨識家用電器的不同模式的主要變量,是連接時的電流水準差異。數據捕獲過程流程圖(圖9),顯示了在邊緣節點中實現的算法,以捕獲預處理並傳遞電力數據。
在此過程中,監督階段使用訓練數據集。接下來,真實場景中的驗證,將測試分類模式。家用分類設備將用於不同的服務:人類活動的辨識、負載控制、可再生能源管理、空調、安全性等。在訓練階段,已捕獲了不同的家用電器開機,以獲得一組形式。每個家庭都有一個矩心向量,將用於分類過程中的檢測。如上面所示的算法所示,分類器處理將產生連接時的電流數據作為輸入。KNN 分類過程流程圖(圖10)描述了 KNN 方法,它在霧節點中實現。
4.3.2. 可再生電源管理。控制電力自耗的決策樹
每個建築物都有不同的需求曲線,以及在接入電網方面的特定情況。為此,整合和可互操作的設施,可以實施適用於每種情況的不同解決方案,從而提供對太陽風資源的最佳管理,優化電源效率,簡化管理流程,並實現最高的成本節省。當可再生能源超過消耗的能源時,在使用 AC 耦合到電網的設施中,會出現問題。
在實驗工作中,太陽能在一天的中央時段的能量,大於所消耗的能量(圖11)。但是,在分析了消耗曲線之後,可以在這段時間內連接負載,以避免注入電網。可以透過設計一種算法,來滿足這一要求,該算法可以預測,何時發生此事件,以自動連接不同的負載。利用所有感測器和執行器的整合,和互操作通信,已經開發了在不同節點中,所實現的算法(圖12)。
13. 在電源管理子系統上開發的決策樹。 它由專業使用者設計,並整合在邊緣節點上。該決策樹的目的,在優化可再生能源的使用。
4.3.3. 基於 Edge 和 Fog 節點的 Control Home
圖 14 顯示了安裝在住宅房間中的邊緣節點。 該節點可以控制四個設備(設備),並捕獲感測器數據(功耗、發電量、溫度、濕度等)。該設備可以使用 MQTT 協議進行通信。該協議允許設備之間,進行其他類型的通信:智慧手機、新邊緣節點等。圖 7 和圖 14 顯示了可以在其他建築物中,佈署的標準實現。在所有系統中,都有配電板,這些配電盤佈署了霧節點和邊緣節點,如圖所示。
4.3.4. 使用物聯網協議的雲端服務
雲端服務可以監控,透過霧節點或人機介面(HMI)訪問的數據。 IoT 協議(MQTT)從任何已連接 Internet 的設備推送數據。事件檢測、儲存統計分析等其他服務,完善了該資源的功能。提供類似服務的不同平台,顯示了商用物聯網技術的狀態:Amazon IoT、Microsoft Azure、Ubidots 和 Thingspeak,是提供 IoT 平台的公司一些案例。提供了資源以及客戶端,和 IoT 平台之間的應用程式介面(API)通信,以便可以使用它們。
用於設計儀表板監控和管制的 HMI 資源,是這些平台上的主要實用功能之一。霧節點使用雲端 API 傳達數據和資訊,可以實施其他控制服務。在這些雲端平台上,預先建構了用於監控數據的儀表板設計。使用 API 實用功能,霧節點中的過程處理,會將數據發送到每個儀表板。API 文件指定了在設備、IoT 平台和 Mobile-Alerts Cloud 之間,交換數據的結構,以及用於加速項目的代碼案例和形成資料庫。
圖 15 顯示了在 Ubidots 雲平台上,設計的儀表板。Ubidots是本實驗工作中使用的物聯網平台。該模式可以在實現這些協議的層,和平台中使用不同的標準協議。圖 16 顯示了在雲端平台中,IF 變量 THEN 動作的事件配置。大多數物聯網平台,都提供此功能。
5. 結論
為了設計物聯網系統,越來越多地提出邊緣霧模式。但是,每個範例都提供特定應用領域的解決方案。不同子系統之間的整合和互操作性,可以改善這種情況,並提供更好的服務。這項工作的主要目的,是透過提出一種基於邊緣層和霧層,兩層體系結構的運算模式,來解決這個問題。透過這兩層,可以基於使用邊緣或霧節點中,嵌入式的設備捕獲數據所產生的新型有用資訊,來設計和開發新服務。這些節點使用雲端平台和 IoT 協議(例如 MQTT)。
MQTT 是作為不同層(霧 – 邊緣 – 雲)之間提出的通信協議,並進行實驗的。雲端平台用於開發儀表板的面板資訊和 Internet 上的新服務,例如控制、儲存和通信事件。該平台可用於透過 API,交付不同的服務。
該模式可以在現有建築物和新建築物中,開發這些服務。在這種情況下,要求每個子系統中的專家和專業人員,參與新服務的設計。
為了測試該模式的功能,並顯示如何在實際設施中,實現該模式,在住宅中進行了一項實驗性工作。在此霧和邊緣節點前後關聯中,描述了實現的幾個範例。開發了模式辨識和決策樹方法,以展示人工智慧在設計 IoT 解決方案中的潛力。已安裝服務的結果顯示,邊緣和霧節點佈署,產生了預期中整合和互操作性的好處。
提出的工作演示了,如何將邊緣和霧範例,整合到可以增強其優勢的新架構中,從而擴展了應用領域。該體系結構的主要科學貢獻,是整合、技術的互操作性,及其為開發 AI 服務提供的設施的範例。所有這些改進,都在已開發的實驗的不同示例中顯示。具體的優化和改進,將在以後的工作中進行。此外,使用機器學習平台,和 AI 範例的新控制規則,將確保可以創建和改進新的智慧服務。
附圖:圖1.自動建構子系統和資訊技術環境。
圖2.基於使用者為中心關係的模式。
圖3.通信架構。 每個等級都有不同的功能。 提出了兩個通信等級:IoT(使用消息隊列遙測傳輸(MQTT))和 Web(使用代表性狀態傳輸(REST)協議)。這些協議的層,涵蓋了已建立的整合和互操作性要求。
圖4. 在建築物的現有設施上實施的邊緣霧架構示例:邊緣節點是較低的層次,必須與安裝的設備進行新連接。互連所有子系統的霧節點,是透過整合連接到邊緣節點的新設備來實現的。邊緣和霧節點,可以佈署在所有建築物子系統中。
圖5. 住宅建築中的第一個實驗工作。
圖6. 整合在先前安裝的可再生子系統中,邊緣節點的示例。 該節點可以使用新算法控制 ON-OFF 開關,以管理發電過程,以及通信和監控電源數據。
表1.事物示例描述。寫入 ID、類型和節點數據,以配置 XML 文件。配置關聯性儲存在霧節點中。
表 2. 實驗工作中的分析和設計要求。
表 3. 實驗室內使用的嵌入式設備。
圖 7 顯示了分佈在配電板上的節點(邊緣和霧狀)。在此節點中,設計並安裝了功率計、ON-OFF 開關控件和 AI 服務。
圖 8. 佈署的智慧電源功能。在霧節點中實施的分類過程,可用於檢測電連接和人類活動。可以使用 IoT 通信實現其他服務
圖9. 邊緣節點中捕獲,並預處理的用電量數據;MQTT 協議用於通信數據。另外,其他節點可以使用捕獲的數據,來提供其他智慧服務,佈署了整合和互操作性。
圖10. 分類過程。處理捕獲的電數據以檢測家用電器連接。可以使用 IoT 協議整合,來設計其他智慧服務。
圖11. 該圖顯示了實驗工作中的消耗和生產數據。 在自儲存的電力自備設施中,沒有儲存並且沒有注入電網,所產生的能量必須即時使用,並且不得超過所消耗的能量。 能源經理必須預測此事件,並提前連接電荷。
圖 12. 用電自耗設施中的可再生電源管理。
圖 13 是在電源管理子系統中,開發的算法的示例。 可以在邊緣節點上安裝此過程。該節點獲取氣候數據預測,並預測系統是否可以在不儲存的情況下,使用可再生能源。
圖14. 佈署的邊緣節點。該節點可以使用新算法,控制 ON-OFF 開關,並可以在每個房間或建築物中,通信和監控感測器數據。
圖 15. 在雲平台上配置的儀表板。顯示了風力發電數據和預測風力。
圖 16. 在雲端平台上配置事件的儀表板:IF 事件 THEN 動作。 該服務顯示了,如何使用雲端訪問來控制設施。與霧節點的 Internet 通信,可以控制建築物中的不同子系統,並使用電子郵件,SMS 或其他 Internet 服務來通報事件。
資料來源:https://3smarket-info.blogspot.com/2021/02/iot-edge.html?m=1&fbclid=IwAR0uijX5WdNrfzmGjVsakFGaEsWivPgyH1zumxVr7fwvvgqtdFFTI6jJXS8
排程演算法範例 在 分享排程力Schedule Z:演算法介紹|VIG_VNS for TSPTW 的推薦與評價
最近因課程做了一個排程APP小專題,如果你正在發想專題,此文可能對你有幫助,因為這專案有可以改進的部分;如果你是業務、旅行者或出差者, ... ... <看更多>
排程演算法範例 在 《排程演算法開發工程師》 一、工作內容: 1. 開發平行機台 的推薦與評價
2. 熟悉排程理論、作業研究、機器學習或基因演算法等演化式演算法基本觀念與方法應用 3. 熟悉C ... ... <看更多>
排程演算法範例 在 [教學影片] 基因演算法在工廠生產排程的實作 - YouTube 的推薦與評價
講師:李明達老師LEADERG AI ZOO 人工智慧軟體: https://tw.leaderg.com/ai-zoo. ... <看更多>