台灣首位米其林主廚江振誠說:
常有人要我給年輕人建議,其實一句話就能代表take time、take risks、take it seriously,就是「花時間」「敢冒險」和「認真一點、把它當一回事」。
人生以及自身經營就是如此,如果未來可能收益沒有上限,就該參加!
丹尼爾·白努利是一個著名的科學家,高中對他的「白努利定律」肯定很熟習,甚至有些人是又愛又恨,但其實白努利在1738年地著作「風險度量的新理論的討論」寫下了對後世經濟理論著名討論的解決方法。
聖彼得堡悖論
突然有個三百萬對於社會新鮮人以及富翁的效用不一樣
簡單來說,聖彼得堡悖論是說如果你參與一項遊戲,如果這個遊戲在未來的期望受益沒有上限,我們就該參加。
理論原本是利用投擲硬幣來解釋:
「考慮一個遊戲,不斷地擲同一枚硬幣,直到得到正面為止,如果你擲了X次才最終得到正面,你將獲得2X-1元。
遊戲的報名費是100萬元,就我們平常來看,這個遊戲真的賺不了什麼錢,也就不會去參加。
不過,如果我們考慮到這個遊戲的期望收益是無窮大,我們就應該參加。」
這種遊戲的期望值是無窮大,期望值無窮大代表未來可能賺到的錢可能超乎想像,為什麼沒有人參與?
https://www.edh.tw/article/24554
同時也有2部Youtube影片,追蹤數超過8萬的網紅賭Sir【杜氏數學】HermanToMath,也在其Youtube影片中提到,杜氏數學 國際官方網站 http://www.hermantomath.com ---------- Title: 被莊家永遠隱藏的機率原來很易計? ---------- Subtitle: 一張凳、一本簿、一枝筆,便可以簡單運算? ---------- Script: 要知道某投注方法會否為你...
擲硬幣期望值 在 麻的法課 - 邱豑慶醫師 Facebook 的精選貼文
共產黨賣給捷克的武漢肺炎快篩試劑準確率只有20%,賣給西班牙的準確率30%。
我個人建議使用圖二的台灣製快篩試劑,而且相對便宜,一人份只要10元。
#準確率高達50%
#人頭是感染
#十元是沒感染
p.s圖二是兩人份試劑唷。
擲筊太麻煩了,外國人數學不好,
你要他算期望值會逼他死。
用一個硬幣,丟正面反面就好。
Costdown成一元的話,怕老花眼影響判讀,造成偽陰性和偽陽性,影響試劑的準確度。
50元的成本又太高了,#而且可能拿到假的。
擲硬幣期望值 在 JC 財經觀點 Facebook 的最佳貼文
【投資思維】 長期投資的價值❓
雖然我們常在文章中提到投資決策最需要考量的之一是期望值,但是,期望值這個概念到底要怎麼運用?只要期望值是正數,投資就一定可以賺錢嗎?
👉 假設現在有一個賭局-投擲一個公平硬幣。若是投到正面,可以贏得200元,若是投到背面,則會輸100元,你會願意參與這個賭局嗎?
...Continue Reading
擲硬幣期望值 在 賭Sir【杜氏數學】HermanToMath Youtube 的最佳解答
杜氏數學 國際官方網站 http://www.hermantomath.com
----------
Title:
被莊家永遠隱藏的機率原來很易計?
----------
Subtitle:
一張凳、一本簿、一枝筆,便可以簡單運算?
----------
Script:
要知道某投注方法會否為你帶來長期穩定盈利,你要靠EV;而EV的計算,則涉及賠率(Odds)和機率(Probability)。一般賭局,賭率無論是固定,抑或不固定,都必定會顯示(例如球賽主勝、賽馬獨贏、六合彩派彩等);然而,勝負機率卻永遠隱藏。
計算機率可以非常複雜,看過賽馬博彩經典名著《計得精彩》的,相信都會深深感受得到。但計算機率亦可以非常簡單,有些連小學作業都有教。
為什麼又可以簡單?又可以複雜呢?這要由「機率是什麼」說起。
首先,機率就像重量、長度、價錢等,是一個量度值。當你想知道自己的體重,你會站在電子磅;當你想知道自己的身高,你會用尺量度;當你想知過大海船票幾貴,你會查一查價錢;而當你想知道一件事情發生的可能性,你便要計算機率。
那麼,有什麼事你會想知它的可能性呢?擲一粒骰「擲到七點」的可能性,你會想計算嗎?不。因為擲一粒骰「必定」不會擲到七點。那麼,擲骰擲到整數的可能性,你又會想計算嗎?不。因為擲骰「必定」擲出整數。由此可見,當你已經知道問題的答案是鐵定的YES或NO時,你不會問可能性。換言之,當你不肯定某事情是YES還是NO時,你才會想窺探可能性。
最家傳戶曉的例子,非擲毫莫屬:究竟下一回是公定字呢?
雖然機率是數學之中的一個範疇,但機率在語言之中也佔了一席位,縱使未曾學過機率,都會以「五十五十」來描述擲毫的結果,即擲到公和擲到字的機率均是百分之五十(50%)。
對有分數概念的則會以「二份之一」描述之。兩者相通,因為一整份是100%,各分一半自然是各佔50%,亦是兩份之中取一份,二份之一也。
分數概念對機率非常便利,將虛無飄渺的機率圖像化,轉化成「切蛋糕」的情況--由於你深信擲公和字的可能性均等,公和字就像一對雙胞胎,要吃相同份量的蛋糕,身為父母你便得把蛋糕一分為二,一份給公,一份給字,二份之一也。
此平平無奇的「二份之一」概念,更足以延伸至更多情況:
擲一粒骰子,擲得一點的機率是多少?
由於你深信一粒骰子六面的可能性均是相同,它們就像六胞胎平分生日蛋糕,你把蛋糕一分為六,一仔、二仔、三仔、四仔、五仔和六仔各取一份。擲得一點的機率,六份之一是也。
只要看得穿多少胞胎在分蛋糕,便能運算出機率。
雖然擲毫的機率十分顯淺,顯淺得令不少自稱患有「數學恐懼症」的人也會對機率產生興趣,然而,由擲毫和擲骰引起的誤解,同時惹來不少人放棄了機率,甚至徹底訴誅運氣鬼神之說。最常見的誤解是:
「擲公字的機率是二份之一,那麼,要是第一局己擲到了一次公,下一局將必定擲到字嗎?」
當然不是!否則每次擲硬幣不就只會公字公字公字……梅花間竹地出現嗎?這是天方夜譚吧。再者,若「必定」梅花間竹地出現,機率該是100%,這一點也抵觸了「二份之一」的說法。
「既然二份之一的機率,並不代表能夠預測下一局,對賭客來說又有什麼意思?」
答案很簡單,就是用來計算EV,預知定然的長遠結果。
明白了機率的意思和功用之後,接下來正式講解機率的3大運算方法:
1. 窮舉法(Exhaustive Method):一次隨機事件
先前提過,基本的機率運算,是平均分蛋糕的遊戲。由此可見,「有幾胞胎」以及「拿幾件蛋糕」都是舉足輕重的問題。幸好,這種「有幾」的問題,都只是嬰孩學「數手指」(即數數目)可以應付的問題。
由擲公字的例子起步,全部的情況有「公」和「字」,我們就這樣數:
「公……第一個;字……第二個。總共兩個。」
即問題涉及雙胞胎,將蛋糕分成兩份。
如想知擲得「公」的機率,我們又再數過:
「公……第一個。總共一個。」
可見「公」的機率便是「兩份之」中的「一」份,二份之一也。
擲骰子亦同樣,這樣數全部的情況:
「一點……第一個;兩點……第兩個;三點……第三個;四點……第四個;五點……第五個;六點……第六個。總共六個。」
即問題涉及六胞胎,將蛋糕分成六份。
如想知擲得「雙數」(即2、4、6)的機率,我們又再數過:
「兩點……第一個;四點……第二個;六點……第三個。總共三個。」
可見「雙數」的機率便是「六份之」中的「三」份,六份之三也。
兩題的答案,分別是「二份之一」( )和「六份之三」( ),究竟誰大誰小呢?欲比較分數,可以先將它化簡,繼續直接觀察,或者相減或相除。然而,分數的觸覺並非人皆有之,曾有趣聞說超過一半的美國受訪者誤以為「四份之一」比「三份之一」大。由此,我建議採取較「平易近人」的百份率(%),換算方法是--將分子除以分母,再乘以100,便是百份之多少,即多少%了。
機率(%)=分子÷分母×100
以上述的結果為例,先把1除2,再乘以100,得出50,即擲得公的機率為 50%;把3除以6,再乘以100,得出50,即擲得雙數的機率同為50%。平分秋色,「一樣那麼可能」。
由這兩個例子得知:只要能夠準確細數可能發生的情況(我稱之為懂得數手指)便能夠計算基本的機率了。
當然,懂得數手指並不等如一定數得清,當數量太多的時候,例如打麻雀(144隻牌)一起手便食糊(又稱食天糊)的機率,逐個數並非明智之舉。雖然「理論上」只要有一位有無比耐性的人,的確能夠把所有可能性徹底列出,但整個過程也拖太久了吧?
因此,數數目亦應該要有聰明的方法。
2. 列表法(Tabulation):兩次隨機事件
以擲骰子為例,擲一粒骰當然能夠「數手指」,因為只得6面。可是,如果擲兩粒骰呢?總有多少個可能的結果?
「第一粒骰一點、第二粒骰一點……一個;第一粒骰一點、第二粒骰兩點……兩個;第一粒骰一點、第三粒骰三點……三個……」給些少耐性,最終便會得知,總共有36個可能發生的結果。
列出來當然可以,但無可否認實在太煩了,而煩,亦自然代表較易出錯。究竟有沒有什麼方法可以將情況整齊地表達出來呢?
日常生活中,有一種表達方法,很值得參考,就是馬經表達「連贏」賠率的列表法。由於「連贏」是要預測單一賽事的冠軍和亞軍馬匹,因此會是兩個馬匹號碼互相配搭,例如「一號馬匹」搭「六號馬匹」,情形就像2粒骰的點數,「一點」加「六點」。
由「馬經作圖法」可以將擲兩粒骰的情況歸納如下:
每一格分別代表一個情況,例如橙色的格子代表「啡色的骰子五點,綠色的骰子三點」。 由此可見,擲2粒骰總共有36個可能結果。換言之,將蛋糕切成36份。
如問擲得總點數為10的機率,使用「馬經作圖法」答案一目了然:
非常明顯,共有3個格子,是兩骰點數相加為十(分別是(4,6)、(5,5)和(6,4))因此這三十六胞胎,現在有三胞胎說要吃蛋糕了,在「36份之」中吃了「3」份,答案是「36份之3」( )。(試利用公式把它轉成%吧!)
值得留意的是,這招「馬經作圖法」有一個值得每次使用之前都要小心思索的地方:
試想想,現有6張卡,分別畫了骰子的6面,現在你隨機抽取兩張,請問2張卡的點數相加為十的機率是多少?
很多人會照舊作答「36份之3」,原因是問題只是將骰子變成卡片,情況不甚改變,而且,使用「馬經作圖法」會得出了一幅相同的列表:
可惜這是錯的,答案錯,列表也是錯的,錯在算少了一著:擲骰子可以擲到相同數字,例如2粒骰都是一點,但抽卡並不能抽到相同數字呢!卡片只得1張,你怎樣也不能抽到2張都是一點。因此,列表應修正如下:
灰色代表根本不可能發生的情況,即不存在的胞胎。根據這個修正後的列表,蛋糕應平分為30份,而不是36份。符合相加為十的結果,亦不是3個,而是2個,因為根本沒可能抽出2張都是五點的卡片。有見及此,修正後的答案為「30份之2」( )。(試利用公式把它轉成%吧!)
3. 樹狀圖(Tree Diagram):兩次或以上隨機事件
雖然列表可以將可能性整齊地列出來,但列表也有它的局限之處,就是只能解決兩次隨機事件。如有三次或以上隨機事件,則要靠樹狀圖了。
以擲毫為例,如連擲三枚硬幣,擲得至少一次公的話,你便可以獲得8000元,這個遊戲值得花5000元去玩嗎?
首先,你得知道勝出這賭局的機率,即擲三枚硬幣能夠擲得至少一次公的機率。由於這涉及三次隨機事件,因此無法使用列表法,非用樹狀圖不可:
樹狀圖就像旅行路線圖,每一條路都是一個行程,每一個行程就是每一個可能性,不妨逐個寫出來看看:
由圖所示,這年遊戲總共有8個結局,而當中有7個結局能使你獲得8000元獎金,由此使用「分蛋糕」概念,你勝出遊戲的機率是8份之7,換算成百分率,即87.5%。
賠率則這樣計算:以5000元當作1注,如得勝則淨贏3000元,即贏3000÷5000注,又即0.6注。因此,你若參與這個賭局,你的EV = 0.6 × 87.5% - 12.5% = 40%,是一個正數。長賭下去,你將會獲取40%的純利,當然值得參與賭局。
----------
杜氏數學 Herman To Math 考試戰績:
A ── 會考 Math 數學
A ── 會考 Additional Math 附加數學
A ── 高考 Pure Math 純粹數學
A ── 高考 Applied Math 應用數學
5** ── DSE Math 數學
5** ── DSE M1 數學延伸部分(一)
5** ── DSE M2 數學延伸部分(二)
A ── IAL Core Math 1 2
A ── IAL Core Math 3 4
A ── IAL Further Pure Math 1
A ── IAL Mechanics 2
A ── IAL Mechanics 3
A ── IAL Statistics 1
A ── IAL Statistics 2
----------
精選系列節錄:
《賭Sir數學戒賭》糸列
https://www.youtube.com/watch?v=dhL-dRcIN5I&index=1&list=PL_CM4U5au2k1cfK2zSph8XOLqIjOPQmvo
擲硬幣期望值 在 賭Sir【杜氏數學】HermanToMath Youtube 的最讚貼文
杜氏數學 官方網站: http://www.HermanToMath.com
賭Sir 幫你急救 DSE 數學: https://HermanToMath.skx.io
----------
?️賭Sir是杜氏數學Herman To Math的始創人
?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】、【CE Maths+A.Maths】的數學導師
?全港第一最多訂閱粉絲的數學教育YouTuber
?YouTube觀看次數超越700萬、訂閱粉絲超過50000人
?著作:《YouTuber新手到網紅》、《5**數學男人嫁得過》、《碌葛男人嫁得過》、《賭波男人嫁得過》(獲Google嚴選2018年度50大最佳書籍)
----------
賭Sir收集著數派街坊:
❤️YouTuber Go網絡課程 全港最平+獨家 報讀優惠:
?報讀初班 $600 (原價$800):https://www.youtubergo.com/payment/b-hermantomath-0600.html
?報讀初班+中班 $1500 (原價$1800):https://www.youtubergo.com/payment/bm-hermantomath-1500.html
官方網頁:https://www.youtubergo.com/
❤️無限操數王(epractice) 全港最平+獨家 優惠(可同時使用):
?50%OFF 半價優惠碼:MC83-AI93-NFW0-331E
?25%OFF 額外邀請碼:J7N9-RDRP-NFAH-OH13
官方網頁:https://www.dsemth.com/
❤️Tidebit全港最穩妥的比特幣(Bitcoin)交易所:http://bit.ly/2LIWA4J
❤️Uber免費送你$25優惠:https://www.uber.com/invite/2utyzr
----------
杜氏數學 國際官方網站 http://www.hermantomath.com
----------
Title:
賭博無數計?定係唔識計?
----------
Sub-title:
為何賭仔需要運氣,但大莊家永無倒霉?
----------
Script:
有兩種賭客,會否定數學提升賭博利潤的功能:
第一種人,認為賭局隨機,數學無法預測,計數只是計死數,故弄玄虛;
第二種人,甚至進一步認為賭博是邪門偏門,講運氣,超出科學的研究範圍。
有數學家批評這兩種人想法膚淺,缺乏數學觸覺,對於這一點,我並不同意。
樂觀地看:第一種人看得出賭博隨機的性質,第二種人看得出賭博可以受控制的性質,而這兩種性質正是賭博數學入門的基石。所以,當這兩種人有朝一日開竅了,便有能力理解賭博數學,繼而於賭局減少虧損,甚至穩定掏利。他們之所以不相信數學的賺錢功能,只是因為看漏了以下一點而已:
「隨機的遊戲,長期會變成定然的事實。」
舉例說,歐式輪盤有0至36共37個號碼,因此開出0的機率是 ,亦即2.70%。雖然下一局攪出的號碼是隨機,但長期來說,總共會有非常接近、甚至恰好有2.70%的賭局,會開出0這個號碼。
現以Microsoft Excel做一個電腦實驗……
這就是大數法則(Law of Large Number)。
再以擲毫為例,從另一個觀點切入解說:假設你認為手上的一枚硬幣沒有被動手腳。當你不斷隨意擲這枚硬幣時,你發現有超過99%的局數,均是擲到正面朝天。這個時候,一般人都會開始懷疑這枚硬幣有沒有被人動手腳。由此可見,其實一般人於骨子裏都已經有這個sense——對於一枚「正常」的硬幣,長遠來說,擲出正面和反面的次數,應該是不相伯仲才對的,否則你也不會認為硬幣沒有被動手腳。因此,其實誰人心裏都明白:隨機的遊戲,長期都會有一定的確定性。
明白大數法則,就會明白賭博何以能夠成為事業——因為,長遠來說,賭局賽果的的確確是一件確定的事情!就好像購入每本$10的二手書,再以每本$50出售,確確實實地賺取$40,獲得穩定收入。
這也是莊家必勝、賭場不朽的原因——長遠來說,每一張賭枱都確確實實地賺取固定的盈利率。以輪盤(Roulette)為例,明明有37個號碼,賠率卻只有1賠35,根據大數法則,長遠來說,賭枱有2.70%的賭局開出0號,即是有2.70%的賭局賠35注,而有97.3%的賭局殺1注。
莊家賺:
莊家蝕:
因此,長遠來說,莊家穩定地淨賺:
現回到電腦實驗覆核這個數字……
莊家贏錢,另一邊廂,也就代表賭客輸錢了。賭客長賭的話,便會淨蝕2.8%。這個數字又稱作「EV」。
莊家的
賭客的
明白大數法則,便可解答標題的問題——為何賭仔需要運氣,但大莊家永無倒霉?
因為賭局規則本來就有利莊家,只要時間夠長(賭客多、局數多)便可以鎖定盈利率;相反,賭客面對不利規則,就如賽跑後十米起步、踢足球打少個、格鬥讓雙拳,求勝自然需要運氣,方可求短期內有所突破。
回應文章開首提到的第一種人:賭局的確是隨機,數學的確無法預測下一局開什麼,但並不代表數學無用,因為數學計算的並非任何一局之賽果,而是長期盈虧。
賭場把注意力放於賭局的長期盈虧(EV),而一般賭客卻把重心放於眼前的短期賺蝕。諷刺的是,不擅計算的賭客只顧短期利益,卻會長期賭博,最終落入賭場的計算範圍以內。隨機遊戲,卻得到確然的下場。
至於文章開首的第二種人,則無法一概而論。科學無法確立邪門之說,也無法否定之。大數法則能夠提供的忠告是:要是偏門之說真的能夠提升賭客的贏面、令賭客的EV由負變正的話,根據大數定律,該偏門方法應該會使你「長期」輸少贏多,只有長期如此,該方法才值得採用,否則難逃誤信僥倖之說。
由此,不論是第一種人,抑或第二種人,想跨過賭博數學的門檻,便要由「奢望預知下一局賽果」改為「爭取長期穩定收入」,思考如何提升賭局「EV」,使其由負數變成正數,仿如你與賭場交換角色,乘著大數法則賺取長期穩定利潤。
----------
杜氏數學 Herman To Math 考試戰績:
A ── 會考 Math 數學
A ── 會考 Additional Math 附加數學
A ── 高考 Pure Math 純粹數學
A ── 高考 Applied Math 應用數學
5** ── DSE Math 數學
5** ── DSE M1 數學延伸部分(一)
5** ── DSE M2 數學延伸部分(二)
A ── IAL Core Math 1 2
A ── IAL Core Math 3 4
A ── IAL Further Pure Math 1
A ── IAL Mechanics 2
A ── IAL Mechanics 3
A ── IAL Statistics 1
A ── IAL Statistics 2
----------
《賭Sir數學戒賭》糸列
https://www.youtube.com/watch?v=dhL-dRcIN5I&index=1&list=PL_CM4U5au2k1cfK2zSph8XOLqIjOPQmvo