💡當全世界都在搶 #mRNA疫苗 時,你有沒有想過其實可以投資這些藥廠?
沒錯!我問的就是:
「你有沒有想過可以 #買BNT或莫德納的股票?」
最近我在研究新的ETF #富邦基因免疫生技ETF。它的投資組合目前大致如下:
▪️疫苗概念股約佔40.5%
▪️癌症治療約佔29%
▪️基因醫療約佔21%
▪️分析檢測約佔6%
▪️藥物開發約佔3.5%
(包括BNT/MODERNA這些疫苗概念股自然是當紅!但另外六成與免疫基因癌症治療相關的配置,其實更加吸引我。)
先說!在我們家,投資向來是老公說了算。但去年有一檔ETF我覺得可以買、他不置可否,被我唸到現在,就是00692。(當時我就跟大家分享這檔很不錯,我想投資。寫的當下才26,現在已經超過36🥲…我家財務大臣當時沒點頭,後來在32時才叫我進場…😩)
因此上週當我跟他說:「這檔富邦即將推出的基因免疫生技ETF,我覺得比00692更讓我期待!」他雖然又呈現『嗯哼』的表情,但還是認真聽我說完,最後說ok你要買就買😂。因為這個組合是所有投資標的裡,我難得有興趣也算夠瞭解的 #醫療生技產業。
很多人都覺得投資生技類股不切實際,只是買夢想。但如果你進一步去了解國外的生技產業,就不會這麼想。我過去長年跑醫藥,至今仍與許多醫師跟各大國際藥廠都熟識,經年累月聽下來,很早就知道未來醫藥生技會往哪裡發展。
首先以短期來看,疫苗還是不會退燒:
《#疫苗概念股》
到今年9月中,全球施打新冠疫苗劑數超過56億,這兩天幾個重要國際新聞,都在告訴大家接下來疫苗生產速度會拼命增加:
✔️國際製藥生產聯盟強調今年年底前疫苗生產數量將達120億劑,而2022年中將達240億劑!力求讓貧窮國家也能打至少一劑疫苗。
✔️美國要開打第三劑、以色列準備追加第四劑。
✔️莫德納宣布正在研發 #新冠肺炎與流感結合的二合一疫苗。也就是未來一年只要打一劑,就可以預防兩種傳染病(這消息一出Moderna股價立刻大漲6%😂)
以上這些訊息都顯示:疫苗類股短期內不會退燒。而且mRNA技術不僅用在新冠疫苗製造,也會用於其他疫苗開發及其他面向。簡單的說:這就像特斯拉之於電動車市場,mRNA也將興起一波疫苗市場革命。後續仍大有可期!
《#癌症免疫治療》
這點相信不用我多說,大家都知道未來癌症醫療絕對是醫藥生技業的主流(其實現在就是)。全球癌症時鐘每年都在快轉,未來得到癌症的人口將是現在的1.6倍。身為醫藥產業龍頭的美國總統拜登,因為長子死於癌症,也喊話要延續歐巴馬抗癌政策,成為 #終結癌症的總統!
近三年來我平均每個月都會訪問兩位以上的醫師,不論哪一科都會聊到癌症話題。大家都在期待有更新更有效的方式、來對抗癌症,通常 #最被期待的都是基因免疫療法。然而現在已被應用在癌症治療上的仍為數不多,代表還有非常大的研發空間。
但這勢必是未來癌症治療的主流!2018諾貝爾生物醫學獎,就是由發現利用免疫調節,能有效對抗癌細胞的兩位美國及日本教授共同獲得。他們在獲獎時也表示:
「癌症免疫醫療將會是繼外科、化療、放射線後,第四個癌症主要療法。」
《#基因檢測與分析》
包括 #基因編輯 與 #基因檢測分析,都是現在進行式,並有機會成為改變人類醫療的重大里程碑!(這真的不只是蜘蛛人的電影情節😂)像是透過基因編輯產生抗愛滋病胚胎、2020年的諾貝爾化學獎頒給了基因編輯技術⋯乃至於軟銀、ARK先後投資基因醫療,在在顯示這是值得關注的項目。
前陣子我專訪AI趨勢專家李開復,他坦言自己投資了一個基因分析公司:結合AI與基因分析,能夠精準給予每個人客製化的健康資訊需求。而他的最新力作『AI 2041: 遇見10個未來新世界』裡,第四個故事就是在講數位醫療與人工智慧的融合。#精準醫療絕對是未來的重點!而關鍵就在基因分析。
《結論》
總上所述,我覺得能同時囊括這些領域的ETF,真的太值得關注了!
其實不敢投資生技類股最大的原因都是:不了解、不知道怎麼選。所以這檔運用大數據、來挑選以上各類生技醫療產業績優股的做法,對於不了解生技領域的投資者,其實是最好的!尤其像我這樣的人:沒時間或懶得去看個股😂,ETF真的是個好選擇。
(若觀察這檔ETF組合,在過去三段不同時間內的績效表現:會發現它在疫情前就打敗Nasdaq-100,疫情後與Nasdaq-100幾乎相同。)
PS. 我有特別去了解它的操作:
▪️投資組合為五十個公司,每個權重上限4%,可避免單一個股大起大落過於影響整體表現。
▪️指數過去平均波動度與費城半導體指數相近。
▪️每年六月會調整權重比,十二月調整成分股。
這檔ETF預計9/15開始募集,十月初掛牌上市,我強烈建議想跟上這波疫苗概念股、及放眼未來基因免疫癌症醫療相關議題的人,可以注意一下。(有關這檔ETF的相關資訊,以及剛剛提到的產業新聞,我放留言處,大家可以參考參考喔😁!)
Ps. 彤姐真的不是只會叫你們花錢⋯也會分享賺錢撇步啦!😂
同時也有1部Youtube影片,追蹤數超過24萬的網紅啟點文化,也在其Youtube影片中提到,【線上課程】《過好人生學》~讓你建立迎向未來的思維與能力! 課程連結:https://pse.is/H8JXH 第一講免費試聽:https://youtu.be/-EHOn0UxMys 不定期推出補充教材,讓學習無限延伸:https://pros.is/KQZZH 【8/3開課!】《人際回應力-看...
「放射師國考準備」的推薦目錄:
- 關於放射師國考準備 在 Facebook 的精選貼文
- 關於放射師國考準備 在 蔡依橙的閱讀筆記 Facebook 的精選貼文
- 關於放射師國考準備 在 新思惟國際 Facebook 的最佳解答
- 關於放射師國考準備 在 啟點文化 Youtube 的最佳貼文
- 關於放射師國考準備 在 [問題] 放射師國考的準備方向- 看板Examination - 批踢踢實業坊 的評價
- 關於放射師國考準備 在 #國考國考準備方法 - 考試板 | Dcard 的評價
- 關於放射師國考準備 在 看過這個題目、知道哪個選項是正 - فيسبوك 的評價
- 關於放射師國考準備 在 職能治療國考準備在PTT/Dcard完整相關資訊 的評價
- 關於放射師國考準備 在 職能治療國考準備在PTT/Dcard完整相關資訊 的評價
- 關於放射師國考準備 在 放射師國考在PTT/Dcard完整相關資訊 - 星星公主 的評價
- 關於放射師國考準備 在 放射師國考在PTT/Dcard完整相關資訊 - 星星公主 的評價
- 關於放射師國考準備 在 放射師國考難度在PTT/Dcard完整相關資訊 的評價
- 關於放射師國考準備 在 放射師國考難度在PTT/Dcard完整相關資訊 的評價
- 關於放射師國考準備 在 [問題] 放射師國考的準備方向 - PTT Web 的評價
- 關於放射師國考準備 在 [問題] 放射師國考的準備方向| Examination 看板 - My PTT 的評價
- 關於放射師國考準備 在 醫放師國考-在PTT/MOBILE01/Dcard上的體驗開箱及優惠推薦 的評價
- 關於放射師國考準備 在 醫放師國考-在PTT/MOBILE01/Dcard上的體驗開箱及優惠推薦 的評價
- 關於放射師國考準備 在 醫放師國考-在PTT/MOBILE01/Dcard上的體驗開箱及優惠推薦 的評價
放射師國考準備 在 蔡依橙的閱讀筆記 Facebook 的精選貼文
💥 20 個 #常見的統計錯誤,你犯過,或是犯了卻不知道嗎?⠀
⠀
MedCalc 的作者 Frank,在 Facebook 分享了一篇跟統計相關的文章,叫做「生物醫學研究文章中,連你都可以發現的 20 個統計錯誤」,很有意思。(連結請見原始貼文)
⠀
我(蔡依橙)認真看完後,覺得蠻不錯的,於是把這 20 個統計錯誤的標題翻成中文,協助大家節省時間,如果剛好有興趣的,可再針對該部分去閱讀原文。接著,分享一些我看完之後的想法。
⠀
⠀
1. 數值報告時,提供了不必要的精確。例如 60 公斤體重,硬要寫成 60.18 公斤。
⠀
2. 將連續變項分組,變成次序變項,但沒有說明為什麼這樣分。像是 CRP 不以數值去統計,而分成低、中、高三組,卻沒說明為什麼這樣分。
⠀
3. 配對資料,只報告各組平均,卻沒報告其改變。也就是只報告治療前血壓、治療後血壓,卻沒報告有多少人上升、多少人下降、平均下降多少。
⠀
4. 描述性統計的誤用,尤其該用 median (interquartile range) 的,硬是用成 mean +- SD。
⠀
5. 使用 standard error of the mean (SEM) 描述量測的精確度,而非 95% CI。
⠀
6. 只報告 p 值,卻沒提到差值以及臨床意義。
⠀
7. 誤用統計方式。尤其常見的是混淆有母數跟無母數統計方法。
⠀
8. 使用線性迴歸,卻沒有先確定資料之間是真的有線性關係。
⠀
9. 沒有使用全部的資料,然後又沒把去掉的資料「為什麼被去掉」說清楚。
⠀
10. 多組比較的 p 值校正問題。
⠀
11. 在隨機分組研究時,過於詳盡地比較了兩組受試者的基本資料,像是性別比例、年齡、體重、血壓等等,而且資料好得太奇怪。
⠀
12. 報告檢驗數值時,沒有定義 normal 與 abnormal。
⠀
13. 計算 sensitivity 與 specificity 時,沒有說明一些介在灰色地帶的檢查結果,如何呈現與去除。
⠀
14. 使用圖片與表格,只是為了儲存數據,而非以協助讀者理解為出發點。
⠀
15. 畫出來的數據圖,視覺主觀上給人的印象,竟然跟數據本身不同。
⠀
16. 在報告數據與解讀時,搞不清楚 units of observation 是什麼,例如心臟病的觀察研究,在 1000 個患者中有 18 位心臟病發,那 units of observation 就是 18。但如果這個研究是以診斷正確率為主,那 sample size 就是 1000。
⠀
17. 把不顯著的統計,或 low power,解讀成 negative,而非 inconclusive。
⠀
18. 分不清楚解釋性研究與實務性研究,前者為 explanatory / efficacy / laboratory,後者為 pragmatic / effectiveness / real world。嘗試兩種混著做,結果兩邊都做不好。
⠀
19. 沒有用臨床能理解的方式來報告最終結果。
⠀
20. 把統計的顯著性,當成臨床的重要性。例如:癌症用新藥治療,統計上很顯著的好,但追蹤了五年,患者只延長了七天的壽命。這就是統計有顯著,但臨床意義不大的例子。
⠀
⠀
🗨 我(蔡依橙)的一些想法
⠀
由統計專業人的角度,來看生物醫學發表,是很有警惕意義的,能讓準備發表的朋友,仔細看看自己是不是也犯了相關的錯誤。
⠀
但另一個角度看,作者也提到,這些錯誤在幾乎一半的生物醫學論文上反覆出現!這就代表,其實生物醫學論文要刊登,並不代表我們什麼錯都不能犯,相反地,這 20 個錯誤裡頭,有些就算犯了,也還是能被刊登。
⠀
以我們自己發表,以及過去協助同學的經驗來說,我會認為 2、7、10、14、15,是初學者也 #必須理解並避開的,其他的則是發表起步了之後,陸陸續續去注意,在往更高分期刊挑戰時,逐漸進步就行。
⠀
實務上,3 分以下的醫學期刊,幾乎沒有專門的統計查核,你只要能通過「一般同行」的統計知識審查就行。也就是說,我是一個放射科醫師,剛開始起步,投稿到放射科 3 分以下期刊,文章中的統計,只要「#一般有在做研究的放射科醫師」覺得可以就行,不見得要到「統計專家看過並挑不出毛病」。
⠀
對於初學者如何起步,實務的協助,新思惟規劃了各種類型的研究課程,歡迎有興趣的朋友可以參考。目前正在開放報名中的,有以下三場工作坊,歡迎您瞭解各課程的課綱後,評估挑選最符合您需求的內容,前來上課,讓我們協助您成功起步。
⠀
🟠 2021 / 11 / 7(日)統合分析工作坊
無經費、資源少也能發表,不用 IRB 且免收案的好選擇。
https://meta-analysis.innovarad.tw/event/
⠀
🔵 2021 / 10 / 17(日)臨床研究與發表工作坊
全新改款!跟著國際學者走,讓你寫作投稿都上手。
https://clip2014.innovarad.tw/event/
⠀
🟢 2021 / 10 / 16(六)個案報告、技術發表與文獻回顧工作坊
把臨床上的各種想法,在 PubMed 化作專業生涯上的里程碑。
https://casereport.innovarad.tw/event/
⠀ ⠀
不只是說說而已,我們會舉實例,說明其意義、如何避開,在互動實作過程,實際由各位在自己的電腦上操作,從數據到軟體,從統計到繪圖,一次搞定,並避開常見錯誤,是真正以 #初學者起步 為核心的規劃。
⠀
⠀
二十個常見的統計錯誤,與實務寫作時的考量。
🔗 原始貼文 │ https://bit.ly/2WESphu
放射師國考準備 在 新思惟國際 Facebook 的最佳解答
💥 20 個 #常見的統計錯誤,你犯過,或是犯了卻不知道嗎?⠀
⠀
MedCalc 的作者 Frank,在 Facebook 分享了一篇跟統計相關的文章,叫做「生物醫學研究文章中,連你都可以發現的 20 個統計錯誤」,很有意思。(連結請見原始貼文)
⠀
我(蔡依橙)認真看完後,覺得蠻不錯的,於是把這 20 個統計錯誤的標題翻成中文,協助大家節省時間,如果剛好有興趣的,可再針對該部分去閱讀原文。接著,分享一些我看完之後的想法。
⠀
⠀
1. 數值報告時,提供了不必要的精確。例如 60 公斤體重,硬要寫成 60.18 公斤。
⠀
2. 將連續變項分組,變成次序變項,但沒有說明為什麼這樣分。像是 CRP 不以數值去統計,而分成低、中、高三組,卻沒說明為什麼這樣分。
⠀
3. 配對資料,只報告各組平均,卻沒報告其改變。也就是只報告治療前血壓、治療後血壓,卻沒報告有多少人上升、多少人下降、平均下降多少。
⠀
4. 描述性統計的誤用,尤其該用 median (interquartile range) 的,硬是用成 mean +- SD。
⠀
5. 使用 standard error of the mean (SEM) 描述量測的精確度,而非 95% CI。
⠀
6. 只報告 p 值,卻沒提到差值以及臨床意義。
⠀
7. 誤用統計方式。尤其常見的是混淆有母數跟無母數統計方法。
⠀
8. 使用線性迴歸,卻沒有先確定資料之間是真的有線性關係。
⠀
9. 沒有使用全部的資料,然後又沒把去掉的資料「為什麼被去掉」說清楚。
⠀
10. 多組比較的 p 值校正問題。
⠀
11. 在隨機分組研究時,過於詳盡地比較了兩組受試者的基本資料,像是性別比例、年齡、體重、血壓等等,而且資料好得太奇怪。
⠀
12. 報告檢驗數值時,沒有定義 normal 與 abnormal。
⠀
13. 計算 sensitivity 與 specificity 時,沒有說明一些介在灰色地帶的檢查結果,如何呈現與去除。
⠀
14. 使用圖片與表格,只是為了儲存數據,而非以協助讀者理解為出發點。
⠀
15. 畫出來的數據圖,視覺主觀上給人的印象,竟然跟數據本身不同。
⠀
16. 在報告數據與解讀時,搞不清楚 units of observation 是什麼,例如心臟病的觀察研究,在 1000 個患者中有 18 位心臟病發,那 units of observation 就是 18。但如果這個研究是以診斷正確率為主,那 sample size 就是 1000。
⠀
17. 把不顯著的統計,或 low power,解讀成 negative,而非 inconclusive。
⠀
18. 分不清楚解釋性研究與實務性研究,前者為 explanatory / efficacy / laboratory,後者為 pragmatic / effectiveness / real world。嘗試兩種混著做,結果兩邊都做不好。
⠀
19. 沒有用臨床能理解的方式來報告最終結果。
⠀
20. 把統計的顯著性,當成臨床的重要性。例如:癌症用新藥治療,統計上很顯著的好,但追蹤了五年,患者只延長了七天的壽命。這就是統計有顯著,但臨床意義不大的例子。
⠀
⠀
🗨 我(蔡依橙)的一些想法
⠀
由統計專業人的角度,來看生物醫學發表,是很有警惕意義的,能讓準備發表的朋友,仔細看看自己是不是也犯了相關的錯誤。
⠀
但另一個角度看,作者也提到,這些錯誤在幾乎一半的生物醫學論文上反覆出現!這就代表,其實生物醫學論文要刊登,並不代表我們什麼錯都不能犯,相反地,這 20 個錯誤裡頭,有些就算犯了,也還是能被刊登。
⠀
以我們自己發表,以及過去協助同學的經驗來說,我會認為 2、7、10、14、15,是初學者也 #必須理解並避開的,其他的則是發表起步了之後,陸陸續續去注意,在往更高分期刊挑戰時,逐漸進步就行。
⠀
實務上,3 分以下的醫學期刊,幾乎沒有專門的統計查核,你只要能通過「一般同行」的統計知識審查就行。也就是說,我是一個放射科醫師,剛開始起步,投稿到放射科 3 分以下期刊,文章中的統計,只要「#一般有在做研究的放射科醫師」覺得可以就行,不見得要到「統計專家看過並挑不出毛病」。
⠀
對於初學者如何起步,實務的協助,新思惟規劃了各種類型的研究課程,歡迎有興趣的朋友可以參考。目前正在開放報名中的,有以下三場工作坊,歡迎您瞭解各課程的課綱後,評估挑選最符合您需求的內容,前來上課,讓我們協助您成功起步。
⠀
🟠 2021 / 11 / 7(日)統合分析工作坊
無經費、資源少也能發表,不用 IRB 且免收案的好選擇。
https://meta-analysis.innovarad.tw/event/
⠀
🔵 2021 / 10 / 17(日)臨床研究與發表工作坊
全新改款!跟著國際學者走,讓你寫作投稿都上手。
https://clip2014.innovarad.tw/event/
⠀
🟢 2021 / 10 / 16(六)個案報告、技術發表與文獻回顧工作坊
把臨床上的各種想法,在 PubMed 化作專業生涯上的里程碑。
https://casereport.innovarad.tw/event/
⠀ ⠀
不只是說說而已,我們會舉實例,說明其意義、如何避開,在互動實作過程,實際由各位在自己的電腦上操作,從數據到軟體,從統計到繪圖,一次搞定,並避開常見錯誤,是真正以 #初學者起步 為核心的規劃。
⠀
⠀
二十個常見的統計錯誤,與實務寫作時的考量。
🔗 原始貼文 │ https://bit.ly/2WESphu
放射師國考準備 在 啟點文化 Youtube 的最佳貼文
【線上課程】《過好人生學》~讓你建立迎向未來的思維與能力!
課程連結:https://pse.is/H8JXH
第一講免費試聽:https://youtu.be/-EHOn0UxMys
不定期推出補充教材,讓學習無限延伸:https://pros.is/KQZZH
【8/3開課!】《人際回應力-看懂情緒,輕鬆對談》~第23期
一個人的命運,是回應力的總和!
課程資訊:http://www.koob.com.tw/contents/157
更多學員心得分享:http://goo.gl/Guc6V6
【線上課程】《自信表達力》~讓你不再害怕開口
從「敢表達、說清楚」到讓人「聽得進、會去做」的完整學習
課程連結:https://pse.is/RG5NC
第一講免費試聽:https://youtu.be/fAjySLoa2f8
不定期推出補充教材,讓學習無限延伸:https://pse.is/NUJK9
【線上課程】《理財心裡學》~擺脫家庭影響,從心培養富體質
課程連結:https://pse.is/EPBWE
第一講免費試聽:https://youtu.be/HgrDK7pqR-0
不定期推出補充教材,讓學習無限延伸:https://pse.is/NJ5VE
【線上課程】《時間駕訓班》~
學會提升效率,擺脫瞎忙人生,做自己時間的主人
課程連結:https://pse.is/DDDHB
第一講免費試聽:https://youtu.be/flfm52T6lE8
不定期推出補充教材,讓學習無限延伸:https://pse.is/GXZWM
【線上課程】《人際斷捨離》~
讓你留下怦然心動的關係,活出輕盈自在的人生!
課程連結:https://pse.is/E5MW5
第一講免費試聽:https://youtu.be/YyLvd1cNcDw
不定期推出補充教材,讓學習無限延伸:https://pse.is/LVRLY
【我們有Podcast囉~】歡迎到Podcast應用裡搜尋「啟點文化一天聽一點」訂閱我們!
Apple Podcast~https://pse.is/N2WCZ
Google Podcast~https://pse.is/PEN2Z
在Himalaya收聽~https://www.himalaya.com/ekoob
在Spotify收聽~https://pse.is/PQT76
在SoundCloud收聽~https://soundcloud.com/ekoob
桌遊【人際維基】~一玩就懂得別人的在乎:https://goo.gl/Ej4hjQ
到蝦皮購買【人際維基】:https://goo.gl/ASruqR
=========================
每個人都想要找到更穩定、更有保障的工作,不過我要提醒的是,要是你沒看今天的節目,到頭來,你可能只剩下一場空。
在收看影片之前,不管你是在Youtube還是Podcast收看或收聽,記得訂閱我們的頻道,你的具體支持,是我們製作節目的最大動力~
最近在網路上,有某些關鍵字持續的飆升,像是「企業紓困」、「疫情紓困」都引起上萬人次的搜尋。
而這些關鍵字的背後,也代表著在疫情平息之前,無薪假、失業這些問題不會改善,人們也很難恢復安全、穩定的生活;因此人們會傾向去尋找更有保障的工作,這也讓坊間的公職考試補習班,又熱門起來了!
公職補習班迷思
當然喔,追求安全、穩定本來就是人性,只是當我發現這些公職補習班,還用一些有一點不合時宜的標語,對求職者做宣傳,像是什麼呢?「參加銀行特考,就能擁有讓人羨慕的福利跟待遇」。
甚至是「書記官地位崇高,形象良好,進可攻擊他人之不正,退可保守自己親朋之安全。」這其實是一類的訴求喔,有一點誤導大眾的認知跟行為,我一定要來逆風發言一下。
那為什麼我會這樣說呢?台灣喔的「人工智慧」教父~李開復先生,在他的著作《AI新世界》裡面提到。
他認為人工智慧註定會顛覆世界,並且會帶來前所未有的經濟失衡,而眼下最直接的,就是在未來的五到十年之內,對於全球就業市場帶來的衝擊,很多一般人認定的金飯碗,很可能都會被AI取代。
白領失業潮來了!
李開復在他的書裡面,更進一步的指出,近年來,世界各國因為「無人銀行」的興起,各種AI的工具,已經可以承擔90%以上的金融業務。
再加上喔現代年輕人,普遍使用行動支付、網路銀行的比例越來越多;實際到銀行臨櫃的人越來越少,而第一線的金融人員的工作就此消失,已經是顯而易見的結局!
國外甚至於已經出現申請貸款,把資料送出到核可,不到幾個小時就能夠完成。
這裡的關鍵,就在於AI機器人已經掌握申請人的大量數據,可以在很短的時間裡面做完風險評估,而這些都是人類很難做到的事情。
再來,法院書記官的工作,就是掌管司法紀錄、編案、文牘、統計這些事務;講白話文就是「法院資料的輸入與管理」。
但你知道嗎?現在的科技,已經可以讓機器聽懂人類說話,同時呢在螢幕上轉換成精準的文字,準確率高達九成以上。
你想想看喔,假如準確率繼續提高,費用也越來越平價,法院或者是政府是不是有很大的可能性,會直接採購這樣的設備來取代書記官呢?
一來呢,大幅降低薪資的費用,二來呢,降低人員管理的問題;畢竟人類加班會抱怨,但機器不會有這個問題。
聽到這裡喔,你也許會好奇,以前聽說的AI、人工智能會取代的工作,那應該都是像工廠的工人,或者是體力活動的藍領階層才對啊!
那怎麼現在這些靠「腦袋」的工作,像是銀行行員、書記官,這些白領職業,也會被AI取代呢?
這是因為啊,現代的AI本質,其實是一種「深度學習」!那什麼是「深度學習」呢?
李開復先生在他的書裡面提到,深度學習是一種模仿生物智能的「神經網絡式」的學習方法。
簡單來說喔,過去的電腦只能執行單一程式;比如說,你希望機器人幫你到早餐店買三明治;那麼一旦輸入你家到早餐店的路線,機器人就會執行到底。
如果在路上遇到車它不會閃,遇到人也會直接輾過去,一直到抵達早餐店它才會停止,那是一種沒有思考、沒有應變能力的一個反應模式。
而神經網絡式的學習,則是透過數據資料,幫機器人建立起路況,可能會遇到的障礙物這些相關的應變資訊跟程式。
讓機器人可以在遇到阻礙的時候,先停下來,重新偵測、評估環境的狀況,再計算出成功率最高的路線,轉個彎重新出發,這已經是很接近人類能夠做到的靈活思考。
也就是說啊,在固定的場景底下,只要能透過數據,找到人類固定的「行為模式」,再請工程師把行為模式寫成「運算的程式」。
最後依據收集到的海量大數據,讓AI系統去做深度的學習,AI就能夠擁有思考能力,取代很多白領的工作。
容易被AI幹掉的二特點
從上面的例子,我們可以進一步的知道,符合以下二個特點的工作,很有可能會跟恐龍一樣,在地球上消失喔。
這二個特點又是什麼呢?第一個、那些資料、流程可以編碼的工作;第二個、人際互動頻率很低的工作。
打個比方來說,就像是現代的醫檢師、放射科的醫師,或者是銀行行員,他們都是在固定場景底下,專門分析數據跟資料,再不然就是工作流程有明確的SOP。
工作內容固定,而且有一套嚴格的作業流程和評判標準,不會有太多參數的變化,就很容易被編碼,而變成一條程式。
在未來呢,凡是可編碼的流程,再讓機器人通過大量數據的深度學習,就能夠快速的優化,任何動作都會比人類更快、更精準,而且可以一直進步,還不會喊累!
我們與AI的距離
要是你聽到這裡還半信半疑,感受不到AI對於職場的全面破壞,那麼我再提供一個更貼近你我的事實~
台灣的知名品牌~華碩電腦,在他們關渡總部的13樓,已經有一個130人的AI團隊,成軍了16個月。
而負責領軍的華碩全球副總裁~黃泰一先生,他就表示喔,華碩的AI團隊,已經鎖定醫療、交通、零售這三大產業的數據池,累積使用者的數據資料、網路足跡等等的一切。
透過這些進一步的為零售店家、醫院、輪胎業者,建立起節省人力、降低風險,而且能夠精準行銷的演算法系統。
幫助華碩在他們的未來,能夠透過大量的數據,以及資料跟資料之間的相互運用,所產生的商業價值來賺錢!
儘管現階段呢,華碩只針對醫療、交通、零售這三大產業在搜集數據,不過可以想見的是喔,只要精準的演算法系統建立;商店它是不需要店員,醫院它可能也不太需要醫檢師,輪胎製造廠不需要工人。
而未來這三大產業所需要的「人力」,將以跳崖式的速度往下滑。這也間接證實了李開復先生,在《AI新世界》這一本書裡面所預告的。
他說:「在未來的5~10年之內,現有的50%工作,將會由AI取代」!
所以拉回來看,只要你有稍微留意時事,你一定知道現代的公務人員、銀行行員,就算寒窗苦讀多年考了進去,福利和工作的輕鬆度,也都大不如前了,更別說他們的未來和發展。
也就是說喔,要是你忽略真實職場上正在發生的變化,那麼很有可能等到你花錢、花時間努力考上公股銀行的行員啊、書記官啊...等等的,卻只能做個幾年,就被裁撤了!
這樣的投資報酬率,你覺得划算嗎?算一下喔!會不會你以為自己考到一個安全可靠的資格,但是真正得到的,卻是更高的失業風險!
你想因為「眼前」短暫的穩定,而把自己放到更大的危險裡嗎?如果你不想,你可以選擇現在就打開眼睛,開始為自己的未來做準備~
假如你很想要為自己打造不敗的未來,讓自己的求職、轉職之路,擁有更務實的安全跟穩定,我會很鼓勵你參與我們啟點線上學苑~【過好人生學】這一門課的學習。
人工智慧的時代已經來臨了,但我們卻還用舊時代的工人智慧的腦袋,在面對自己的人生,你曾想過這是為什麼嗎?
其實答案很簡單,那就是「終極選項」和「路徑依賴」這兩大迷思,困擾了很多人。
在【過好人生學】的課程裡,我就會陪伴你去看見「終極選項」這樣的觀念,它的危險之處。
它在於喔,人類的大腦一旦認定當我們「找到了最好的答案」,或者是「最好的鐵飯碗」之後,我們就不再動腦筋思考了,所以會看不見鐵飯碗早就成了破飯碗,千萬別碰!
而「路徑依賴」呢?它是指喔,人會習慣用過去的經驗,想現在的事,然後去預測未來。
比如說吧,你念醫學院,所以就只能當醫生;再比如說,你過去在某個行業,所以你在轉職的時候,就只能做相關的行業。
而弔詭的是,如果過去的經驗能夠適用於現在,還能夠幫你預測未來的話,那每個人都是半仙了啊,也不會有失業的問題、找不到工作的狀況了,不是嗎?
所以呢,無論你是白領,還是藍領的朋友,我想要跟大家說的是喔,未來AI的潮流肯定是沒有辦法阻擋的,無論你想不想面對,它遲早都會來!
不過我也很肯定的告訴你,在我們失去「舊工作」的同時,這個世界還會增加許多的「新工作」。
只要你願意改變,跟上腳步,某些你覺得沒有什麼的工作,其實都潛藏著非常大的人力缺口,值得你好好的關注。
而幫助你換個腦袋,轉換成智能思考的第一步,就是歡迎你加入我們的線上課程【過好人生學】。
【過好人生學】從即日起,到6/12晚上十二點止,我們將推出季節限定的1413的優惠價~
我一直相信喔,未來仍然是充滿希望的,在【過好人生學】裡面,我會用最淺顯易懂的話,點破你對於生涯的迷思,幫助你移除20世紀的思考遺毒,發展出最適合21世紀的生存策略。
我還會幫助你繞過三個心智的陷阱,陪伴你一步一步的去建立起,新時代必備的四大能力,你將看見自己的更多可能性,並且懂得轉換自身的專業,幫自己規劃1413、一世一生的生涯藍圖,過上一個更好的人生。
歡迎你加入學習,也希望今天的分享能夠帶給你一些幫助,我是凱宇。
如果你喜歡我製作的內容,請記得訂閱我們的頻道,YouTube收看的朋友,除了訂閱之外,記得把訂閱旁邊的小鈴鐺打開。
而Podcast收聽的朋友,除了訂閱之外喔,也請給我們5顆星的評價,並且把它分享給你身旁的朋友,我們需要你用最具體的行動來支持我們。
然而如果你對於啟點文化的商品或課程有興趣的話,如同今天提到的【過好人生學】,我們季節限定的1413優惠,陪伴你一世一生。
歡迎你的加入,更期待你在學習之後的發現;那麼今天就跟你聊到這邊了,謝謝你的收看,我們再會。
放射師國考準備 在 #國考國考準備方法 - 考試板 | Dcard 的推薦與評價
想問有考上國考的人願意跟我分享國考的準備方法嗎? ,自己本身是考醫事放射師,那這次考是第二次~第一次是畢業的那次,那距離我這次已經間隔快三年 ... ... <看更多>
放射師國考準備 在 看過這個題目、知道哪個選項是正 - فيسبوك 的推薦與評價
【國考放射師準備心得分享】 「考試這件事情,分數不一定跟努力成正比,但不努力一定不會通過」 考古題的用法並不在於背答案, 看過這個題目、知道哪個選項是正解並 ... ... <看更多>
放射師國考準備 在 [問題] 放射師國考的準備方向- 看板Examination - 批踢踢實業坊 的推薦與評價
各位學長姐好~~
我目前大四,正在以2018年寒假的國考為目標衝刺
(因為一些原因無法考2017暑假的)
原本打算把這四年的課本都看一遍
可是茫茫書海中卻找不到從哪裡開始
也不知道怎麼作有系統的複習
所以想請教一下各位學長姐是怎麼準備的~?
有什麼推薦的講義或是筆記可以參考嗎
尤其是放射治療這科,想緊急求救~~~
感謝各位學長姐不吝分享><
-----
Sent from JPTT on my iPhone
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 180.204.192.221
※ 文章網址: https://www.ptt.cc/bbs/Examination/M.1476849342.A.B16.html
... <看更多>