這次,我們一起下車,而且再也不發車!
震驚全球的韓國「N號房事件」去年才落幕,但在台灣,類似的事件仍持續發生。許多人面臨在未經同意的情況下,被廣泛外傳私密照片、影像的傷害,對被害人來說,不僅是隱私權的侵害,更可能導致心中永遠無法抹滅的傷痛。
「有多少人看過了我並不願意被看到的影像?」
「眼前的這個人,會不會就是影像的觀看者?」
然而,最近這樣的事件再度發生,在被害人的私密影像遭到側錄、外流後,同時也出現了許多「#求上車」、「好人一生平安」的留言。
韓國網路性暴力回應中心曾說過,「社會應該明白,#受害者是被整個社會的惡意所傷害的」,每一個社群平台上的影像連結、每一位旁觀者好奇跟風的獵奇心態,都是對被害人一次又一次的傷害,更是對不法側錄外流的行為人莫大的縱容。
得知這樣的事件再度發生,而且影片還持續在社群平台上擴散流傳,我在第一時間便立即向相關部會了解情況,除了確保案件能夠獲得及時處理之外,更重要的是,希望盡可能減少對被害人的傷害。
如果我們每個人,都能多一點對他人痛苦的同理心,也許就能減少對被害人的傷害,讓他們不再深陷痛苦的折磨當中;如果我們每個人,還能再多一些對他人困境的理解,也許就能消除更多社會上的惡意,打造更安全、友善的網路環境。
❓ 我們可以怎麼做?
身為「旁觀者」的我們,除了「#不觀看、#不下載、#不轉傳、#不分享、#不持有」之外,其實,我們還能主動做更多事!
🔰向 iWIN 申訴
據了解,本案側錄外流的畫面及連結,目前仍在 Twitter 等社群流傳;對此,我們已將外流連結等資訊,提交給 iWIN 網路內容防護機構的申訴平台,由 iWIN 協調網路平台業者移除下架。
如果您或身邊親友曾收到類似的外流影像,可 #主動向iWIN提出線上申訴,申訴過程所填寫的資料,依據《個資法》及相關規定,不會對外公開。
這是你我都能做的協助,我們都能 #一起截斷這些不法性私密影像的散佈!
🔗 iWIN 申訴連結:https://www.win.org.tw/appeal
🔰向警局報案告發
除此之外,在網路上轉傳他人性私密影像,依據現行法制,涉犯《刑法》第 235 條散布猥褻物品罪,因此,我們也可以先將相關性私密影像的頁面截圖,紀錄時間、發文者帳戶名稱等資訊,#向警察局報案告發,讓警察機關能夠進行徹查、追究散布影像者的刑事責任,並協助將相關影像移除。
法制的完備與整體社會風氣的改變,都是打造友善安全網路環境的重要工程、缺一不可,然而,我也理解,目前我國對於性私密影像的法制保護,仍有許多不足。
不論是偷拍或者合意拍攝性愛影片,最後卻被轉傳散佈,目前只能論處《刑法》第 235 條散布猥褻物品罪,但是,「未得同意散布性私密影像」所侵害的核心,其實是性自主權跟隱私權,不應該用妨害風化的罪名來處理;再者,這些已散佈的照片,目前並沒有法源依據能夠要求立刻下架,現在,我們只能透過 iWIN 主動擴展服務範圍,接受當事人或民眾申訴,協助當事人跟平台協商溝通下架。
對此,未來我也將會提出《性私密影像防制條例》,讓性私密影像事件的當事人,能有更周全的保護!
最後,我想引用教育部「這次,我們一起下車!」宣言,再次和大家說,有些人可能曾經好奇而上過車,有些人則曾經目睹類似事件的發生。
但是這次,我們一起下車,並且再也不發車!
同時也有1部Youtube影片,追蹤數超過1萬的網紅梁丸,也在其Youtube影片中提到,訂閱 ▶ http://bit.ly/2reFtOY -- 5.下圖是某城市在2016年的各月最低溫(橫軸 )與最高溫(縱軸 )的散佈圖。 今以溫差(最高溫減最低溫)為橫軸且最高溫為縱軸重新繪製一散佈圖。試依此選出正確的選項。 (1) 最高溫與溫差為正相關,且它們的相關性比最高溫與最低溫的相關性強...
散佈圖相關性 在 會計人的Excel小教室 Facebook 的最佳解答
Excel散佈圖很適合表現報表資料的統計學特徵,本文以工廠人數產量的相關性為範例,介紹如何應用快速版面配置、座標軸標題、資料標籤範圍等配套工具。
散佈圖相關性 在 梁丸 Youtube 的最佳貼文
訂閱 ▶ http://bit.ly/2reFtOY
--
5.下圖是某城市在2016年的各月最低溫(橫軸 )與最高溫(縱軸 )的散佈圖。
今以溫差(最高溫減最低溫)為橫軸且最高溫為縱軸重新繪製一散佈圖。試依此選出正確的選項。
(1) 最高溫與溫差為正相關,且它們的相關性比最高溫與最低溫的相關性強
(2) 最高溫與溫差為正相關,且它們的相關性比最高溫與最低溫的相關性弱
(3) 最高溫與溫差為負相關,且它們的相關性比最高溫與最低溫的相關性強
(4) 最高溫與溫差為負相關,且它們的相關性比最高溫與最低溫的相關性弱
(5) 最高溫與溫差為零相關
散佈圖相關性 在 62. 散布圖與相關係數 - YouTube 的推薦與評價
102 暫綱高中數學第二冊https://www.youtube.com/playlist?list=PLNYd_7rI788XmpnQy-zY8hctE7L9A874T. ... <看更多>
散佈圖相關性 在 MS Excel 資料分析:02 散佈圖與相關係數 - YouTube 的推薦與評價
MS Excel 資料分析:02 散佈圖 與 相關 係數. 孔令傑. 孔令傑. 4.46K subscribers. Subscribe. 66. I like this. I dislike this. ... <看更多>
散佈圖相關性 在 [問題] 散佈圖與迴歸線- 看板Statistics - 批踢踢實業坊 的推薦與評價
論文上傳在即,但有個地方一直卡住不知如何處理,煩請高手解惑。
我有製作A與B的散佈圖(兩者皆連續變數),A經統計檢測為非常態,所以使
用非母數的方法,以Spearman's rho求相關係數,且求出的相關係數也很低
(係數<0.4),原來我只寫到這裡,圖上也只有座標軸與數據點。
但口委認為散佈圖應標出相關係數與迴歸線,可是我很困惑,據我對統計很
貧弱的知識,可以求迴歸線的前提不是數值資料必須為常態分佈嗎?非常態
的資料如果不想轉換(我有很多數據至今尚未找到轉換成常態的方式),有求
(線性?)關係方程式的方法嗎(非母數的"迴歸"?)?
我跟同學討論過,同學勸我口委要什麼就先給什麼吧,趕快辦離校比較要緊。
我本來也想不管假設檢定就用母數的方法求出Pearson相關係數和迴歸線,卻
發現這樣其實會影響到我原來寫的結果,因為用母數與無母數方法求出的相
關係數數值是不太一樣的,雖然並沒有出現剛好在相關與否臨界值的困擾。
又,如果我仍可以保留原來的非母數分析的結果,在散佈圖上要標註非母數
Spearman's rho的相關係數時,仍是寫"R^2=..."嗎?或者須用其他符號?
很感謝各位的幫忙,如果原有的觀念和想法有誤,也請鞭小力一點,謝謝。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.131.68.223
... <看更多>