🏅【#募資成功】好消息!恭喜 Garage+ 進駐新創 Jubo 智齡科技獲 1.95 億元 A 輪募資!
.
正面對決長照問題,以 AI 捕獲護理師的心、推向全世界!
.
Jubo 智齡科技獲 1.95 億台幣 A 輪募資!投資人包含嘉新水泥、緯創資通以及多位天使投資人,本輪資金將為以 AI 人工智慧深耕台灣長照市場以及進軍北美做足準備。
.
智齡科技成立於 2018 年,致力研發、改變長照生態,將資料科學與 AI 技術應用於長照工作流程,實現「照顧者省心、長輩窩心、家人安心」三者共好的理想。
.
2021 疫情來襲,智齡科技仍立下眾多里程碑:
👉 服務全臺逾 200 家長照機構;併購多田科技,近距離為南臺灣照護夥伴服務
👉 開啟與全美最大長照平台 PointClickCare 的合作;佈局日本、新加坡等市場
👉 跨足建築業打造「智齡照護建築」
.
💡 更多精彩詳情報導 👉 https://reurl.cc/MAExYW
💡 了解更多智齡科技相關資訊 👉 https://www.jubo-health.com/
.
🌠 認真創業,我們挺你!歡迎申請加入 Garage+ 👉 https://twepoch.org/GPAPPLY/0813
🌠 欲瞭解更多資訊,歡迎點選 👉 https://www.garageplus.asia/
.
#Jubo #智齡科技 #Garageplus #EpochFoundation
同時也有1部Youtube影片,追蹤數超過5,870的網紅珊蒂微AI,也在其Youtube影片中提到,很難得機會在台灣捕獲李孟這位旅日的資料科學家,也很高興可以訪問到他! 李孟在日本四年的工作時間當中,歷練過「軟體工程師」、「資料科學家」以及「機器學習工程師」的職務,為什麼會有這一路以來的自覺與自學歷程?我們都一併在這次專訪當中聊到了!同時還加碼聊了「在日本的工作與生活環境」,提供給想去日本生活的朋...
日本 資料科學 在 Facebook 的最佳貼文
真的! 運動的大數據分析,這的確是一個快速發展的產業!
記得我在日本參觀時,就有注意到這塊,資料科學的輔助。
如果我們希望能多幾個金牌,除了努力,就要靠新的科技與資料輔助,而不是靠集氣,或是天才加上運氣。
日本 資料科學 在 宜蘭縣議會議員陳文昌服務處 Facebook 的最佳貼文
這兩天最熱門的新聞,便是台積電的股價市值創新高的消息。對於台灣的企業能達到這樣的成就,一方面是感到敬佩,一方面也會擔憂資源過度集中的問題。這裡說到的資源包含了政府政策的焦點、台灣資通訊人才的群聚而無法進入其他產業。
最近在看一份文件,由卡內基國際和平基金會的教育領域的副總裁 Evan A. Feigenbaum 所撰寫的報告,裡面內容很完善的討論到台灣過去的成功以及目前的窘況,包括少子化導致整體人力的萎縮、基礎科學及統計資工人才的不足、缺乏雙語環境及海外市場的企圖心,這都影響了下一世代新創產業誕生的可能。
另外除了問題面外,這份報告也列舉了幾項我們能思考突並作突破的部分,包含以色列整合軍事及產業的人才培育策略、APEC及美國印太平洋計畫旗下能讓台灣產生更多槓桿的子計畫、GDPR個資政策與重視未來人工智慧資安的方向,又或是台灣善用資通訊的高等教育吸納東南亞甚至全球的學生等(以目前台灣疫情的控制我個人認為有可能)。
可以看到,要營造整個有利創新的環境,不單單只是經濟部的科專或科技部的計畫等,甚至要連內政部、國防部、外交部、教育部也一起,統整出一個綿密的策略。
以下是我看了整本報告的筆記,單就翻譯品質上絕對不足的,但想說如果有興趣的朋友不妨一同討論,一起想想台灣該如何營造有利的制度,讓創新產業能踏穩及在全球有所突破。
以下筆記:
「台灣新創未來該如何突破?」
Carnegie Endowment for International Peace
卡內基國際和平基金會
Evan A. Feigenbaum
VICE PRESIDENT FOR STUDIES
https://carnegieendowment.org/experts/719
原文連結:https://carnegieendowment.org/…/assuring-taiwan-s-innovatio…
一、台灣五大未來創新上會面對的挑戰:
(一)STEM(科學、科技、工程、數學)人才跟人力的資本問題
(二)市場規模太小的問題
(三)硬體至上思維如何改變?
(四)如何為台灣增加附加價值?
(五)政府政策該如何幫助產業?
二、STEM(科學、科技、工程、數學)人才跟人力的資本問題:
(一)台灣必須加強STEM的人才訓練,特別是新創者的數學、統計、資工、資料科學的技能。
(二)在PWC 2018年的新創調查中,僅13% 工程背景、 7% 科學背景、13% 資訊背景,六成的創辦人為文學及商業背景。
(三)因為過去資通訊的成功,也磁吸了大部分相關人才到TSMC跟MTK。
(四)台灣少子化非常嚴重(全球最低),總體勞動力人口也不斷在萎縮,連帶的影響各種專業人力的總量,以及投入到科技領域的人數。
(五)台灣越來越少科學及工程的畢業生,從2007到 2014,每年相關的畢業生減少了快一萬名(從92167到83394)。
(六)綜上,每年透過教育體系產出的人才庫越來越萎縮恐會供給不足。
(七)台灣到美國就學的畢業生及在學生也都在萎縮,以2000跟2017來比較,在學生總數從10668到7003,畢業生從15022到9236 。
(八)出國留學者越來越少比例的人願意回台灣,2004到2007約65%留在美國,2012到2015約75%留在美國。
(九)留學美國者回台灣的重要性是在,過去80、90年代會形成一個美國跟台灣間的「腦力連結」,而塑造一個學術及業界的台美連結機制,對下一代人才的塑造是重要的。留學回國的數目下降,對形成前述的機制是不易的。
(七)人數減少,長期來說也會影響下一代重要技術,例如AI的競爭力。
(八)此外,台灣的學程所教授的內容通常距離最新的科技相隔三到五年。
(九)來自北京的人才競爭也不可小覷,它能透過薪資及市場的誘因來吸引台灣人才。
(十)台灣應思考如何透過生活品質及民主政體來吸引留住人才。
三、市場規模太小的問題
(一)人口萎縮也持續影響市場規模。
(二)即使本國市場小,還是有機會成為較大規模市場的服務跟平台,例如、來自瑞典的spotify,但這也關乎了台灣在前個主題的人才庫的養成。
(三)因為產業西進及人力成本的提升,目前台灣已經無法單一區域就完成一個完整的製造生態系。就連富士康及和碩,仍要跟中國的製造商合作。
(四)台灣的VC資源仍強壯,但也有VC反應近十年來台灣缺乏足夠的可成為投資標的新創團隊。也因此,有些投資單位也會開始物色中國的新創團隊。
(五)一大挑戰,便是吸引美國及國際的投資人,且過往台灣的市場資本曾經有被高估過,也是加深了這挑戰的原因。(這句得求證)
(六)另外一個台灣的大挑戰是,如何創造對投資人有誘因的下世代科技,然而台灣也面臨這部分的問題,包括AI領域的資料不足,或是量子計算的人才不足等。
(七)目前有許多中國的AI研究人員在美國的單位工作,這帶來兩個層面的影響:在八零九零年代台灣跟矽谷間的連結,取而代之的是中國跟矽谷的連結。未來美國諸多領域的AI的形塑方向,也會與中國有關。另外,基於華盛頓跟北京的競爭趨勢,也將有許多在美國的AI人才回流到北京。
(八)如果未來華盛頓跟北京的競爭加劇,世界將會分成兩大陣營。而北京也會持續運用各種方面的壓力來影響台灣、吸收台灣人才。
四、硬體至上思維如何改變?
(一)台灣另一個必須面對的問題是,過往硬體製造的成功經驗,也影響了下一代台灣的軟體硬體整合的發展可能。
(二)以中國大疆無人機為例,無人機算是軟硬整合的成慣例,除硬體外,有必須搭載不斷突破的演算法,同時,透過無人機拍攝的資料,又能持續改善演算法。這解決方案也吸引了許多全球跟美國的單位,包括美國,運用大疆的無人機再開發更新的軟體技術。
(三)台灣的切入點仍存在的,考量有些國家,包括美國,可能會對中國打造的AI科技有所疑慮,在這部分台灣應有潛力來取代服務。
(四)但即使要做到前述這點,用過往硬體生態系的思維來面對也並不合適,得直接有軟硬整合的思維基礎來面對。
(五)台灣必須找到基於硬體及軟體的優勢來發展,像是以色列及愛沙尼雅的做法。
(六)以生物晶片作為基礎建設發展的生物科技,並整合硬體、韌體及軟體,也是可考慮發展的方向。
(七)要如何用硬體優勢、結合軟體,以彈性的工程概念迅速打造下一世代的高科技的基礎建設,對台灣來說是必須發展及規劃的。
五、如何為台灣增加附加價值?
(一)東亞的製造供應鏈正迅速在轉變,,從中國轉移到越南、馬來西亞或印尼,因為中國的工資成本也在上漲。2017年爆發的美中貿易戰也正加速此進程。
(二)有些供應鏈的轉移並不容易,例如廣東富士康的微電子零組件生態系,而泰國或越南也難以吸收這樣的產業移入。而富士康的印度基地是轉移的其中一個例子,同時製造印度人口所需的手機已經小米的機體。
(三)台灣的挑戰包含了:
A.必須瞄準新科技(AI及量子技術)的其中一部分製造鏈,而這些新科技的廠商包含雅馬遜、GOOGLE或是中國的百度、阿里巴巴等。
B.台灣可以尋找一些目前平台大廠尚未提供服務的領域,而這服務是針對消費者市場的。包括醫療、教育、資安的部分,都仍有發展軟體、人工智慧的空間。
(四)在台灣,雖然礙因於資料量,較難發展大量資料所產生的人工智慧企業,但有許有機會發展少資料型的人工智慧演算法。
(五)除了ICT跟半導體,大部分產業過去都聚焦在低毛利的製造,也造成未來轉移至高值化的障礙。
(六)台灣必須綜合國際趨勢、尖端科技及研發能量,找到對台灣來說高附加價值的產業發展。也能參考美國未來市場所需的人工智慧及量子計算來發展。
六、政府政策的幫助
(一)許多台灣政府的政策或計畫停留在陳述的階段,即使有加強對人工智慧的投資力道,但並沒有有效地針對特定領域訂定策略。相對來說,美國及歐洲都有進行規劃策略,以日本發展AI醫療為例,政府便有計畫建立十處以AI為基礎的醫院來發展AI醫療,投入金額將在2025達到100 million美元。中國也發展人工智慧人臉辨識,進而誕生出獨角獸Megvil,此公司最近也沒加入美國商務部的Entity list。
(二)這說明了,過往台灣在硬體的成就,難以讓台灣在未來的科技競爭上穩穩站足。
(三)政府應引導整個台灣發展市場上有興趣的項目,讓國外的投資者能不斷投注資源,並且不讓法規或稅制造成這類投資的障礙。
七、台灣應針對上述五點問題進行解決,並且也在國際間找到能一同解決的合作夥伴。像是過去台灣跟矽谷的合作,應該與美方產生一種新世代的合作模式來解決前述問題。
以下是討論建議參考的解決策略:
八、STEM(科學、科技、工程、數學)人才跟人力的資本問題:
(一)雙語經濟是能加強的方向,透過英語的加強來征服區域及全球的國際化挑戰。
(二)台灣可做為一個區亞洲域型的高等英文工程相關課程(電機、機械)的中心,吸引東南亞學生,以相較於美國及歐洲、澳洲更低價的課程來吸引東南亞電機人才,並透過策略留住這些學生在台灣電機相關領域。
(三)從此刻,為了往後十年到二十年的STEM人才庫做努力,同時這樣的人才庫得累積包括科技、商業、軟硬整合,讓台灣能發展人工智慧、量子計算及資安等領域。
(四)針對5+2產業,應在大學建立相關的新創加速器。先從政府資源挹注,後續再由業界資源銜接。這些加速器應扶植跟聚焦的技術,並不是短期投資市場所關注的,反而應關注長期有潛力發展的技術。
(五)政府應鼓勵學校,引導商學院學生加強科技的應用技術,同時也加強理工、電資學院學生商業及金融的知識,培養綜合型人才。
(六)台灣在各方面都有人才,然而國際交流型的人才還是太薄弱。
(七)按照PWC 2019新創的調查,60%的新創團隊並沒有聘用能推展國際化的人才 ; 54%的團隊沒進行投遞或參加國際的展演及投案 ; 只有30%有針對國際市場進行評估。
(八)即使台灣團隊嘗試培養很前端的科技技術,然而終究會因為缺乏國際的管理者,而導致難以開發台灣以外的市場。
(九)以色列模式:
A.瞄準遠期尖端科技,特別是數年後才會帶來收益的科技。
B.策略並不會雨露均霑,而是選擇有足以作為特色及槓桿的項目,像是基礎科學及資工便是投入好幾年資源的項目。
C.透過政策及策略銜接軍事單位、軍種及業界,讓好的人才在當兵時能得到更完整的培訓及成為業界能善用的人才。
D.許多以色列人能流暢的使用英文,因此台灣也能考慮雙語政策,同時許多以色列的企業會企圖發展更國際化的市場(美國及歐洲),及具備有國際化的眼界。
(十)台灣能持續推動的國家政策:
A.有利國際創新的簽證
B.引入國際的產業導師制度,用公私協力的方式,引入國外特訂領域的導師,來觀察及督考台灣各領域的發展,可能的領域包含量子計算、資安、生物科技。
C.擴充gAsia Pass的應用情境(再研究)
D.建立一個跨太平洋的諮詢平台,把投資、需求、選題及台灣的研發能量對接起來。
E.承上面諮詢平台的建立,也同步在教育層面建立,將學術能量引入。
九、市場規模太小的問題
(一)三種策略:台灣做為一個中繼站(hub)、一個值得信任的供應商、以及一個高效能的導管。
(二)台灣做為一個中繼站(hub)
A.不只資料數量重要,資料的處理、資料的合成、資料的部署同樣重要。也可從以色列跟愛沙尼雅的案例看到,如何善用各政府單位及民間單位的能力及優先緒,來增進工業的價值鏈。
B.政府可作為高品質資料的提供方。此外,台灣也能善用法治基礎,來加強資料保護及個資保護的標準。
C.作為APEC中的領導角色,目前APEC中有在討論物聯網跟數位經濟的資安標準,台灣應扮演主導角色來引導框架及提供處理上的案例。
D.成為GDPR標準在亞洲施行的最佳案例。
E.美國的印太平洋策略中包含資安環節,台灣及華盛頓應保持交流溝通管道,在全球及APEC上一同推動。
(三)台灣作為一個值得信任的供應商
A.政府應針對5+2產業旗下的各創新計畫進行TVCP(trusted vendor certification program)認證,加強這些計劃的品質及可信任度,活用優勢,與國外的合作單位共同開創新科技的標準。
B.作為美國的新科技產品的場域實測基地。
(四)台灣作為一個高效能的導管
A.美國團隊也同樣對東南亞快速擴張的市場感到興趣,台灣能成為比中國更信任的夥伴,連結美國進入東南亞市場。
B.美國目前有 New Southbound Policy及 U.S. Indo-Pacific strategy,加入旗下的數位及資安相關的計畫,目前南韓已有加入。
十、硬體至上思維如何改變?
(一)應挑選前瞻的重點軟體科技領域,進入扮演重要的角色(AI、IoT)。
(二)台灣在量子運算上仍未有具規模的使用者,然而學界目前有美國IBM合作的計畫。
十一、如何為台灣增加附加價值?
(一)美國正調整供應鏈對中國的依賴,並尋找下一階段科技上的夥伴,特別是在AI及物聯網、生物科技技術上無資安疑慮的合作夥伴。而這是台灣的機會,台灣應盡可能在這些領域的安全技術標準上佔有一席之地。
十二、政府政策該如何幫助產業?
(一)從半導體的經驗來看,政府政策的投放必須是長期持續、且眼光放遠、針對先進科技的。
(二)台灣在研發上的投入資金比例上越來越少。
(三)調整政策讓基礎研究能成功商業化非常有必要。
(四)接下來三年到五年有些美中的合作計畫有可能停止,台灣必須成為有潛力的取代對象。
(五)台灣目前有加入APEC Cross-Border Privacy Rules,目前該組織的方向趨向歐盟的標準,台灣可先針對GDPR系統預作準備。
(六)台灣應該更積極加入更多科技業標準的制定,特別是接下重要的科技如物聯網、資安等。
日本 資料科學 在 珊蒂微AI Youtube 的最讚貼文
很難得機會在台灣捕獲李孟這位旅日的資料科學家,也很高興可以訪問到他!
李孟在日本四年的工作時間當中,歷練過「軟體工程師」、「資料科學家」以及「機器學習工程師」的職務,為什麼會有這一路以來的自覺與自學歷程?我們都一併在這次專訪當中聊到了!同時還加碼聊了「在日本的工作與生活環境」,提供給想去日本生活的朋友參考呦~
👉在這次專訪中,我們暢聊了:
1. 李孟是如何從軟體工程師的身份開始自學「資料科學」?
2. 資料科學家 / 機器學習工程師工作內容上的差異?
3. 李孟比較喜歡當資料科學家、還是機器學習工程師呢?Why?
4. 覺得人們除了積極自學之外,還應該用什麼心態來應對AI帶來的衝擊?
5. 加碼閒聊「在日本的工作環境與生活環境」,提供給想去日本生活的朋友參考呦!
👉李孟釋出他在台大的演講簡報,鉅細靡遺地分享他成為一位資料科學家的歷程,內容相當精彩,製作也很精美耶!https://www.facebook.com/LeeMengTaiwan/posts/10220691442829365
👉李孟的超高含金量部落格,分享各種他在資料科學與機器學習上的應用經驗!https://leemeng.tw/
#他是資料科學家也是機器學習工程師 #自學資料科學與機器學習 #李孟