軟體吞噬硬體的 AI 時代,晶片跟不上演算法的進化要怎麼辦?
作者 品玩 | 發布日期 2021 年 02 月 23 日 8:00 |
身為 AI 時代的幕後英雄,晶片業正經歷漸進持續的變化。
2008 年之後,深度學習演算法逐漸興起,各種神經網絡滲透到手機、App 和物聯網。同時摩爾定律卻逐漸放緩。摩爾定律雖然叫定律,但不是物理定律或自然定律,而是半導體業發展的觀察或預測,內容為:單晶片整合度(積體電路中晶體管的密度)每 2 年(也有 18 個月之說)翻倍,帶來性能每 2 年提高 1 倍。
保證摩爾定律的前提,是晶片製程進步。經常能在新聞看到的 28 奈米、14 奈米、7 奈米、5 奈米,指的就是製程,數字越小製程越先進。隨著製程的演進,特別進入10 奈米後,逐漸逼近物理極限,難度越發增加,晶片全流程設計成本大幅增加,每代較上一代至少增加 30%~50%。
這就導致 AI 對算力需求的增長速度,遠超過通用處理器算力的增長速度。據 OpenAI 測算,從 2012 年開始,全球 AI 所用的演算量呈現等比級數增長,平均每 3.4 個月便會翻 1 倍,通用處理器算力每 18 個月至 2 年才翻 1 倍。
當通用處理器算力跟不上 AI 演算法發展,針對 AI 演算的專用處理器便誕生了,也就是常說的「AI 晶片」。目前 AI 晶片的技術內涵豐富,從架構創新到先進封裝,再到模擬大腦,都影響 AI 晶片走向。這些變化的背後,都有共同主題:以更低功耗,產生更高性能。
更靈活
2017 年圖靈獎頒給電腦架構兩位先驅 David Petterson 和 John Hennessy。2018 年圖靈獎演講時,他們聚焦於架構創新主題,指出演算體系結構正迎來新的黃金 10 年。正如他們所判斷,AI 晶片不斷出現新架構,比如英國 Graphcore 的 IPU──迥異於 CPU 和 GPU 的 AI 專用智慧處理器,已逐漸被業界認可,並 Graphcore 也獲得微軟和三星的戰略投資支援。
名為 CGRA 的架構在學界和工業界正受到越來越多關注。CGRA 全稱 Coarse Grained Reconfigurable Array(粗顆粒可重構陣列),是「可重構計算」理念的落地產物。
據《可重構計算:軟體可定義的計算引擎》一文介紹,理念最早出現在 1960 年代,由加州大學洛杉磯分校的 Estrin 提出。由於太過超前時代,直到 40 年後才獲得系統性研究。加州大學柏克萊分校的 DeHon 等將可重構計算定義為具以下特徵的體系結構:製造後晶片功能仍可客製,形成加速特定任務的硬體功能;演算功能的實現,主要依靠任務到晶片的空間映射。
簡言之,可重構晶片強調靈活性,製造後仍可透過程式語言調整,適應新演算法。形成高度對比的是 ASIC(application-specific integrated circuit,專用積體電路)。ASIC 晶片雖然性能高,卻缺乏靈活性,往往是針對單一應用或演算法設計,難以相容新演算法。
2017 年,美國國防部高級研究計劃局(Defence Advanced Research Projects Agency,DARPA)提出電子產業復興計劃(Electronics Resurgence Initiative,ERI),任務之一就是「軟體定義晶片」,打造接近 ASIC 性能、同時不犧牲靈活性。
照重構時的顆粒分別,可重構晶片可分為 CGRA 和 FPGA(field-programmable gate array,現場可程式語言邏輯門陣列)。FPGA 在業界有一定規模應用,如微軟將 FPGA 晶片帶入大型資料中心,用於加速 Bing 搜索引擎,驗證 FPGA 靈活性和演算法可更新性。但 FPGA 有局限性,不僅性能和 ASIC 有較大差距,且重程式語言門檻比較高。
CGRA 由於實現原理差異,比 FPGA 能做到更底層程式的重新設計,面積效率、能量效率和重構時間都更有優勢。可說 CGRA 同時整合通用處理器的靈活性和 ASIC 的高性能。
隨著 AI 演算逐漸從雲端下放到邊緣端和 IoT 設備,不僅演算法多樣性日益增強,晶片更零碎化,且保證低功耗的同時,也要求高性能。在這種場景下,高能效高靈活性的 CGRA 大有用武之地。
由於結構不統一、程式語言和編譯工具不成熟、易用性不夠友善,CGRA 未被業界廣泛使用,但已可看到一些嘗試。早在 2016 年,英特爾便將 CGRA 納入 Xeon 處理器。三星也曾嘗試將 CGRA 整合到 8K 電視和 Exynos 晶片。
中國清微智慧 2019 年 6 月量產全球首款 CGRA 語音晶片 TX210,同年 9 月又發表全球首款 CGRA 多模態晶片 TX510。這家公司脫胎於清華大學魏少軍教授起頭的可重構計算研究團隊,從 2006 年起就進行相關研究。據芯東西 2020 年 11 月報導,語音晶片 TX210 已出貨數百萬顆,多模組晶片 TX510 在 11 月也出貨 10 萬顆以上,主要客戶為智慧門鎖、安防和臉部支付相關廠商。
先進封裝上位
如開篇提到,由於製程逼近物理極限,摩爾定律逐漸放緩。同時 AI 演算法的進步,對算力需求增長迅猛,逼迫晶片業在先進製程之外探索新方向,之一便是先進封裝。
「在大數據和認知計算時代,先進封裝技術正在發揮比以往更大的作用。AI 發展對高效能、高吞吐量互連的需求,正透過先進封裝技術加速發展來滿足。 」世界第三大晶圓代工廠格羅方德平台首席技術專家 John Pellerin 聲明表示。
先進封裝是相對於傳統封裝的技術。封裝是晶片製造的最後一步:將製作好的晶片器件放入外殼,並與外界器件相連。傳統封裝的封裝效率低,有很大改良空間,而先進封裝技術致力提高整合密度。
先進封裝有很多技術分支,其中 Chiplet(小晶片/芯粒)是最近 2 年的大熱門。所謂「小晶片」,是相對傳統晶片製造方法而言。傳統晶片製造方法,是在同一塊矽晶片上,用同一種製程打造晶片。Chiplet 是將一塊完整晶片的複雜功能分解,儲存、計算和訊號處理等功能模組化成裸晶片(Die)。這些裸晶片可用不同製程製造,甚至可是不同公司提供。透過連接介面相接後,就形成一個 Chiplet 晶片網路。
據壁仞科技研究院唐杉分析,Chiplet 歷史更久且更準確的技術詞彙應該是異構整合(Heterogeneous Integration)。總體來說,此技術趨勢較清晰明確,且第一階段 Chiplet 形態技術較成熟,除了成本較高,很多高端晶片已經在用。
如 HBM 儲存器成為 Chiplet 技術早期成功應用的典型代表。AMD 在 Zen2 架構晶片使用 Chiplet 思路,CPU 用的是 7 奈米製程,I/O 使用 14 奈米製程,與完全由 7 奈米打造的晶片相比成本約低 50%。英特爾也推出基於 Chiplet 技術的 Agilex FPGA 系列產品。
不過,Chiplet 技術仍面臨諸多挑戰,最重要之一是互連介面標準。互連介面重要嗎?如果是在大公司內部,比如英特爾或 AMD,有專用協議和封閉系統,在不同裸晶片間連接問題不大。但不同公司和系統互連,同時保證高頻寬、低延遲和每比特低功耗,互連介面就非常重要了。
2017 年,DARPA 推出 CHIPS 戰略計劃(通用異構整合和 IP 重用戰略),試圖打造開放連接協議。但 DARPA 的缺點是,側重國防相關計畫,晶片數量不大,與真正商用場景有差距。因此一些晶片業公司成立組織「ODSA(開放領域特定架構)工作組」,透過制定開放的互連介面,為 Chiplet 的發展掃清障礙。
另闢蹊徑
除了在現有框架內做架構和製造創新,還有研究人員試圖跳出電腦現行的范紐曼型架構,開發真正模擬人腦的計算模式。
范紐曼架構,數據計算和儲存分開進行。RAM 存取速度往往嚴重落後處理器的計算速度,造成「記憶體牆」問題。且傳統電腦需要透過總線,連續在處理器和儲存器之間更新,導致晶片大部分功耗都消耗於讀寫數據,不是算術邏輯單元,又衍生出「功耗牆」問題。人腦則沒有「記憶體牆」和「功耗牆」問題,處理訊息和儲存一體,計算和記憶可同時進行。
另一方面,推動 AI 發展的深度神經網路,雖然名稱有「神經網路」四字,但實際上跟人腦神經網路運作機制相差甚遠。1,000 億個神經元,透過 100 萬億個神經突觸連接,使人腦能以非常低功耗(約 20 瓦)同步記憶、演算、推理和計算。相比之下,目前的深度神經網路,不僅需大規模資料訓練,運行時還要消耗極大能量。
因此如何讓 AI 像人腦一樣工作,一直是學界和業界積極探索的課題。1980 年代後期,加州理工學院教授卡弗·米德(Carver Mead)提出神經形態工程學的概念。經過多年發展,業界和學界對神經形態晶片的摸索逐漸成形。
軟體方面,稱為第三代人工神經網路的「脈衝神經網路」(Spike Neural Network,SNN)應運而生。這種網路以脈衝信號為載體,更接近人腦的運作方式。硬體方面,大型機構和公司研發相應的脈衝神經網路處理器。
早在 2008 年,DARPA 就發起計畫──神經形態自適應塑膠可擴展電子系統(Systems of Neuromorphic Adaptive Plastic Scalable Electronics,簡稱 SyNAPSE,正好是「突觸」之意),希望開發出低功耗的電子神經形態電腦。
IBM Research 成為 SyNAPSE 計畫的合作方之一。2014 年發表論文展示最新成果──TrueNorth。這個類腦計算晶片擁有 100 萬個神經元,能以每秒 30 幀的速度輸入 400×240pixel 的影片,功耗僅 63 毫瓦,比范紐曼架構電腦有質的飛躍。
英特爾 2017 年展示名為 Loihi 的神經形態晶片,包含超過 20 億個晶體管、13 萬個人工神經元和 1.3 億個突觸,比一般訓練系統所需的通用計算效率高 1 千倍。2020 年 3 月,研究人員甚至在 Loihi 做到嗅覺辨識。這成果可應用於診斷疾病、檢測武器和爆炸物及立即發現麻醉劑、煙霧和一氧化碳氣味等場景。
中國清華大學類腦計算研究中心的施路平教授團隊,開發針對人工通用智慧的「天機」晶片,同時支持脈衝神經網路和深度神經網路。2019 年 8 月 1 日,天機成為中國第一款登上《Nature》雜誌封面的晶片。
儘管已有零星研究成果,但總體來說,脈衝神經網路和處理器仍是研究領域的方向之一,沒有在業界大規模應用,主要是因為基礎演算法還沒有關鍵性突破,達不到業界標準,且成本較高。
附圖:▲ 不同製程節點的晶片設計製造成本。(Source:ICBank)
▲ 可重構計算架構與現有主流計算架構在能量效率和靈活性對比。(Source:中國科學)
▲ 異構整合成示意動畫。(Source:IC 智庫)
▲ 通用處理器的典型操作耗能。(Source:中國科學)
資料來源:https://technews.tw/2021/02/23/what-to-do-if-the-chip-cannot-keep-up-with-the-evolution-of-the-algorithm/?fbclid=IwAR0Z-nVQb96jnhAFWuGGXNyUMt2sdgmyum8VVp8eD_aDOYrn2qCr7nxxn6I
晶片 的 設計 製作 流程 在 Facebook 的最佳貼文
初四迎財神,祝大家牛年「牛年沖天」,牛年行大運,投資順利!
過年期間學習不中斷,年節限定專屬影音課程:
小孩子教育基金準備:
https://www.pressplay.cc/link/3636C1D76F?oid=AE5E0E9AB0
期貨入門:期貨交易規則及操作技巧介紹
https://www.pressplay.cc/link/4C87650EED?oid=AE5E0E9AB0
選擇權入門教學:
https://www.pressplay.cc/link/5D34B37178?oid=AE5E0E9AB0
另外,在產業報告篇裡,過年期間刋出:
晶圓代工產業:
半導體產業為電子產業的上游,其供應鏈又可分為上游的IC設計業(含IP設計)、中游的晶圓製造/代工及相關的半導體設備,下游的封裝測試。台灣擁有全球最完整的半導體產業聚落及專業分工。生產流程為:IC設計公司將產品設計完成後,交由專業的晶圓代工廠或IDM廠(整合型半導體廠,涵蓋IC設計、製造、封裝、測試、銷售等)製作成晶圓半成品,經由前端測試後,再給專業封裝測試廠進行切割、封裝、後段測試,最後的成品再銷售給系統廠商組裝成產品.....
https://www.pressplay.cc/link/D3F397D35B?oid=62AFE2AA74
半導體設備產業:
本篇文章主要介紹全球半導體設備產業概況,跟著台積電一起成長的個股有ASML概念股的OO及OO、AMAT概念股的OO,而受惠於台積電投入先進封裝的廠商則有OO及OO。此外,法人也看好半導體廠務工程的OO及提供耗材/化學品的OO...
https://www.pressplay.cc/link/074938320E?oid=62AFE2AA74
矽晶圓產業:
全球矽晶圓產業為寡佔市場,12吋是目前主流且佔比逐年提升。12吋矽晶圓主要用於記憶體佔比約55%為最大宗(DRAM 22%、NAND 33%),終端產品則以手機(34%)、PC & Server(21%)、SSD(14%)為主。8吋矽晶圓則以邏輯IC、類比IC的應用為主,終端產品則多用於車用、工業用等具有少量多樣的特性。若以製程分類而言,90nm以下大多選擇12吋.....
https://www.pressplay.cc/link/F3284FF326?oid=62AFE2AA74
封測產業:
2021年全球半導體封測產業將跟隨晶圓代工產業而持續增長,前十大廠就有6家由台廠包辦。半導體晶圓製造完成後,需經過IC封裝測試後才能形成IC模組。IC封裝是將晶圓切割後的晶粒,用塑膠、陶瓷或金屬包覆,保護晶粒避免受到污染,且也較易裝配,又能達成晶片與電子系統的電性連接與散熱效果。IC測試則可分為兩個階段,一是進入封裝之前的晶圓測試(主要測試電性)、一是IC成品測試(主要測試IC功能、電性與散熱是否正常).....
https://www.pressplay.cc/link/5563B9CB31?oid=62AFE2AA74
還有PCB產業:
銅泊基板:最具漲價題材的族群
https://www.pressplay.cc/link/E1C5D5146F?oid=62AFE2AA74
軟板:與手機產業最相關的族群
https://www.pressplay.cc/link/90645B71E5?oid=62AFE2AA74
硬板:與車用電子最為相關的產業
https://www.pressplay.cc/link/242A84808D?oid=62AFE2AA74
IC載板:產業供不應求,5G與APPLE最需要的產能,股價上漲已超過好幾倍,上漲趨勢延續
https://www.pressplay.cc/link/4572B0DAC3?oid=62AFE2AA74
過年 PP 優惠,2/9-2/19 期間,輸入優惠碼「1WORD」享 95 折
Pressplay 訂閱學習
https://reurl.cc/b5d00o
晶片 的 設計 製作 流程 在 李開復 Kai-Fu Lee Facebook 的最讚貼文
DeeCamp2020結束了,特別驚喜地看到同學們今年的作品,跟以往線下合作在水準上基本沒有區別。今天的活動評選出了兩個總冠軍獎項,但學生們做的每一個作品都非常優秀、用心。也希望參與的200多名學生有真正的收穫。
本文來自創新工場微信公眾號
………………………………
創新工場DeeCamp2020完美落幕,兩團隊並列總冠軍獎金翻倍,共克真實世界難題
過去的2個月裡,200餘名來自全球高校的學生,聆聽了李開復、張亞勤、吳恩達、張宏江、俞敏洪、周志華等12位AI學術界、產業界大師授課,透徹理解了科技與創投核心規律;分組挑戰開放命題AI創新大賽,用AI和創意向現在和未來人類世界面臨的真實難題問題發起挑戰。
2020年8月5日,DeeCamp2020人工智慧訓練營總冠軍答辯暨結營典禮,在創新工場北京總部隆重舉行。
經過節奏緊湊的立項、研發、測試,DeeCamp 2020開放命題AI創新大賽共37支團隊提交了振奮人心的AI Demo,其中6項入圍總冠軍答辯。他們現場展示了自己精彩的成果,角逐開放命題AI創新大賽的總冠軍和各賽道冠軍。
最終,兩支團隊並列奪得總冠軍,分屬自動駕駛賽道和創新賽道。總冠軍獎金翻倍,兩支隊伍各獲得10萬元獎勵,其餘五個項目獲得各賽道冠軍。
DeeCamp人工智慧訓練營是一項面向全球大學生的公益項目,專注培養應用型AI人才。自2017年暑期啟動以來已舉辦四屆,培養了上千名大學生。DeeCamp 2020 由創新工場聯合華為共同推出,在今年全球變局與挑戰的背景下,旨在召集科技領軍新人才,肩負時代新使命,用AI解決真實世界的難題。受蔓延全球的新冠疫情影響,DeeCamp2020大師課和開放命題AI創新大賽全部轉為線上進行。
創新工場董事長兼CEO李開復博士,創新工場人工智慧工程院執行院長王詠剛,創新工場運營合夥人黃蕙雯,華為雲首席戰略官餘虎,聯合國開發計畫署駐華代表白雅婷(Beate Trankmann),路孚特(中國)科技有限公司董事長兼總經理党曉青等嘉賓出席典禮現場,予以專案點評,並為優勝隊伍頒獎。
華為雲首席戰略官餘虎表示:“華為一貫非常注重AI人才的培養,我們在2018年就發布了沃土人才培養計劃;通過華為雲線上的ModelArts AI訓練平台,以及端側的Hilens kit等算力平台,在高校,跟學校一起,聯合開展教材設計,課程設計;並且舉行無人車大賽,聯合創新創業及科研合作。目前已經和超過50所雙一流高校,形成了良好的合作,培養了上萬名學生。這次華為雲ModelArts平台很好支撐了創新工場DeeCamp大賽,幫助全國各地參賽學生隊伍的實戰項目挑戰AI難題。大家的作品和創意都非常好。期望後面大家能基於本次大賽作為良好開端,更好的掌握AI技能,發揮想像力,基於AI工程化落地的視角,用AI解決真實的產業和生活難題,給社會和生活帶來更多的改變。”
聯合國開發計劃署駐華代表白雅婷表示:“人工智能以及其他新興技術的發展會改變我們的生活,甚至可以為氣候變暖、新冠肺炎等全球性問題提供解決方案,然而它們也會擴大數字鴻溝並造成新的不平等現象。希望各位學員在日後的研究中可以運用所學,促進變革,通過自己的努力為人類創造更可持續的未來。”
路孚特(中國)科技有限公司董事長兼總經理黨曉青表示:“從2019年開始,路孚特成為DeeCamp合作夥伴,為學員分享金融行業深厚的業務知識和豐富的專業數據,並提供學習並實踐相關課題的資源。作為路孚特戰略研發運營中心之一,北京研發運營中心希望能夠吸引國內優秀的AI專業人才,增強AI專業人才儲備和研發技術能力。”
▌6支 AI Demo競逐總決賽,兩支並列總冠軍,10萬獎金翻倍
DeeCamp2020入圍總冠軍答辯的6支項目團隊,分別來自創新賽道、自動駕駛賽道、教育賽道、醫療與公共衛生賽道、商業賽道。8月5日上午,通過雲端連線的方式,6支團隊各自展示了激動人心的Demo作品。
經過評委打分、討論,自動駕駛賽道的Faster&Better團隊和創新賽道的方仔照相館團隊,最終共同奪得總冠軍。總冠軍獎金翻倍,兩個團隊分別獲得10萬元獎勵。另有五個項目獲得了各賽道冠軍。
為什麼最終選出兩個冠軍?評委之一、創新工場董事長兼CEO李開復博士解釋說,這兩個項目評委打分相同,難分伯仲。“Faster&Better”團隊的技術讓人震撼,這說明在今天,黑科技創業的空間仍然存在。而“方仔照相館”團隊則以商業取勝,讓我們驚訝於積木居然可以與AI結合。他們的“方頭仔”產品讓人充滿購買欲望,幾乎是一項可以直接拿到融資的項目。“我們認為這兩個組,任何一個單獨奪冠,都不能完整表達DeeCamp代表的精神,所以最終決定評選出兩個總冠軍。”
▍總冠軍:方仔照相館 BrickMeStudio
所屬賽道:人工智慧的創新思考與前沿設計
挑戰賽題:自動積木建模
AI+積木?聽起來如此跨界的兩件事,會有什麼奇妙的組合?
來自北京航空航太大學、清華大學、香港中文大學、奧地利科學技術研究所的同學們組成的“方仔照相館”團隊,用AI玩轉積木,為創意插上了翅膀。
他們打造了一個AI積木創作平臺“方仔照相館”,簡單上傳一張頭像照片,就可以生成個性化定制的方頭仔玩偶頭像。未來,只需一鍵下單,百變趣味的方頭仔就可以郵送到家。
怎麼實現呢?他們先根據輸入的圖像,抽取特徵向量,比如髮型、劉海、鬍子、眼睛、下巴、膚色、上衣款式、衣服圖案、鞋子顏色、手的擺放、褲子紋理等,匹配相應的積木零件,然後生成積木模型和拼裝步驟。
“方仔照相館”團隊希望將自己對積木的熱情,傳遞給更多人。積木不只是孩子們的玩具,更是創造力的源泉,“AI時代,更要注重創造力培養”。
▍總冠軍:Faster&Better
所屬賽道:自動駕駛的技術突破與前沿設計
挑戰賽題:算符算力約束下的無人駕駛車輛檢測
自動駕駛是人工智慧中最具挑戰、最具有應用前景的方向之一。對於需要大規模落地量產的車輛檢測場景,神經網路模型只能在較為廉價的晶片上運行,這為檢測模型的效率帶來了巨大挑戰和約束。
Faster&Better團隊在滿足嚴格算符算力的約束下,設計了一種極為高效的anchor-free車輛檢測模型。該模型採用了backbone、後處理策略,將物體看作點,使用輕量的head來預測物體位置、類別和bounding box,在保障性能的同時大幅提升了速度。
Faster&Better團隊對項目的商業價值也進行了思考。該車輛檢測模型能夠很容易地部署在低成本的晶片上,實現產品的落地,帶來商業回報。模型反覆運算速度快,可以使用更低的功耗訓練和維護。模型精度高,能夠為無人系統的安全性和穩定性保駕護航。
未來,該車輛檢測模型也有廣闊的應用空間。一是可以部署到行車記錄儀等傳統硬體上,使其智慧化,具備行車預警功能;二是可以部署到安防監控中,使用模型自動過濾篩選,將視頻中有車輛的場景加以保存,節省存儲空間,也節省人員重播視頻的時間。
▍教育賽道冠軍:Teched U
所屬賽道:用AI驅動的教育新工具和新方法
挑戰賽題:網路公開課聚類、檢索、評價和推薦工具
線上教育是未來趨勢,但錄播課的用戶體驗不佳。大量的錄播課僅將一段長視頻從線下直接搬運到線上,難以避免冗餘重複,造成學生積極性差、完課率低等問題。
來自卡內基梅隆大學和沃頓商學院的同學組成了Teched U團隊,希望用AI技術賦能線上教育。他們通過自研原創神經網路 TopicNet,實現長視頻切割、大綱提取、知識搜索三項功能。
通過視頻切割,尋找知識結構中斷點,可以將一小時的教育視頻切割成5-10分鐘的短視頻,讓使用者利用碎片化時間學習;通過大綱提取,借助整理好的知識大綱進行跳轉,讓使用者快速瞭解知識內容的結構;通過知識搜索,可以精確尋找到相關視頻和精確到秒的視頻跳轉位置。
目前,線上教育巨頭主要通過人工標注做視頻切分,但對於缺乏人才和技術的中小型線上公司,這項低成本的視頻切割自動標注技術,可以説明他們豐富視頻內容,實現精准推薦,從而提升用戶體驗和轉化率。
▍醫療賽道冠軍:心靈捕手
所屬賽道:用AI應對醫療和公共衛生領域的新挑戰
挑戰賽題:通過深度學習識別生物電信號
在DeeCamp,AI+醫療也可以大顯身手!
由“心靈捕手”小組帶來的“聽醫聲AI 診斷專家”項目,是本屆DeeCamp項目中唯一一個軟硬結合的項目。硬體製作、小程式設計開發等工作,全部是在DeeCamp期間用兩個月的時間完成。
“聽醫聲”AI診斷專家通過電子聽診器採集心音、呼吸音、脈搏,並將電子化的信號傳遞給微信小程式及後臺雲端分析系統,進行定量分析判斷使用者的健康狀況,實現健康監護、疾病預警、輔助診斷。若檢測到身體異樣,可自動推薦附近的醫院。未來,“聽醫聲”既可以輔助醫生做疾病早期篩查、健康監測,也可以用在留守老人監護、殘疾人健康關愛等領域。
值得一提的是,“聽醫聲”的脈搏波資料集,通過與醫院、診所、體檢中心等工作單位合作,共採集了6000余例由中醫專家標定的脈象資料,把專家經驗轉化為臨床診斷量化標準,實現了中醫問診的客觀化、資訊化。
▍創新賽道冠軍:AI科幻世界
所屬賽道:人工智慧的創新思考與前沿設計
挑戰賽題:科幻小說自動/輔助生成
你能想像一個AI構建的科幻世界嗎?在DeeCamp2020,AI正在創造一個全新的寫作時代。
來自中科院、美國喬治梅森大學等高校的五位同學組成的“AI科幻世界”團隊,基於Open AI 的GPT-2模型,在百億級中文大規模語料上重新訓練,打造了一位神奇的“AI科幻小說作家”。
這位元“科幻作家”,可以根據設定好的故事主線、人物角色等,互動式生成科幻小說內容,不僅可以遣詞造句,還可以創作構思,讓普通人也可以化身“科幻文學大咖”。
“AI科幻世界”團隊在開發的過程中,借鑒作家創作小說的過程,受到認知心理學和文學理論啟發,提出情節大綱主導的、人機協同寫作的範式:用戶輸入第一句,機器輸出多個人稱一致、語句連貫、邏輯合理的下一句話候選,由用戶做篩選和修改,不斷重複形成情節閉環。
在人機協同的半自動模式下,AI科幻世界寫作故事大綱的速度每分鐘可達50-100字。而在無人干預的全自動模式下,可以在1秒鐘之內寫出一個曲折動人的兩千字故事,揭開了創作的神秘面紗。
未來,科幻小說自動/輔助生成可以應用在商業傳播場景中,提升內容的廣度和個性化,兼顧精准分發下的使用者需求和內容品質,滿足企業對海量資訊的搜集、分析、篩選、整理和發佈需求。
▍商業賽道冠軍:“Non-pretrain”
所屬賽道:AI 賦能的商業決策與商業流程優化
挑戰賽題:人工智慧在量化交易和投資中的決策輔助
量化交易是指以先進的數學模型替代人為的主觀判斷,利用電腦技術從龐大的歷史資料中海選能帶來超額收益的多種“大概率”事件以制定策略。
來自南京大學、復旦大學的“Non-pretrain”團隊,針對外匯量化交易的歷史資料,提出了一種資料依賴的相似性度量方法。對每一個分類,分別使用所提出的層次注意力LSTM模型對未來匯率進行預測。最後對多個類的預測結果進行集成,並結合挖掘出來的典型pattern制定交易策略。
此外,聯合國開發計畫署一直非常關注高新科技與人工智慧在可持續發展領域的應用,為了鼓勵各位學員積極探索用AI解決可持續發展問題,專門設立了“AI4SDG”獎項,頒發給西天取經團隊、AI倒爺團隊、Teched U團隊、Brainnova意念互聯團隊、心靈捕手團隊。
此外,DeeCamp還組織了學員互評,評選最受學員歡迎的作品,最終西天取經、You OnlyLook Us、AI科幻世界三個團隊獲此殊榮。
▍自動駕駛賽道冠軍:“西天取經”AwesomeDet
所屬賽道:自動駕駛的技術突破與前沿設計
挑戰賽題:算符算力約束下的無人駕駛車輛檢測
西天取經團隊由來自北理工、北航、新加坡國立、北大、麥吉爾大學的五位極客組成。他們希望在自動駕駛的漫漫長路上,經歷磨難,不斷成長探索。
團隊採用了業界先進的技術,從Backbone、Neck、Loss三個層面出發,設計了一系列滿足算符算符約束的目標檢測模型,並做出適配改進,進行算法針對性優化。
推理速度是衡量自動駕駛技術的關鍵指標,目前行業內對推理速度的最低要求是10fps, 而該團隊的產品推理速度最快達到了74.5fps。
同時,他們提出了基於數據分析提出特定的增強方法,改善了夜間難樣本的訓練。經過真實場景下的測試,無論側視、後視、前視、夜景,都表現出了良好的遷移效果,測速、性能表現較好,達到了簡單場景下的車輛檢測要求,滿足了商業落地的要求。
該項目另外一大亮點是在手機上集成了檢測產品,做到了產品級別的實時呈現。未來,產品將可以搭載到智能行車記錄儀車輛預警、車載手機預警APP、交通事故實時監測、實時治安情況監測等多個領域。
此外,聯合國開發計劃署(UNDP)一直非常關注高新科技與人工智能在可持續發展領域的應用,為了鼓勵各位學員積極探索用AI解決可持續發展問題,專門設立了“AI4SDG”獎項,頒發給西天取經團隊、AI倒爺團隊、Teched U團隊、Brainnova意念互聯團隊、心靈捕手團隊。
▌74所高校200余名學生參與,12位大師授課
DeeCamp2020採用開放報名+定向邀請的方式,通過激烈競爭,200余位學員最終入選。
他們來自清華大學、北京大學、中國科學院大學、南京大學、北京航空航太大學、復旦大學、中國人民大學等44所國內高校,以及卡內基梅隆大學、麻省理工學院、牛津大學、康奈爾大學等30所海外高校,分佈在86個國內城市及北美和歐洲的17個海外城市。
學員中,碩士生占比56%,本科生占比26%,博士生占比17%。另外還有1%的學員是優秀的高中生,他們的技術科研能力已經達到了大學本科生的水準。
DeeCamp2020獨創“大師課+開放命題AI創新大賽”模式,讓學員既可以近距離與科研及產業領域大師溝通交流,也可以與志同道合的小夥伴結隊,親身體驗 AI 技術如何轉化為產業應用、積累實踐案例經驗。
在大師課上,李開復、張亞勤、吳恩達、張宏江、俞敏洪、周志華等12位來自AI領域學術界、產業界的重量級嘉賓,為同學們分享了AI前沿理論、產業創新、行業發展、創業趨勢等領域的最新洞察,讓大家充分領略了學術大師的思維方式,感受知識的魅力。
不同於常見的 AI 領域競賽,DeeCamp2020 開放命題AI創新大賽不以完成某一具體指標為目的,而是讓同學們組隊完成一個完整的創新項目,鼓勵其用創意向現在和未來人類面臨的科技問題發起挑戰。
因此,在賽題的設置上,DeeCamp聚焦社會熱點,關注真實世界與人們生活,共設置五大賽道14個新穎賽題,允許學生自由組隊。五個賽道分別是:
•教育賽道:AI 驅動的教育新工具和新方法
•醫療賽道:用 AI 應對醫療和公共衛生領域的新挑戰
•創新賽道:人工智慧的創新思考與前沿設計
•商業賽道:AI 賦能的商業決策與商業流程優化
•自動駕駛賽道:自動駕駛的技術突破與前沿創新
據創新工場人工智慧工程院執行院長王詠剛介紹,這次的賽道賽題設計具有“更熱門”、“更真實”、“更接地氣”三大特點:
“更熱門”:2020年是特殊的一年,我們面對著最多的變化,最多的挑戰,也是最多的機會,因此賽題設置貼合當前社會最關注的熱點問題,如健康賽道關注仍在全球延燒的新冠疫情。
“更真實”:為了讓同學們最大限度地接觸真實世界,所有賽題提供的資料都來自各個合作企業的真實場景資料。例如在Momenta提供的自動駕駛賽道中,Momenta為同學們提供了一批獨家未公開的128線雷射雷達檢測資料集和十萬量級視覺資料集,希望同學們在科研人員帶領下一同解決行業中的各類技術問題。
“更接地氣”:賽題設置與同學們的學習生活息息相關。在教育賽道中,人工智慧對程式設計教育的應用占了很大的部分,因為參賽的同學大多來自數學、電腦專業,有自學程式設計的經歷,這能促使參加該賽題的同學發揮主觀能動性,更好的利用自身經驗提高項目完成品質。
最終,共有9支隊伍選擇了商業賽道,10支隊伍選擇了自動駕駛賽道,5支隊伍選擇了教育賽道,6支隊伍選擇了醫療賽道,7支隊伍選擇了創新賽道,向這些難題發起挑戰。
▌你想用AI改變什麼?——DeeCamp學員的AI願望
人工智慧是一項偉大的技術,我們有幸生活在這個時代,也應該努力讓人工智慧造福人類社會。
“你想用AI改變什麼?”在主辦方發起的一項徵集活動中,200多名同學用紙和筆,寫下了自己的AI願望:
o“我想用AI改變人們的出行方式”
o“我希望用AI改變人們的教育環境,為所有人帶來更加智慧化的教育方式”
o“我希望用AI解決量化投資及商業決策問題”
o“我想用AI改變遊戲設計”
o“我想用AI改變文學作品的表現方式,讓大家能更加淋漓盡致地表現所思所想”
o“我想用AI改變醫療診斷技術”
o“我想用AI改變我們觀察世界的方式”
………
創新工場人工智慧工程院執行院長王詠剛表示,DeeCamp是一個為學生服務、充分發揮學生自主精神的人工智慧訓練營,鼓勵所有來到DeeCamp的同學進行一段自我驅動的AI學習實踐之旅。
在專案期間,DeeCamp的同學們充分發揮了“自我組織、自我管理、自我表現”的精神:自發組織了13場分享會,涉及創業經驗、讀書感想、技術研討、項目交流。在官方組織的“飯?泛?FUN?”談會中,學員們積極與各位大師雲上約飯,探討AI產業發展、創業方向、職業選擇等話題。
DeeCamp人工智慧訓練營自誕生起,就以消弭中國AI應用人才鴻溝、培養和完善中國AI應用人才生態為初衷,堅持公益屬性,將知識課程與項目實踐相結合,引導學生體驗 AI 技術如何轉化為產業應用,積累實踐案例經驗。
自2017年暑期首次開辦以來,DeeCamp總計收到來全球 1000 餘所高校超過 20000 份報名申請,已有 1000 余名學員順利結業。
DeeCamp的最大期待,就是結業的學員們都能在方興未艾的 AI 產業浪潮中,真正解決來自真實世界的難題,將論文中的 AI 演算法打造成一個個成功的 AI 產品與解決方案,用AI創造更美好的人類未來!
未來,DeeCamp 將繼續砥礪前行,不遺餘力地在人工智慧人才培養上面挖掘新方法和新思路,為 AI 領域輸送最新鮮的血液、提供最堅實的力量。