#家裡常用的除臭抗菌酵素清潔用品 #用過了就回不去的清潔用品
這次開團的是我家常用的抗菌、清潔用品,自從20年前用了「油脂分解酵素」後,就再也回不去了!不傷手又環保👍~
開團的品項比較多,每個產品都有專屬的功能,⏰團購即將結束,大家再針對自家的需求購買需要的商品囉~
💗獨家滿額累積贈送超級好禮🎁實用防疫商品,買多送更多👍
📌下單就送抗菌棒一支(韓國製)
📌滿$1499元再送地板抗菌清潔劑110ml一瓶
📌滿$1999元再送次氯酸抗菌劑110ml與3D立體醫用口罩一盒
💗多益得清潔用品賣場連結底加▶️ https://bit.ly/2VAk3Zd
▶️ #抗菌除臭棒:全方位的抗菌除臭棒,韓國製造,除了去除病菌、除臭異味、防霉抑菌還有空氣消毒的功用,適用於客廳、廁所、辦公室、冰箱、車內、衣櫃、鞋子、鞋櫃、寵物..等環境防護
▶️ #蘆薈去污膏:特殊磨砂粒子,針對原子筆、水性、油性的奇異筆、印泥殘留痕跡在手指頭、或是噴漆樹脂、磁磚斑垢.....等,用這瓶植物性的蘆薈去污膏,即可以迅速有效清潔。
▶️ #水性除甲醛:為水性噴劑,運用微生物分解甲醛,快速去除甲醛、福馬林、分解有機溶劑之揮發氣體,以解決室內空氣品質問題,本產品通過SGS國家及檢驗認證
▶️ #貼紙剋星環保除膠劑:噴灑在殘膠上即可迅速將貼紙的殘留膠質轉化成不具有黏性而能輕易去除,對於強力膠、白膠同樣具有功效,若器具上有沾染到柏油、機油、口香糖、樹枝黏垢也均可去除,但不適用於塑膠品,不確定的材質可先於不明顯之處先測試是否對於表面有損傷
▶️ #地板抗菌清潔劑:非化學界面活性劑,純植物性抑菌環保配方,無腐蝕性能深入地板隙縫分解油污、皂垢、糖份、醬汁、蛋白質..等,快速切斷分子鏈成為細分子,清潔後地板不黏腳,平時做好環境清潔,讓家裡遠離臭味的痛苦與病菌危害。
▶️ #生物酵素清潔劑(鹼性):前幾天有粉絲留言「抽油煙機的過濾網非常嚴重的油污」清洗的掉嗎?一般用「油脂分解酵素」原液噴完靜置隔夜再洗應該可以,若不完全乾淨再重複幾次,的確不要變老污垢太久再清,因為油脂氧化會更硬,廠商建議可以用廚房餐紙巾敷上厚厚的「油脂分解酵素」,軟化油粒,反覆清潔,就可以乾淨一些。若抽油煙機已經變成重油垢狀況,那就需要使用「生物酵素清潔劑鹼性」那瓶,來回擦試幾次就可以比較快速變乾淨。❤️大推這瓶囉~我在自製臘肉時,不小心將乾果機淹油了,就是靠這瓶稀釋後清除油污的。👍👍👍
▶️ #生物乾洗清潔劑:適合不能水洗的織物、地毯、沙發、皮革等商品清潔,可快速分解織物上殘留之飲料、油脂、醬料、尿液、嘔吐物、血跡...等,可以深入織物底層,清除臭源及殘留污漬具有除臭、清潔、防霉等功效,無毒、無溶劑、不傷織物原色。
▶️ #纖維酵素洗衣精:由多種活性酵素組成,不僅可以處理汗臭、血液還可以去除油污、化妝品、奶油、沙拉油..等且透過纖維酵素可以還原衣物原有色澤、觸感與分解毛球、中性溫和與不傷衣料。
▶️ #酵速衣領精:不僅可以洗衣領與袖口,還可以清洗寶貝衣物沾到吐奶、沾到尿...等,湯汁、醬料、血液污垢...等,是衣物難洗污垢的最佳選擇。
有機酸原子團 在 文茜的世界周報 Sisy's World News Facebook 的精選貼文
《MIT Tech 麻省理工科技評論》
* 【科學家利用甲烷菌生產合成橡膠原料異戊二烯,產量比同類細菌高出 179 倍】異戊二烯是一種非常有價值的石化產品,是生產粘合劑、合成橡膠等各種消費品的主要原料之一。
每年大約有 80 萬噸異戊二烯是從石油中提煉出來的。為了減緩氣候變化,盡量減少對化石燃料的依賴,相關學者一直致力於尋找替代的、可再生化學物質來源來生產異戊二烯,這些替代品包括酵母、大腸桿菌和藍藻等。
近日,內布拉斯加大學林肯分校的生物化學家尼科爾・布安(Nicole Buan)及其同事對一種甲烷菌進行基因工程改造後,能夠產生大量的異戊二烯,且產量遠遠超過了其他微生物。
產甲烷菌以釋放甲烷而聞名,這種單細胞微生物廣泛存在於人類和其他動物的內臟,以及海洋底部的深海熱泉等沒有氧氣的地方。
* 【閃電是如何給地球和其它地方帶來生命的?】在其它星球上搜尋生命的過程就如同烹飪,所有的素材都具備了 —— 水、溫暖的氣候、濃厚的大氣層、適當的養分、有機物以及能量源。然而,如果沒有一個可以促進這些素材相互反應的過程或環境,那麼你只能得到一些毫無用處的原材料。
所以說,有時候生命需要靈感的火花 —— 也許需要幾萬億個。一項發表於《自然・通訊》雜誌的新研究表明,在地球上生命首次出現的大約 35 億年前,閃電作為關鍵媒介合成了構成有機物的磷。磷是構成 DNA、RNA、ATP(所有已知生命體的能量來源),以及像細胞膜這樣的生物結構的重要物質。
* 【又一黑洞照片問世!偏振光下M87超大質量黑洞圖像公開】天文學家近日發佈了一張 M87 星系中心超大質量黑洞的新圖像,這張圖像是 2019 年第一張黑體照片的後續,但它更清晰,圖片中的偏振光描摹了這個超大質量黑洞的磁場線。
2019 年 4 月 10 日,事件地平線望遠鏡創造了歷史的新壯舉——發佈了有史以來黑洞的第一張圖像,黑洞看起來就像一個亮橙色圓圈,位於 5300 萬光年之外,由分布在四大洲的八個射電天文台拍攝到的。
* 【鋸末製成的生物塑料可在三個月內完全降解】
近日,耶魯大學研究人員將鋸末通過生物降解等方法打造成為了一種具有諸多優點的新型生物塑料,在保有高強度的同時,還能夠在三個月的時間內完全降解。該團隊已將有關這項研究的詳情發表在近日出版的《自然可持續》(Nature Sustainability)期刊上。
* 【一個月內240顆衛星上天!SpaceX成功發射第23批Starlink衛星】美東時間 3 月 24 日凌晨 4 時 28 分,SpaceX 的「獵鷹」9-1.2 型火箭從佛羅里達州的卡納維拉爾角太空軍基地第 40 號發射台發射升空,將 60 顆衛星送入軌道。火箭發射大約 9 分鐘以後,將近 230 英尺高的一級助推器在位於大西洋的「我依然愛你」(Of Course I Still Love You)號回收船上著陸,返回地球。
火箭發射大約 1 小時後,二級助推器將繼續推進 60 顆星鏈衛星。所有的衛星都在近地軌道上運行。
* 【麻省理工學院通過觀察天體確定複雜碳環分子多環芳烴】
麻省理工學院天體化學家布瑞特·麥奎爾領導的團隊借助綠岸望遠鏡,在距離地球 430 光年的金牛座分子雲(TMC-1)中,確定了兩種獨特的多環芳烴(PAHs),其由幾個相連的六邊形碳環和氫原子組成。他們首次在星際雲中發現了能夠解釋生命起源的複雜含碳分子多環芳烴(PAHs),且濃度遠超此前預期,研究這些分子和其他類似分子可以幫助他們更好地瞭解生命在太空中是如何開始的。
* 【杜克大學開發出用於異常環境檢測的「蜻蜓」機器人】
杜克大學基於仿生學開發出一款名叫 DraBot 軟體機器人,長度僅為 2.25 英吋(5.7 釐米),可效仿蜻蜓在水面上滑行,在檢查是否有漏油、高酸度和其他異常情況有獨特優勢。該研究已發表在《先進智能系統》雜誌上。
* 【iPhone 與 Apple Watch 可遠程評估心血管患者的虛弱程度】
最新研究表明,蘋果的 iPhone和 Apple Watch 可遠程評估心血管患者的虛弱程度。這項研究由斯坦福大學進行,並由蘋果公司資助。該研究將傳統的步行測試、使用 iPhone 和 Apple Watch 傳感器在門診測量以及通過應用程序遠程進行的步行測試進行比較。它還納入了被動收集的活動數據。
* 【美國科學家利用X射線對神經元進行無線調制,幫助治療和改善腦部疾病】
美國能源部阿貢國家實驗室的研究人員與四所大學的研究人員合作發明利用X射線對神經元進行無線調制的方法。該療法依靠光學和遺傳學的突破,通過注射納米顆粒來刺激大腦深處的神經元,有可能幫助治療慢性抑鬱症和疼痛。
* 【新型高精度溫度計可為量子計算機快速測溫】
瑞典哥德堡查爾姆斯理工大學的研究人員開發了一種新型溫度計,借助其可以實現在量子計算過程中,直接以極高的精度簡單、快速地測量溫度。相關研究成果發表在《物理評論X》期刊上。
* 【吃辣還有這好處?辣椒素能增加造血乾細胞動員能力!】血液癌亦稱血癌,就是我們平常說的白血病。白血病佔惡性腫瘤總發病數的 5% 左右,患有這類惡性腫瘤的人,需要先進行連續化療再進行骨髓移植,以用健康造血乾細胞代替受損乾細胞。我們都知道,交感神經可以調節造血乾細胞生態位,但骨髓中傷害性神經元的貢獻尚不清楚。
近日,阿爾伯特·愛因斯坦醫學院和北卡羅來納大學教堂山分校的研究人員在小鼠身上做了實驗,併發現兩個結果:1.傷害性感受神經元通過降鈣素基因相關肽(CGRP,Calcitonin gene related peptide,人類用分子生物學方法發現的首個活性多肽)的分泌可以誘導造血乾細胞動員;2.辣椒素觸發傷害性神經元的激活,從而顯著增強了小鼠造血乾細胞動員能力。
* 【歐洲核子研究中心 LHCb 實驗結果正挑戰物理學的領先理論】
歐洲核子研究中心 LHCb(大型強子對撞機)實驗的英國物理學家今天公佈了新的結果,測量出現了兩種不同類型的美誇克(又名底誇克)衰變,這些結果可能暗示了違反粒子物理學現有標準模型。美誇克通過弱相對作用,可以衰變為上誇克或粲誇克,但新的結果表明,這可能不會發生。
* 【特斯拉聯合創始人與Specialized合力,共同解決電動自行車電池問題】電動自行車既有摩托車的功能,又可以使用自行車的腳踏騎行。它以輕便、易操控、節能環保等優勢,成為越來越多人出行選擇。通常,當騎車人踩踏板或使用油門時,那些安裝在自行車下管或集成在自行車下管內的電池會啓動電動機。
但是,電動自行車的問題也日益突出。比如,當電池用盡時該怎麼處理,是直接將這些電子垃圾送入垃圾站,還是有其他更好的解決方案?
最近,美國第三大自行車製造商 Specialized(按市場份額標準)給出了不一樣的答案。它選擇與特斯拉的聯合創始人兼前首席技術官 Jeffrey Straubel 合作,目的是讓電動自行車的蓄電池通過回收擁有第二次生命。
* 【火星上消失的水源可能隱藏在地殼之下】數十億年之前,溫暖的火星上分布著湖泊和海洋。而在大約 30 億年以前,這些巨大的水體在火星表面消失得無影無蹤。多年來,科學家們一直認為,隨著火星大氣層的削弱,其表面的水分逃逸到了太空之中。
然而,這些水源或許並沒有一直向上逃逸,而是朝著反方向進入了地下。加州理工學院研究人員開發的新模型顯示,我們仍然有可能在火星的地殼下發現 30% 到 99% 的古老水源,相關論文被發表在《科學》雜誌上。
有機酸原子團 在 Facebook 的最佳解答
「它將改變一切!」
DeepMind AI解決生物學50年來重大挑戰,破解蛋白質分子折疊問題。
本週振奮全球AI界的消息:Google旗下人工智能企業DeepMind發布了最新 AlphaFold成果,這是全球AI界無比振奮的重大科研突破。蛋白質存在於我們世界中的所有有機物體及奧妙人體中,全新的AlphaFold 算法揭秘了生物學界50年來試圖破解蛋白質分子折疊的難題,這項AI帶來的重大突破,將幫助科學家弄清某些困擾人們的疾病機制、加速找出新型流行病的具體原因(比如今年的全球新冠大流行),促進新藥設計、幫助農業增產、解析可有效降解廢棄物的嶄新成分、甚至探索為大氣減碳的全新解決方案。
我特別期待 AlphaFold 能為人類健康、環境生活推向更寬廣的可能性。在魔幻2020 最後一個月,這真是一個讓人懷抱希望的全新技術可能性,期待 AlphaFold之後締造更多 AI for Good 落地應用。
以下文章詳盡解釋了這項突破,內容經《機器之心》微信公眾號授權轉載。
▎生物學界最大的謎團之一,蛋白質折疊問題被 AI 破解了。
11 月 30 日,一條重磅消息引發了科技界所有人的關注:谷歌旗下人工智能技術公司 DeepMind 提出的深度學習算法「Alphafold」破解了出現五十年之久的蛋白質分子折疊問題。
最新一代算法 Alphafold 2,現在已經擁有了預測蛋白質 3D 折疊形狀的能力,這一複雜的過程對於人們理解生命形成的機制至關重要。
DeepMind 重大科研突破的消息一出即被《Nature》、《Science》等科學雜誌爭相報導,新成果也立刻獲得了桑達爾 · 皮查伊、伊隆 · 馬斯克等人的祝賀。
科學家們表示,Alphafold 的突破性研究成果將幫助科研人員弄清引發某些疾病的機制,並為設計藥物、農作物增產,以及可降解塑料的「超級酶」研發鋪平道路。
「這是該研究領域激動人心的一刻,」DeepMind 創始人、首席執行官德米斯 · 哈薩比斯說道。 「這些算法今天已經足夠成熟強大,足以被應用於真正具有挑戰性的科學問題上了。」
蛋白質對於生命至關重要,它們是由氨基酸鏈組成的大型複雜分子,其作用取決於自身獨特的 3D 結構。弄清蛋白質折疊成何種形狀被稱為「蛋白質折疊問題」。在過去 50 年裡,蛋白質折疊一直是生物學領域的重大挑戰。
DeepMind 的 AlphaFold 讓人類在這一問題上取得了重要突破。在今年的國際蛋白質結構預測競賽 CASP 中,DeepMind 開發的 AlphaFold 最新版本擊敗了其他選手,在準確性方面比肩人類實驗結果,被認為是蛋白質折疊問題的解決方案。這一突破證明了 AI 對於科學發現,尤其是基礎科學研究的影響。
在兩年一次的 CASP 競賽中,各組爭先預測蛋白質的 3D 結構。今年,AlphaFold 擊敗了所有其他小組,並在準確性方面與實驗結果相匹配。
對於不熟悉生物領域的人來說,CASP 的大名可能有些陌生——CASP 全稱 The Critical Assessment of protein Structure Prediction,旨在對蛋白質結構預測進行評估,被譽為蛋白質結構預測的奧林匹克競賽。 CASP 從 1994 年開始舉辦,每兩年一屆,目前正在進行的一屆是 11 月 30 日開始的 CASP14。
而 DeepMind 這一突破有什麼影響?
用哥倫比亞大學計算生物學家Mohammed AlQuraishi 在Nature 文章中的話來說,「可以說這將對蛋白質結構預測領域造成極大影響。我懷疑許多人會離開該領域,因為核心問題已經解決。這是一流的科學突破,是我一生中最重要的科學成果之一。」
▎蛋白質折疊問題
蛋白質的形狀與它的功能密切相關,而預測蛋白質結構對於理解其功能和工作原理至關重要。很多困擾全人類的重大問題(如尋找分解工業廢料的酶)基本上都與蛋白質及其扮演的角色有關。
多年以來,蛋白質結構一直是熱門的研究話題,研究者使用核磁共振、X 射線、冷凍電鏡等一系列實驗技術來檢測和確定蛋白質結構。但這些方法往往依賴大量試錯和昂貴的設備,每種結構的研究都要花數年時間。
1972 年,美國科學家 Christian Anfinsen 因「對核糖核酸酶的研究,特別是對其氨基酸序列與生物活性構象之間聯繫的研究」獲得諾貝爾化學獎。在頒獎禮上,他提出了一個著名的假設:從理論上來說,蛋白質的氨基酸序列應該可以完全決定其結構。這一假設引發了長達五十年的探索,即僅僅基於蛋白質的一維氨基酸序列計算出其三維結構。
但這一思路的挑戰在於,在形成三維結構之前,蛋白質的理論折疊方式是一個天文數字。 1969 年,Cyrus Levinthal 指出,如果使用蠻力計算的方式來枚舉一種蛋白質可能存在的構象,要花費的時間甚至比宇宙的年齡還要長。 Levinthal 估計,一種蛋白質大約存在 10^300 種可能構象。但在自然界中,蛋白質會自發折疊,有些只需幾毫秒,這被稱為 Levinthal 悖論。
CASP 14 比賽最新結果:AlphaFold 中位 GDT 高達 92.4
CASP 競賽由 John Moult 和 Krzysztof Fidelis 兩位教授於 1994 年創立,每兩年進行一次盲審,以促進蛋白質結構預測方面的新 SOTA 研究。
一直以來,CASP 選擇近期才經過實驗確定的蛋白質結構,作為參賽團隊測試其蛋白質結構預測方法的目標(有些結構即使在評估時仍然處於待確定狀態)。這些蛋白質結構不會事先公佈,參賽者也必須對其結構進行盲測,最後將預測結果與實驗數據進行對比。正是基於這種嚴苛的評估原則,CASP 一直被稱為預測技術評估方面的「黃金標準」。
CASP 衡量預測準確率的主要指標是 GDT(Global Distance Test),範圍從 0 到 100,可以理解為預測的氨基酸殘基在正確位置閾值距離內的百分比。 John Moult 教授表示,GDT 分數在 90 分左右,即可視為對人類實驗方法具備競爭力。
在剛剛公佈的第14 屆CASP 評估結果中,DeepMind 的最新AlphaFold 系統在所有預測目標中的中位GDT 達到92.4,意味其平均誤差大概為1.6 埃(Angstrom),相當於一個原子的寬度(或0.1納米)。即使在難度最高的自由建模類別中,AlphaFold 的中位 GDT 也達到了 87.0。
歷屆 CASP 競賽自由建模類別中預測準確率中位數的提升情況,度量指標為 BEST-OF-5 GDT。
CASP 競賽自由建模類別中的兩個目標蛋白質示例。 AlphaFold 能夠預測出高度準確的蛋白質結構。
這些令人振奮的結果開啟了生物學家使用計算結構預測作為科研主要工具的時代。 DeepMind 提出的方法對於某些重要的蛋白質類別尤其有用,例如膜蛋白(membrane protein)。膜蛋白很難結晶,因此很難通過實驗方法來確定其結構。
該計算工作代表了在蛋白質折疊這一具備 50 年曆史的生物學問題上的驚人進展,比該領域人士成功預測蛋白質折疊結構早了幾十年。我們將很興奮,它能從多個方面對生物學研究帶來基礎性改變。 ——Venki Ramakrishnan 教授(諾貝爾獎得主,英國皇家學會會長)
▎DeepMind 這樣解決蛋白質折疊問題
2018 年,DeepMind 團隊使用初始版 AlphaFold 參加 CASP13 比賽,取得了最高的準確率。之後,DeepMind 將 CASP13 方法和相關代碼一併發表在 Nature 上。而現在,DeepMind 團隊開發出新的深度學習架構,並使用該架構參加 CASP14 比賽,達到了空前的準確率水平。這些方法從生物學、物理學、機器學習,以及過去半個世紀眾多科學家在蛋白質折疊領域的工作中汲取靈感。
我們可以把蛋白質折疊看作一個「空間圖」,節點表示殘基(residue),邊則將殘基緊密連接起來。這個空間圖對於理解蛋白質內部的物理交互及其演化史至關重要。對於在 CASP14 比賽中使用的最新版 AlphaFold,DeepMind 團隊創建了一個基於注意力的神經網絡系統,並用端到端的方式進行訓練,以理解圖結構,同時基於其構建的隱式圖執行推理。該方法使用進化相關序列、多序列比對(MSA)和氨基酸殘基對的表示來細化該圖。
通過迭代這一過程,該系統能夠較強地預測蛋白質的底層物理結構,並在幾天內確定高度準確的結構。此外,AlphaFold 還能使用內部置信度度量指標判斷預測的每個蛋白質結構中哪一部分比較可靠。
DeepMind 團隊在公開數據上訓練這一系統,這些數據來自蛋白質結構數據庫(PDB)和包含未知結構蛋白質序列的大型數據庫,共包括約 170,000 個蛋白質結構。該系統使用約 128 個 TPUv3 內核(相當於 100-200 個 GPU)運行數週,與現今機器學習領域出現的大型 SOTA 模型相比,該系統所用算力相對較少。
此外,DeepMind 團隊透露,他們準備在適當的時候將這一 AlphaFold 新系統相關論文提交至同行評審期刊。
AlphaFold 主要神經網絡模型架構概覽。該模型基於進化相關的蛋白質序列和氨基酸殘基對運行,迭代地在二者的表示之間傳遞信息,從而生成蛋白質結構。
▎對現實世界的潛在影響
「讓 AI 突破幫助人們進一步理解基礎科學問題」,經過 4 年的研究攻關,現在 AlphaFold 正在逐步實現 DeepMind 初創時的願景,在藥物設計和環境可持續性等領域都產生了重要的影響。
馬克斯· 普朗克演化生物學研究所所長,CASP 評估員Andrei Lupas 教授表示:「AlphaFold 的精確模型讓我們解決了近十年來被困擾的蛋白質結構,重新啟動關於信號如何跨細胞膜傳輸的研究。 」
DeepMind 表示願與其他研究者合作,以進一步了解 AlphaFold 在未來幾年的潛力。除了作用於經過同行評審的論文以外,DeepMind 還在探索如何以最佳的可擴展方式為系統提供更廣泛的訪問可能。
同時,DeepMind 的研究者還研究了蛋白質結構預測如何幫助人們理解一些特殊的疾病。例如,通過幫助識別存在故障的蛋白質,並推斷其相互作用的方式,來理解一些疾病的原理。這些信息能夠讓藥物開發更加精確,從而補充現有的實驗方法,並更快找到更有希望的治療方法。
AlphaFold 是十分卓越的,它在預測結構蛋白質的速度和精度上有著驚人的表現。這一飛躍證明了計算方法對於生物學中的轉換研究,加速藥物研發過程都具有廣闊的前景。
同時許多證據也表明,蛋白質結構預測在未來的大流行應對上是有用的。今年早些時候,DeepMind 使用 AlphaFold 預測了包括 ORF3a 在內的幾種未知新冠病毒蛋白質結構。在 CASP14 中,AlphaFold 預測了另一種冠狀病毒蛋白質 ORF8 的結構。目前,實驗人員已經證實了 ORF3a 和 ORF8 的結構。儘管具有挑戰性,並且相關序列很少,但與實驗確定的結構相比,AlphaFold 在兩種預測上都獲得了較高的準確率。
除了加速對已知疾病的了解,AlphaFold 還具備很多令人興奮的技術潛力:探索數億個目前還沒有模型的數億蛋白質,以及未知生物的廣闊領域。由於 DNA 指定了構成蛋白質結構的氨基酸序列,基因組學革命使大規模閱讀自然界的蛋白質序列成為可能——在通用蛋白質數據庫(UniProt)中有 1.8 億個蛋白質序列。相比之下,考慮到從序列到結構所需的實驗工作,蛋白質數據庫(PDB)中只有大約 170000 個蛋白質結構。在未確定的蛋白質中可能有一些新的和未確定的功能——就像望遠鏡幫助人類更深入的觀察未知宇宙一樣,像 AlphaFold 這樣的技術可以幫助找到未確定的蛋白質結構。
▎開創新的可能
AlphaFold 是 DeepMind 迄今為止取得的最重要進展之一,但隨著後續科學研究的開展,依然有很多問題尚待解決。 DeepMind 預測的結構並非全部都是完美的。還有很多要學習的地方,包括多蛋白如何形成複合體,如何與 DNA、RNA 或者小分子交互,以及如何確定所有氨基酸側鏈的精確位置。此外,在與他方合作的過程中,還需要學習如何以最好的方式將這些科學發現應用在新藥開發以及環境管理方式等諸多方面。
對於所有致力於科學領域中計算和機器學習方法的人而言,像 AlphaFold 這樣的系統彰顯了 AI 作為基礎探索輔助工具的驚人潛力。正如 50 年前 Anfinsen 提出的遠超當時科研能力所及的挑戰一樣,這個世界依然有諸多未知的方面。
DeepMind 取得的這一進展令人們更加堅信,AI 將成為人類擴展科學知識邊界的最有用工具之一,同時也期待未來多年的艱苦工作能夠帶來更偉大的發現。
影片及原文,參考 DeepMind官方部落客 https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology