米波雷達具備「反隱身能力」?
雷達按工作波長分類,可分為米波雷達、分米波雷達、厘米波雷達、毫米波雷達、雷射/紅外雷達...等,直覺去想,雷達波的波長越小,雷達的解析度就越高,雷達獲取目標的精度越高。分米波雷達的解析度是公分以上,厘米波雷達的解析度是公厘以上,那麼米波雷達的解析度就自然是公尺以上。
雷達解析度決定了戰場管理上的資料解析度,若誤差大,對於精準導引武器的導引就會有誤差,因此各國在雷達發展上,盡量從雷達精準度朝手,分米波雷達、厘米波雷達,波長越小越好。
匿蹤技術(或者反隱身技術)的概念,就是不讓雷達發射源接收到目標物所反射的雷達波而失能,無論是在裝備構型上將雷達發射的電磁波散射,或是在裝備塗料上將雷達波吸收,反正就是讓雷達接收到的訊號降低到雷達分不出這是目標物反射波,還是地面或海面的反射波,匿蹤(或隱身)就大功告成。
因為目前的雷達幾乎都是分米精度以下的雷達,所以匿蹤技術的發展也就自然有針對性,針對分米、釐米、毫米波雷達,如何做到匿蹤。
中國大陸的「反隱身雷達」,跳脫出另一個領域,發展米波雷達,這是所有匿蹤技術沒有想去對付的雷達波。
米波雷達有其先天的缺點,就是雷達精度的不足,以公尺為單位。這方面,也不是沒有解決方案,基本上,類似四度空間積分的方式,多重波訊號累積,從多個角度加上多重波累積足夠的回波能量,加上美妙的時序控制(第四度空間),用時間及資源(訊號處理、資料處理)換取精度,是有可能的。
報導中針對的B-2巨型轟炸機(翼展52.4公尺,長度21公尺),因為體積龐大,是有機會被米波雷達偵測識別出來的,不可掉以輕心。
(延伸閱讀)
台海開戰 解放軍將祭「秘密武器」?陸專家狂言:美國會怕
https://www.setn.com/News.aspx?NewsID=965727
「毫米波雷達 缺點」的推薦目錄:
- 關於毫米波雷達 缺點 在 誠實大叔 張誠博士 Facebook 的精選貼文
- 關於毫米波雷達 缺點 在 李開復 Kai-Fu Lee Facebook 的最讚貼文
- 關於毫米波雷達 缺點 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於毫米波雷達 缺點 在 [討論] 光達與毫米波雷達自駕技術的未來之戰- 看板car - 批踢踢 ... 的評價
- 關於毫米波雷達 缺點 在 毫米波雷達天地 - Facebook 的評價
- 關於毫米波雷達 缺點 在 光達缺點在PTT/Dcard完整相關資訊 的評價
- 關於毫米波雷達 缺點 在 光達缺點在PTT/Dcard完整相關資訊 的評價
- 關於毫米波雷達 缺點 在 [討論] 光達與毫米波雷達自駕技術的未來之戰 - PTT評價 的評價
- 關於毫米波雷達 缺點 在 車輛智慧化趨勢「毫米波雷達」是關鍵|三立新聞台 - YouTube 的評價
毫米波雷達 缺點 在 李開復 Kai-Fu Lee Facebook 的最讚貼文
Momenta完全無人駕駛首次曝光!城區道路混行無接管,遭遇逆行也不怕,特斯拉Waymo路線二合一
本文來源:量子位微信公眾號 QbitAI 作者:李根
…………………………………………………………
Momenta(現在)是一家怎樣的公司?
宏觀印象:學霸創業、中國無人車獨角獸、賓士母公司戴姆勒加持、自動駕駛第一梯隊玩家……
產品業務:高速場景方案產品、L4級自主泊車產品交貨、最高等級高精度地圖資質……
一千個維度有一千種答案,但也頗顯盲人摸象。
只是從今往後,Momenta的技術路徑開始完整清晰。
在通往自動駕駛實現大道上,之前有漸進式的特斯拉,也有一步到位的Waymo,天下方案,莫過於此。
而現在,Momenta集二者之所長,避二者之所短:
Tesla+Waymo,就是Momenta。
▌完全無人駕駛發佈
12月26日,Momenta對外正式發佈L4級無人駕駛技術MSD (Momenta Self Driving),開始支持城市內完全無人駕駛場景。
如果說2019年來Momenta發佈的前裝量產產品Mpilot,更像是特斯拉方案。
那麼現在,MSD上馬,則顯出Waymo路線雄心。
萬萬沒想到,自動駕駛業內一度紛爭的兩種路線,如今讓Momenta實現二合一。
但MSD究竟是一套怎樣的方案?
區別於量產前裝方案,Momenta完全無人駕駛方案中最明顯不同在於多了雷射雷達。
在其測試車中,共搭載12個攝像頭,5個毫米波雷達和1個雷射雷達。整套系統感測器方案以攝像頭為主,雷射雷達為輔,多感測器冗餘。
而且Momenta強調,除去雷射雷達,方案中的硬體選型與前裝量產保持一致——這也是Momenta“兩條腿”向前的關鍵考量,後面還會詳細講到。
不過,說一千道一萬,無人駕駛——還得以身試乘看一看。
MSD方案的試乘,選在了Momenta(蘇州),地點毗鄰蘇州高鐵北站,屬城建頻繁區域,路線全程約12公里,沿途經過30餘個紅綠燈路口:
既包括無保護左轉等典型場景,也有非機動車混行、立交橋下長路口等複雜路段。
路線中還有多處工地,也有學校、居民區、寫字樓、商業中心等生活場景。
符合Momenta該方案目標所指:城市區間內,完全無人駕駛。
而且路段基礎設施也沒有過V2X改造,依然拼的是單車智慧實力。
車流交匯交互,也是最有意思的場景。MSD方案雖初發佈,但智慧程度已有老司機風範,在試乘的幾次交互場景中,有讓行、也有選擇先過,並不基於單一規則。
同車試乘的Momenta研發總監夏炎解釋,這能體現MSD在預測規劃方面的實力和學習能力。
不過整體試乘而言,因為城市區間不同高速場景(無人車混行)和停車場(低速),Momenta的AI司機給人的印象是:安全第一,寧慫不偏激。
比如在蘇州相城道路,會出現不規則的異型車——挑戰自動駕駛系統的感知識別。
其實從當天道路實際情況來看,系統完全可以“偏激”一些,讓路不減速通過。
但安全第一思考下,Momenta工程師打造的該系統,在交通中不確定性較大的情況下,先減速,甚至刹車,確保交互雙方的安全。
而且相比人類老司機,MSD雖初生牛犢,但也展現出不凡實力。
遭遇人類司機深為苦惱的大貨車時,既要對大貨車的載貨品類多樣、形態各異準確感知,還要對大貨車行為上的激進行為有應對:
MSD跟隨慢速行駛的大貨車一段時間後,“決定”變道超車,但在超車過程中仍保持對貨車一定的安全距離,通過接近路口的實白線後才拉大橫向距離超車,保證了超車過程中的安全性。
▌完全無人駕駛新速度
12公里左右里程,按道路交規限速行駛(40公里每小時為主),近40分鐘,歷經城區內各種場景——有臨時施工、有不規則車輛,還有逆行,但全程無接管。
這樣的完全自動駕駛能力,起步最早的穀歌用了近十年,百度從開始研發到落地也超過5年,一眾自動駕駛新勢力從無到有也走過了快3年……
雖然深度學習、大數據和大計算帶來的指數加速,已再明顯不過。
但得知Momenta的速度,依然讓人不可思議:
50人左右的團隊,5個月左右的時間。
沒錯,從今年下半年交貨量產自動駕駛產品後,Momenta才開始囤積重兵,依靠公司長期的技術和數據積累,以及量產自動駕駛和完全無人駕駛通用的平臺支持,開始攻堅完全無人駕駛。
至於能夠達到城區開放道路全程無接管,之前行業內最快的友商也差不多用時1年,且積累了至少十萬公里以上實際路測里程。
所以Momenta之速,背後究竟有“引擎”?
Momenta CEO曹旭東認為,與他們內部看問題的角度、方法和戰略選擇有關。
Momenta創辦,從一開始就明確目標,要打造自動駕駛大腦。
這並非傳統汽車產業內“換輪子”,而是行業開始AI化變革後,供應鏈環節中的新機會。
汽車產業鏈中:
有最基礎的Tier1一級供應商,如博世、大陸,在系統層面、硬體層面提供產業支援。
再往上則是OEM廠商,賓士、寶馬、豐田……即車廠。
還有智慧化的基礎——計算晶片,如TI、NXP、瑞薩和英偉達。
最後,核心新增的玩家,一方面是提供出行網路的滴滴Uber等,另一方面則是提供自動駕駛所需核心演算法和軟體的技術公司。
比如定位“自動駕駛大腦”的Momenta,就處於這一層。
但即便如此,如何實現完全自動駕駛,如何最高效擁抱未來,也沒有清晰明確的答案。
至少在打造自動駕駛大腦這件事上,特斯拉方案和Waymo路線一度不可調和。
▌兩個路線的爭論
所謂特斯拉路線,是按照自動駕駛等級的劃分,從低級往高級不斷升維,通過量產汽車對場景、數據和演算法的反覆運算,最終實現完全無人駕駛。
而且正是因為堅定量產路線,也為了最低門檻獲取數據、場景和功能回饋,偏執狂馬斯克完全依靠攝像頭方案、不使用價格昂貴的雷射雷達。
所以即便2019年發佈為完全自動駕駛而生的FSD硬體,外界也不相信馬斯克2020百萬RoboTaxi的豪言。
而Waymo路線,則認為只有從一開始L4才能實現RoboTaxi。該路線中,人機共駕的高級輔助駕駛被認為有天然Bug——既要機器輔助駕駛,又要人類在緊急時刻接管,顯然不靠譜。
於是Waymo從2009年正式推動後,逐漸明確了實現方式:
原型車、規模化路測、在豐富場景中不斷反覆運算,區域內落地,終極場景是讓無人車行駛運營在任何時間、任何地點和任何場景。
但Waymo路線中,最難的是無窮無盡的“長尾”問題,現實中總會有出乎預料的新場景、特殊挑戰,這就要求自動駕駛系統足夠聰明、且學習反覆運算得足夠快。
所以概括而言,二者優缺點都很明顯。
特斯拉方案:想依靠低成本感測器方案不斷升維,難且有道德挑戰;但好處是數據“眾包”,能在量產中獲得現金流和數據流程。
Waymo路線:希望一己之力不斷擴大無人車隊規模,最終真正實現完全落地,險且依賴融資燒錢;而好處是安全性相較而言更可控,不用把車主當小白鼠。
但如今Momenta之行動,所謂“兩條腿”戰略,卻實現了特斯拉和Waymo路線的二合一。
即,通過量產自動駕駛產品獲得海量數據,持續研發數據驅動的核心演算法,打造閉環自動化工程體系,發揮數據價值,高效反覆運算數據技術,最終實現完全無人駕駛。
同時,MSD的技術框架中不同感測器的感知演算法相互獨立冗余,並非完全依賴某一種感測器,因此目前量產感測器收集的數據,如視覺、地圖、軌跡數據等可以無縫應用並有效助力MSD演算法提升。
最終,一個數據流程和技術流的閉環搭建完成,量產自動駕駛和完全無人駕駛,真正互相補益。
但為何能打通?又為什麼是Momenta?
一切要從Momenta創立之初對自動駕駛的認知說起。
▌終局視角思考無人車
Momenta 2016年創辦,當時就分析過特斯拉模式和Waymo路線。
但並非為結合二者而生。
曹旭東回憶,從一開始就希望從本質出發、從終局角度思考問題。
Momenta的思考中,自動駕駛的終局,一定是L4級以上,不需要方向盤、不需要人類司機。
但要實現這個終局,結合深度學習為核心的AI新浪潮,兩大要素就格外關鍵:
一是數據驅動。
二為海量數據。
之所以要數據驅動,是因為完全無人駕駛中的長尾問題——幾乎是難以窮盡的。
唯一的可能性只有數據驅動,自動化解決大部分的問題,例如99%問題。
所以Momenta內部,“架構師”文化興盛,他們目標是架構能夠自動化解決問題的系統。
在當前系統中,Momenta的 “閉環自動化”方法論就已發揮作用,通過建立對問題自動化發現、記錄、標注、訓練、驗證的閉環過程,為技術和數據提供自動化的反覆運算能力。
而關於海量數據,這是數據驅動的原料和前提。
之前有粗略估計,實現完全無人駕駛,需要100萬輛車跑一年,每輛每天跑10小時以上。
如此海量數據,完全依靠自建車隊採集,幾乎不現實。
量產自動駕駛數據流程能夠助力完全無人駕駛,源自統一量產感測器方案。
MSD感測器方案包括視覺感測器、雷射雷達與毫米波雷達,均覆蓋360°範圍,該感測器方案子集與量產感測器方案保持一致。
所以理解了無人駕駛終局的兩大要素,或許也就不難明白Momenta此次談及的兩條腿戰略:
一條腿是量產自動駕駛;
另外一條是完全無人駕駛。
量產自動駕駛,人車共駕,以人為主,但解放人類在高速環路、停車場等場景下的駕駛時間,提升駕駛安全性及駕駛體驗。
而且通過量產自動駕駛,實現海量數據獲取——學特斯拉又超乎其外。
進一步,量產自動駕駛可以給完全無人駕駛帶來數據,通過數據驅動的方式,去自動化地解決99%的問題。
未來隨著量產產品上市,像 “活水”一般源源不斷注入MSD,推動MSD演算法不斷升級,使得完全無人駕駛系統不斷進化。
這是數據流程上的打通。
而通過完全無人駕駛,還能給量產自動駕駛回饋技術流,不斷提升體驗和能力,讓量產自動駕駛持續進步,提升行業份額。
當然,數據流程和技術流形成閉環,聽起來不算稀奇。
但真正實現這樣的戰略並不容易,關鍵是量產感測器方案的一致性、互補性,並在量產自動駕駛戰略中真正快速低成本交貨、落地。
這也是特斯拉和Waymo難以跨公司二合一的原因。
另外,作為創業公司,在數據流程和技術流閉環之外,靠融資燒錢顯然不可持續,必然還需要現金流。
所以Momenta創辦3年來,先在量產自動駕駛發力,實現數據流程和現金流方面的驗證,然後發力完全無人駕駛,同時著力於打通兩者之間的數據流程和技術流。
現在,完全無人駕駛方案發佈,數據流程和技術流的戰略雛形形成,現金流也能讓公司不受輿論和資本市場變化而左右。
曹旭東說, 目前Mpilot 和MSD的原型發佈,標誌著兩條腿的雛形期形成。預計到2019年-2024年,量產自動駕駛大規模上市,以及MSD真正的完全數據驅動,完全自動化,則是“兩條腿”戰略得到驗證的時刻,也是戰略的成型期。
▌道阻且長,行則將至
不過,也還沒到一腳定江山的時刻。
雛形初現,一切還只不過是開始。
更何況這樣的戰略完整披露,一方面會面臨質疑,另一方面也有被複製的風險。
但曹旭東並不擔心。他說:“戰略沒有優劣,戰略是選擇。這個戰略有其優點,也有難點和挑戰。我們在選擇戰略同時,也必須克服和解決其背後難點。我相信,戰略發佈後,看到的不是抄襲,更多的是爭議。在戰略執行時,遇到困難,可以選擇繼續走下去,也可以去選擇其他戰略,但我們選擇迎難而上。道阻且長,行則將至。”
按照Momenta的說法,執行層面主要面臨兩個維度的挑戰:包括技術難度和商業難度。
技術層面的難,例如數據流程的打通。曹旭東認為,行業主流都是以雷射雷達為主的技術解決方案,但Momenta是以統一量產感測器為主,需要打通量產自動駕駛到完全無人駕駛的數據流程,而他們在其中做了大量的技術創新。
在矽谷拜訪時,曹旭東也講到Momenta的戰略和已解決的技術難題,得到很多行業專家的認可和欣賞,因為Momenta在做原始的技術創新,而不是簡單的複製跟隨。
商業層面的難,包括如何深入行業、理解客戶,如何拓展能力邊界及更好的服務市場。
曹旭東進一步解釋:“To B是系統性的業務,面對的是一個組織,需要得到方方面面的認可。一線客戶都有很強的技術能力和很高的技術標準,需要經過非常嚴格的技術評測。而我們經過層層驗證,最後獲得了客戶的認可,進入了量產體系。”
Momenta也有相對長遠的完整時間表。
他們內部,認定2016年-2019年是戰略雛形期,2019年-2024年是戰略成型期。
然後2024年-2028年才是真正的戰略爆發期,那時候在完全自動駕駛“這條腿”上將加速趕上Waymo。
只是現在開始,自動駕駛“面壁者”Momenta,戰略意圖一覽無餘。
▌告別盲人摸象
作用力也才剛剛開始。
從Momenta自身來說,徹底告別被“盲人摸象”狀態。
高精度地圖供應商?高級輔助駕駛玩家?量產自動駕駛交貨……
都不準確。
大道至簡,Momenta(現在)是一家怎樣的公司?
Momenta = Tesla + Waymo。
而且這種結合帶來的新場景新技能,還可能不是線性相加。
或許也是聚變反應。
比如特斯拉一直是從車角度提供方案,Waymo則是運力技術維度……
但二者結合,就是完整軟硬體集合體,載人載貨,私家車共用車,都有了可能。
簡而言之,能做的更多,可以做的更多,新價值已經展現,新邊界也就要重勘。
自然還會進一步帶動行業新格局重塑。
自動駕駛發展中,特斯拉方案和Waymo路線,一次次被提起,一次次被模仿,一次次被對標。
這樣的新玩家新勢力,無論中美,都可以舉出很多。
但今日之Momenta,在理論上真正達到二合一,並且驗證了可行性。
於是,之前衡量自動駕駛的時間表,曾經理解Momenta的框架,可能是時候刷新了。
▌One more thing
雖然Momenta是中國自動駕駛的獨角獸,但作為Momenta的船長,曹旭東最關心的並不是公司的估值。
他認為商業世界一切有為法,一定離不開價值規律本身,估值並不需要過分關心。
他關心什麼?
作為CEO,他說核心還是人,組織的學習、進步和提升。
這位Momenta創始人,今年來自上而下改變了一件小事:不再把“創始人”放在對內對外的任何地方,僅以職務——CEO示人。
他解釋說,Momenta正在最大限度通過組織變革、文化塑造,形成合夥人文化。
合夥人不分加入先後,不論年齡資歷,核心關注的是技術、貢獻和志同道合。
他希望以此吸引最頂級的牛人,讓更多有識之士加速自動駕駛終局到來。
《道德經》裡說,夫唯不爭,故天下莫能與之爭。
但真正能邁步實踐者,少之又少。
如今,無人車獨角獸Momenta,宣示兩條腿,放下“自我”,立志要做推動終局實現的那個玩家。
這就是Momenta。
毫米波雷達 缺點 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
智慧車需具備PACCE五大特點 方能從Car 1.0進化至2.0版
林芬卉 2018-09-12
Semicon Taiwan 2018智慧汽車國際高峰論壇,從汽車產業鏈上、中、下游主要業者觀點,提出未來智能車由Car 1.0版進化至2.0版,需朝幾個方向發展,包括駕駛方式改變、車聯網的普及、新移動概念等,而汽車未來將具備「PACCE」五大特點。
現在智慧汽車以搭載ADAS功能為主(又稱Car 1.0版),未來5~10年具Level 2~3等級自駕車成長將顯著,最終目標為開發Level 4~5自動駕駛汽車(簡稱AD,又稱Car 2.0版);ADAS與AD不同處在於,前者資料主要在Edge端處理,後者則由中央超級電腦處理所有匯集的資訊。
從製造觀點來看,傳統汽車大廠先以ADAS為基礎,再以step-by-step方式向上做到AD等級,也就是由Car 1.1、Car 1.2、Car 1.n、再進化至Car 2.0版;相對的,科技大廠採取一步到位方式,直接開發Car 2.0版的全自駕車款。
由上述可知,汽車產業在正進行極大變革,而未來汽車將具備「PACCE」五大特點,包括Perception(感知)、Assessment(評估)、Control(操控)、Communication(通訊)、Expectations(期望)。
Perception方面,未來智慧車會使用多重感測器,其中,車用相機模組需求量顯著增加,以產值計2016~2020年複合成長率將達24%。現常與相機模組搭配的感測器為毫米波雷達,其優勢為即使在大雨中惡劣環境、物件辨識效果僅減損10%,也就是說可補足其他感測器易受外界環境影響的缺點;而超過75%車用毫米波雷達系統會結合軟體演算法,靜態物件主要以卷積神經網路(CNN)辨識,動態物件則主要採用循環神經網路(RNN)及遞歸神經網路(GNN)等技術。
目前光達(LiDAR)價格雖然偏高,但車廠會優先採用成本較低的固態光達,預估大量生產下固態光達價格將可降至200~250美元,而光達好處是影像可作到無縫接合。
汽車如同人類一般具有感知功能,接下來就需進行路況的評估(Assessment),也就是車子需瞭解交通規則、知道可行駛的路徑、作到即時辨識及適應路況等。有了感知及評估能力後,汽車亦要能自動操控(Control)各種動作,如前進、煞停、轉向等。
當汽車要作到良好的自我操控性,需經過不斷的深度學習及路測。據車廠統計,當100輛的自駕車隊以每小時25英哩速度行駛,並以1年365天、1天24小時進行路測,即可蒐集到足夠的數據量,信心度可達95%。
為強化汽車信賴信及補足感測器無法全面偵測的缺點(如轉角處車輛被大樓檔住),未來汽車亦需具備通訊(Communication)及聯網功能;又因車子會與車、路、人、基礎設施等連網,故每輛車每天蒐集到的資料量高達4,000GB,此時車聯網需導入共通標準,以確保各裝置間能以共通語言進行對話。
值得注意是,現車聯網兩大技術DSRC及C-V2X正在推行,兩者各有其優缺點,晶片業者如以色列商Autotalks為解決車廠或Tier 1業者選邊站的難題,因此發展出雙模V2X晶片組。
除自駕車技術不斷往前推進外,車廠亦需考量到消費者對於自駕車的期待(Expectations)及看法。據市調機構針對主要國家消費者調查,若是完全自駕功能的汽車(Full Autonomous Vehicles),有6~8成的人認為安全上仍有疑慮;此時需要仰賴AI技術不斷對自駕車進行深度學習及訓練,以優化其自我駕車能力。
目前已商用化、並在路上行駛的最高等級自駕車為奧迪(Audi)A8的Level 3車款,隨著AI將滲透到人類生活各層面(包含行動運輸工具),預估2035年將有5,400萬輛自駕車上路。
為因應完全自駕車時代來臨,未來汽車產業由「3S」所組成,包括Semiconductor(半導體)、Software(軟體)、System(系統),而對3S掌握度愈高的業者,未來在汽車生態系中愈有勝出機會。
附圖:Semicon Taiwan 2018智慧汽車國際高峰論壇提出智能車需具備PACCE五大特點。林芬卉
資料來源:https://www.digitimes.com.tw/iot/article.asp…
毫米波雷達 缺點 在 毫米波雷達天地 - Facebook 的推薦與評價
毫米波雷達 ,指的是工作在毫米波波段(millimeter wave)的雷達,透過天線發射毫米 ... 截獲干擾的機率;其缺點是測距量程較短,距離都卜勒耦合以及收發隔離難等缺點。 ... <看更多>
毫米波雷達 缺點 在 光達缺點在PTT/Dcard完整相關資訊 的推薦與評價
表1 光達、光學攝影機、雷達之優缺點比較 ... | 毫米波雷達缺點毫米波雷达的工作原理及优缺点- 分析行业新闻。 ... tw。 ... <看更多>
毫米波雷達 缺點 在 [討論] 光達與毫米波雷達自駕技術的未來之戰- 看板car - 批踢踢 ... 的推薦與評價
https://youtu.be/bPaSqgg7aws
今天網路有一位曲博士分析了未來自駕技術所使用的雷達與光達的差異
並大膽分析特斯拉未來自駕技術的選擇
因為影片很長相信大多數人不會看完
所以總結一下
特斯拉目前硬體配置能否在未來升級到LV2以上?
特斯拉目前搭配正前方的三個影像感測器作為偵測前中後車況
搭配AI演算,在數據量足夠分析後,有可能能達成
但曲博並不看好
為何人類兩個眼睛就能開車,特斯拉三個影像感測器的即時訊息量還不足以達成自駕?
人類兩個眼睛可以抓到同一物體的成像差別,足以判斷物體的遠近。並且人類眼睛對焦極
快,處理影像的速度也比電腦快,所以兩隻眼睛即能開車。
而特斯拉的三個鏡頭畫素太低,且都只能定焦前中後還需做影像處理,所以目前無法對多
變的路況做即時的分析。
光達與雷達兩者的優缺點為何?
雷達分辨率太低,角解析度量產只能做到2-5度,路況無法做精確的偵測。
但是價格便宜,且能跟車體做較好的整合
光達有很好的分辨率,但是整個硬體像個大水桶,用在車上不美觀又會有配置的麻煩,且
價格高達一萬美金大部分車廠都很難接受
光達與雷達的未來為何?
雷達分辨率正在進步,而光達的價格與體積也在進步
目前來看還不知道誰會勝出,但曲博看好光達
特斯拉未來有沒有可能採用光達?
曲博認為未來光達價格與體積都進步到一個程度,且有其他車廠採用後,特斯拉就有可能
改變目前的硬體規格採用光達。
其他的論點還有特斯拉明明沒有自動駕駛,取名卻叫做Auto Pilot有點誤導消費者,特斯
拉不想被加州監管,這樣子的行為在一個與生命有關的造車行業是不正確的。
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 27.52.63.194 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/car/M.1616641664.A.C3C.html
※ 編輯: POWERSERIES (27.52.63.194 臺灣), 03/25/2021 11:29:12
... <看更多>