/ influencer 以及他的業障 /
.
我一直到這一兩年才頻繁的聽到這個詞。我覺得用這個詞來形容網紅,要比 KOL (key opinion leader) 要好一些。畢竟很多「網紅」的正確或者錯誤發言只是發揮了或好或壞影響力,並沒有真正「Lead」一些甚麼。
.
有兩個小故事。
.
其一,一個 ... 甚至說不上點頭交的業界人士,有一天開始在網路媒體上寫作。一個偶然狀況下,某友人轉發了連結給我,想問問看我對文章的評語是甚麼 ...
.
我的回法是:「他挑錯寫錯策略了。」當一個人沒有足夠的理論深度或者實務的強度時,很不適合用「俯視」的角度教人怎麼看產業、經營企業、或者發展競爭優勢。歷史總會教我們些甚麼;但如果一個網路評論者總對著螢幕寫些著:「莫忘NOKIA」、「莫忘王安」、「還記得 Compaq」嗎?而爬梳不出這些企業經營背後的脈絡,也沒辦法好好的分析 ... 他的話總是空的。而且他期待「業界人士自行腦補他的空泛談話,產出『此君發言甚為精妙,必是通玄神人!』」腦袋的洞過大時,要補。
.
.
其二,要給人上課,切記要擔業障的。
.
你要記得,你收了人家的束脩,你要對學生負責任。最好最好你說的話要有理論基礎,這樣即便你自己的理解有討論空間,學生最後還是能夠得到一套清楚的理論自己理解與使用。
.
純粹站在「經驗優勢」的角度去授課,並不是太好的事情。因為很有可能你做了十年、二十年、三十年,甚至是四十年的工作,都是錯的,或者「到今天已經沒有實踐的價值」(但肯定有歷史或探討的意義)。
.
「蛤?你吃過的鹽到底關學生屁事?」更別說現在很多講師之所以可以發言、當網紅,並不是因為他有很強的功底 ... 而是因為他有「教學熱誠」。
.
相較於「喜歡教學」,我寧可接受老師「不喜歡教學但是基本功很紮實」。可是,現在有很多名講師,是用自己的三年經驗教新鮮人、五年經驗教兩年經驗。
.
欸,幾年不是重點!我想說得是:「要教學,有專業、內容有理論支持是根本。老師背後有操作經驗、拿理論跟實務對話,或者知道學生在教學上常有哪些誤區跟盲點是大加分!」你千萬不要音為某某老師是網紅,所以就跑去上他課;又或者看到有很多學生幫他的課程點讚就覺得他好棒棒。
.
大家要小心不要被這些 Influencer 「影響到」,下錯判斷哩!他在堆疊自己的業障,但我們不要輕易地變成受害者啊。
同時也有1部Youtube影片,追蹤數超過250的網紅偽學術,也在其Youtube影片中提到,[旅行的旅行] 行動傳播技術空間中的旅行:#當我們用GoogleMap找路時 / 李長潔 🚎 . 時常有人問我,你每次去日本的那些超級冷門的風景、傳說地點、氛圍氣喫茶老店,到底怎麼找到的,聽都沒聽過這些地方。剛開始,我會查詢中文與外文的旅行資訊,像是旅遊手冊、觀光網站,都是基本工作,可以給旅客一點基...
深度討論教學法理論與實踐 在 李開復 Kai-Fu Lee Facebook 的最讚貼文
近日,我與阿萊克斯·彭特蘭教授(Alex Pentland)展開了一場”AI如何重塑人類社會”的精彩對話。
《連線》雜誌的資深撰稿人威爾·奈特(Will Knight)主持了這場對話。
阿萊克斯·彭特蘭教授任教于麻省理工學院,為全球大資料權威專家之一,現任MIT連接科學研究所主任、MIT媒體藝術與科學教授,擁有“可穿戴設備之父”、《福布斯》“全球七大權威大資料專家”、《麻省理工科技評論》“年度十大突破性科技”兩度桂冠獲得者等頭銜,曾參與創建MIT媒體實驗室,是全球被引述次數最多的計算科學家之一。
對話金句:
李開復:
AI最大的機會蘊藏在與傳統企業的結合中,這種價值的產生極其迅速,只需要幾個月,甚至短短幾周。
未來突破很難預測,對奇點、超級智慧的爭辯,在我看來都過於樂觀了。
小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,不要與巨頭核心業務正面硬碰。
阿萊克斯·彭特蘭:
AI絕非試圖取代人類,而是促進多元文化之間的相互連接、團隊合作,讓人們更好的進行社交和連接彼此。
最困難的其實是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。
人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。
我在對話中表示,當我們試圖解決AI問題時,應該用技術來解決技術的問題,可以尋求與監管部門協作,而不只是丟給他們,“新技術會衍生新的問題,我們應該多方嘗試用更進階的技術性解決方案,就像電腦病毒剛出現時,殺毒軟體隨之誕生。”
彭特蘭教授認為,人工智慧的核心,是促進多元文化之間的相互連接。不只是工程師或科學家,連經濟學家、政治家都必須參與進來。“國家之間應該促進合作、制定互通標準,就像TCP/IP互聯網協定那樣,避免AI冷戰。” 我們都贊同,AI發展從來不是單打獨鬥,跨學科思維、跨領域合作尤為重要。 這場對話是麻省理工學院中國創新與創業論壇(MIT-CHIEF) 組織的高峰對話系列活動,主題是《計算與未來: AI與資料科學如何重塑人類社會》。
麻省理工學院中國創新與創業論壇(MIT-CHIEF)由麻省理工學院的中國留學生創立,至今已有十年,是北美歷史最悠久的、由高校學生組織的中國創新創業論壇。系列高峰對話邀請了頂級科學家、投資人及創業者,共同探討科技創新及商業化過程中面臨的挑戰。
以下是我們對話的核心內容,由我的同事整理、分享給大家:
Part I 主題演講
▌李開復:各方應協作,讓AI 更務實
非常榮幸再次受到MIT-CHIEF的邀請,對於人工智慧的看法,這次我主要想講四點。
第一點是我書裡的主題,人工智慧的超能力。我們已經從人工智慧的發明期步入應用期階段,從應用落地層面來說,正迎來了AI發展最大的機遇。
很多科技公司目前已對人工智慧進行了多樣化佈局,從視覺、語言、觸覺和其他感知技術,到自動化機器人、無人駕駛等,對很多領域開啟了深遠的影響。雖然眼下所見的AI應用仍有局限性,但我預測未來的格局會非常龐大,依據統計,各行各業採用AI的程度目前不到5%,AI應用的中長期增長曲線相當可期。
第二點是我很欣喜看到的一點,AI正在和傳統行業深度融合。隨著人們對人工智慧的瞭解越來越多,更多的AI公司湧現出來。
AI最大的機會蘊藏在與傳統企業的結合中,創新工場也正在説明金融、製造、物流、零售、醫療等行業的公司進行AI變革。
作為AI投資人,我認為在這些行業如果找到正確的AI應用方向,就能帶來上千萬的回報。這種商業價值的產生是極其迅速的,通常只需要幾個月,甚至短短幾周就能看到成果。
現在人工智慧在傳統產業的滲透率仍在個位數,仍然有很大的提升空間。然而對於很多公司來說,它們需要的是高度定制化的方案,而非通用型AI方案,所以融合的過程中,不可避免會遇到不少挑戰和痛點。
第三,我早年做過很多科研工作,很高興能看到關於系統一和系統二(System One, System Two)的討論,我們期待人工智慧技術從系統一升級為系統二,即從識別、決策、優化等能力,升級到感知、認知等進階智慧的能力。
有不同的學派都在努力讓人工智慧更接近人類智慧,其中一個流派主張回歸經典的AI理念,甚至重新構建嶄新的模型結構,在深度學習技術的基礎上利用人類的知識。但我更支持另一個理論——深度學習的潛力還沒有完全釋放。
回看人工智慧過去60多年的歷程,最大的突破來自於計算能力和資料量大增而產生的可擴展演算法。我們看到了卷積神經網路(CNN)帶來的喜人成績,還有預訓練自然語言處理模型(Pre-Trained Models for Natural Language Processing)的廣泛運用。
預訓練模型與人類語言學習的模式類似,不管是英語還是中文,在習得這些語言之後,再去學習程式設計、藝術、化學。在無人監督的學習環境中,這種模式比我們想像得還要強大,就像阿爾法圍棋(AlphaGo)一樣。
最後一點我想說的是,如何讓AI變得更務實。
AI有很多問題,例如隱私、資料安全、治理和監管,在此就不一一討論了。當我們試圖解決這些AI難題時,有人認為讓監管部門加強管理是唯一辦法,其實不然,我們是否也可以朝著研發更厲害的技術性解決方案去努力?
就像電腦病毒剛出現時,殺毒軟體隨之誕生;面對千年蟲難題時,也迅速找到了技術應對方案。我們可以通過研發新技術,應對DeepFake深度換臉程式的挑戰;或者通過聯邦學習技術,在保證資料私密性的同時,滿足深度學習訓練需求。
作為握有技術能力的群體,我們需要與監管部門一起協作,而不只是把工作丟給他們。相信有了各方的助力,我們可以讓AI的應用變得更有深度,更加務實,更高效地克服現在面臨的種種問題。
▌阿萊克斯·彭特蘭:國家間應建立互通標準,避免“AI冷戰”
我對當前的深度學習技術不太樂觀。
最為主要原因是,深度學習不僅需要龐大的資料來源,而且要求這些資料長時間恒定不變,以保證模型訓練結果的可靠性,例如人類的面容、語言,就是相對穩定不變的資料來源。
但深度學習卻沒法應對快速變化的真實情況。亞馬遜在新冠疫情蔓延速度暴增時,出現了倉庫貨物緊缺,不得不停止送貨服務。這種經過深度學習高度優化後的系統發生崩潰,就是因為快速變化的疫情,和深度學習對恒定資料來源的需求是矛盾的。
另外,我想談談如何通過聯邦學習,促進資料的流通。
大多數公司沒有足夠豐富的資料,需要聯合不同的資料來源。基於這種需求,出現了很多新商業模式,比如“資料經紀人”——他們不出售資料,而是把資料借出去,作特定需求的使用。
“資料經紀人”業務湧現了很多,他們促進了資料的流通,也加強了資料的隱私性。因此,像聯邦學習這樣的技術和商業策略結合,有效解決了資料在合規性和所有權方面的難題。
聯邦學習也依賴於新的基礎設施建設,為資料應用和深度學習提供基礎環境,比如區塊鏈技術。現在世界上很多國家在做相關系統的建設實驗,新加坡等國家設置了一種相互競爭的區塊鏈系統,來解決支付和物流問題。我們最近也幫助瑞士做了類似的實驗,涉及不同資料的互通性和連貫性問題。
我們仍在研究如何用儘量少的資料,實現人工智慧的目標。少量資料是指不斷更新的短期資料,這些資料能使AI應對迅速變化的情況,並及時做出調整。
我們打算將AI與其他基礎科學結合,例如阿爾法圍棋(AlphaGo)就是這類結合的初步嘗試。這些方法不依賴于大量恒定資料,可能會比深度學習更加強大。
除此之外,我們在探討用AI保障聯邦學習過程中不同資料方的權益,這是實現不同國家之間的互通性、支付信任度、物流運輸等方面合作的關鍵前提。
另一方面,我們探索如何將AI技術應用於加密資料上。我們和大公司以及政府密切合作,找出解決系統入侵和保障網路安全的方法。
我同時花了很多時間研究與政府的合作。政府很多時候不知道如何通過大資料做決策,也不知道如何進行資料優化。而AI能夠幫助政府實現更高的效率,比如聯合國現在已經有了很多可持續發展目標的相關評估指標,世界經濟論壇也可以為會員國提供不同的標準測算。
基於我們已有的多中繼資料庫,現在可以利用AI實現全新的資料優化方式,將貧困、不平等這種之前無法量化的指標,通過可量化的指標進行評估。
同時,要真正實現這個目標,我們還需要制定統一的互通性標準。如果沒有這個標準,國家之間就不會相互信任去合作,就可能出現AI冷戰。
因此我們需要找到促進合作的方式,就像TCP/IP互聯網協議那樣。而之前我提到的,新加坡、瑞士等現在正在嘗試的區塊鏈系統,將有希望解決國家間缺乏互通標準的問題。
Part II 對話
▌ 美國線上教育發展難度更大,只在ZOOM上講課是不夠的
Q1:疫情加速了行業的改變,遠端醫療、線上教育開始蓬勃發展,這只是AI對人類社會產生影響的冰山一角。想請兩位談一談,目前看好AI在哪些領域應用的未來前景?
李開復:疫情的確對整個社會產生了實質性的影響,人們行為習慣發生了很多改變,更願意接受線上學習和工作了。
這種新的行為習慣產生了大量資料流程,為AI應用帶來了更多可能性。比如大健康領域以及遠端醫療中所產生的資料,可以訓練更智慧的模型。同時更多人開始在基因組學、新藥研發方面結合新的AI技術進行研究,因此我相信AI在醫療健康領域的潛能是非常巨大的。
AI與教育的結合也很值得期待。一方面可以説明老師處理重複性的日常事務,例如批改作業,讓老師得以將時間精力投入到更有創造性的事情上,能更悉心地為孩子提供優質教學。另一方面可以提高學生的課堂參與度和積極性,比如設置卡通版AI虛擬老師,讓課程充滿趣味性。
在中國,有很多線上教育公司在疫情之前就已經發展迅速,像創新工場投資的VIPKID,讓國外的純正英語老師線上上教授中國學生。目前,中國的線上教育已經擴展到了更多科目,包括體育、舞蹈、書法等素質教育課程。
相比之下,美國線上教育發展的難度會更大。畢竟只在ZOOM上講課是不夠的,好的線上教育必須要有好的內容。
▌AI核心是增強人際互聯,應注重文化多樣性
阿萊克斯·彭特蘭:李開復博士提到的教育案例,我不是很認同。
MIT大約20年前就在教育中使用AI,重點根本不是內容,我們甚至提倡將內容免費開放給大眾。
AI絕非試圖取代人類的作用,我們更強調用AI增強人與人之間的互動,讓人們更好的社交和連接彼此。比如手機上人工智慧技術,不是要取代你,而是讓你高效地找到最適合的工作、最正確的人,讓你更容易的獲取資訊,並進行創新。
我們可以利用資料激發更強的創新力,培養領導力。只有基於這樣的宗旨,才能促進更有創造力的教育和學習,這比關注教育內容本身重要得多。
在加拿大,有家創業公司正在訓練普通民眾學習AI,比如水管工,教學效果非常不錯。他們的教育方式不是簡單的教授基本知識,而是以一種能夠激發人們互動思考的方式。
我們之前在中國調研了3000多個孵化器,發現創業公司成功的要素裡,第一個是文化多樣性,也就是說創始團隊背景的複雜性和多樣性。第二個是團隊成員專業的多樣性,他們能否發揮自己所長,並很好地進行團隊合作。
1956年,馬文·明斯基 (Marvin Minsky)提出了人工智慧這個詞。但我們對於人工智慧的理解,不應該只停留在“人工”層面,而應擴展到多元文化之間的相互連接、團隊合作,我把它叫做延伸智能(Extended Intelligence)。這也是我想強調的,人工智慧這個名詞有一定的偶然性,但它的核心點是增強人與人之間的互聯性。
▌AI未來突破難預測,奇點、超級智慧過於樂觀
Q2:未來十年AI有沒有可能取得重要突破?比如GPT-3近期展現驚人的能力。兩位認為未來的突破方向是什麼?
李開復:過去60多年來,深度學習是唯一的重大突破。在這之後,卷積神經網路(CNN)和GPT-3等都算是重要的改善,我對於人工智慧的漸進式改善保持樂觀。
對科學家來說,他們更期待著技術上的突破式進展。但我覺得未來十年基礎科研或許不會有大的突破。但模型相對容易,只要有大量的資料,就可以從實驗室進入到行業應用,CNN和GPT-3都是模型加海量資料的成果。
我是務實派的,雖然持有樂觀態度,但並不是一位“未來學家”。未來的突破很難預測,對奇點(Singularity)的爭辯,甚至預測超級智慧的出現,在我看來都過於樂觀了。
阿萊克斯·彭特蘭:我同意李博士的觀點。很多生物機制很難解釋,包括用感知認識事物、理解聲音、尋找食物等,是深度學習演算法做不到的。但深度學習可以研究科學、制定規則、研究理論,並進行實踐。
從務實的角度來說,我最感興趣的就是聯邦學習。就醫療而言,我們有這麼多醫院,在新冠疫情期間做了很多的實驗,為什麼這些實驗資料不能進行聯合呢?
儘管資料有不相容的地方,但這也是一個很好的機會去探究不同的資料之間的關聯性。在未來,我們對資料的需求也許會越來越少,外科醫生或者物理學家或許不需要太多資料,因為他們對規則已經瞭若指掌了。
▌不要墨守成規,要跨領域、跨學科應對挑戰
Q3:人工智慧會有什關鍵挑戰?對於想從事這個行業的人,有什麼是需要瞭解的關鍵點?
李開復:首先,大背景在改變,新科技層出不窮,我們每年都需要學習新的東西。
其次,人工智慧可能引起各種問題,包括偏見、歧視、倫理道德等,是否危害人類的身體健康,無人駕駛技術該何去何從等等。
第三,人工智慧的研發需要深刻地理解技術對社會、生活與人類健康會產生的影響。我非常欣賞斯坦福和MIT這樣的高校,能夠把AI教育擴展到各個學科,讓研發人員及早意識到自己的責任和價值。
阿萊克斯·彭特蘭:是的,我朋友做過一個有關電的趣味類比,電動馬達最初在工廠裡用於生產的時候,並沒有發揮出多大的作用,因為大家並不知道如何改造生產流程。
AI在一些領域發揮的作用是顯著的,但應用到其他領域時,就需要改造流程。很多情況下,最困難的就是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。
而有意思的是,就像李博士提到的,像MIT和斯坦福這樣的高校確實在認真嚴肅地對待這個問題。
比如,我今天早上正好就這個話題跟G20領導人對話,大家一致認為我們必須從跨領域、跨學科的角度去面對這個問題,不能只是工程師或者社會科學從業者們在做,經濟學家,政治家等等都必須參與進來緊密合作。
隨著AI的應用領域越來越廣,除了必須具備強有力的技巧來建立社會規則,還需要對研究經費、企業投入等進行各種調整。
▌雖然大公司實力不容小覷,但依舊對小公司抱有期待
Q4:AI研究會消耗大量的資源,我們是否應該將資源往學術界平衡?現在已經發生資源的重新分配和平衡了嗎?
李開復:就人才而言,現在已經有重新平衡的跡象了。
過去,頂尖大學的學者基於待遇和種種考量,不少選擇去企業界工作。而近期,曾任職於百度、海爾、位元組跳動等公司的數位優秀AI科學家已經回歸高校。
但像GPT-3這樣的技術,仍然不是大學和小公司能支付得起的。支撐GPT-3運行的電腦是世界算力第五的超級電腦。每進行一次演算法訓練,就要花費460萬美金,只有像騰訊、穀歌、微軟這個級別的公司才能負擔得起如此強大的算力。
我觀察到,近年的AI創業公司已經和5年前截然不同了。它們一般由AI科學家和商業人才共同創建,為了解決特定問題而生,並非紙上談兵做突破性科研,切入的領域也往往是巨頭公司忽略的地方。
例如,為製造業進行AI賦能,不是一件輕鬆的事,需要去工廠實地勘查,瞭解運作方式。大公司因為賺錢很容易,不願意做這些性價比低的苦活累活。這些小公司的努力一旦有了成果,就會給產業界帶來革命性的影響。所以,雖然大公司的實力不容小覷,但我依舊對小公司抱有期待。
阿萊克斯·彭特蘭:大學和公司是一種融合的關係,不僅體現在人才流動上,也會進行資訊資源分享,彼此是整體性的合作態勢。
當然這也不是絕對,產業界的保密需求還是存在的,只是從學校的出發點來說,我們願意毫無保留地為大家提供更好的研究成果,並與企業合作,形成標準化平臺。
▌人工智慧取代人類需要上百年或更久
Q5:兩位認為什麼是AI不能取代的?
李開復:一類是創造力、分析能力、邏輯辯論能力,瞭解自己知道什麼不知道什麼,這些是人工智慧無法取代的。另外一類是同理心,人類之間的信任、友誼,自我認知、意識等。
阿萊克斯·彭特蘭:人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。
▌AI創業建議I:找到小切入點,不要與巨頭正面硬碰
Q6:李博士提到了AI在小企業中的運用,可否再舉例說明是如何運用的?
李開復:這個問題分兩部分:一個是小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,並且不要與巨頭核心業務正面硬碰。
對於那些中小型非AI、但想應用AI的公司,需要確保有足夠的資料,以訓練與核心商業價值掛鉤的AI模型,並且有願意變革的開放性公司文化。
所以,早期應用AI的公司可能規模較大,因為他們有足夠大的資料,和可相容變革的商業模型。每個例子都不同,不是任何一家公司都要應用AI。
阿萊克斯·彭特蘭:如果我們放寬AI的定義,或許水管工、合同工都有資料,通過一些簡單的分析、整合,AI也可以在很大程度上改進他們的工作。
這些都是很小的切入點,基於簡單的AI分析、機器學習,依舊可以產生巨大的潛力。
▌ AI創業建議II:知曉技術,同時理解商業
Q7:兩位再分享一下最後的建議?
李開復:我們在步入一個AI開始滲透到方方面面的令人振奮的時代,我希望所有的學生們都能參與到這個改革浪潮中。要深刻地理解人工智慧的商業落地,而不僅僅鑽研技術本身。
阿萊克斯·彭特蘭:不要太較真於深度學習或者冗長的演算法,一切始於要解決的現實問題。不要止步於技術本身,要明白資料類型、形態和規律,關注商業流程。
感謝葉樂斐、劉諾、藍萱、張昊、陳冬傑、劉子昂、張梓煜、錢淩寒、水一方、沈雍在校譯和審閱上對本文的貢獻。
深度討論教學法理論與實踐 在 李開復 Kai-Fu Lee Facebook 的最佳解答
近日,我與阿萊克斯·彭特蘭教授(Alex Pentland)展開了一場”AI如何重塑人類社會”的精彩對話。
《連線》雜誌的資深撰稿人威爾·奈特(Will Knight)主持了這場對話。
阿萊克斯·彭特蘭教授任教于麻省理工學院,為全球大資料權威專家之一,現任MIT連接科學研究所主任、MIT媒體藝術與科學教授,擁有“可穿戴設備之父”、《福布斯》“全球七大權威大資料專家”、《麻省理工科技評論》“年度十大突破性科技”兩度桂冠獲得者等頭銜,曾參與創建MIT媒體實驗室,是全球被引述次數最多的計算科學家之一。
對話金句:
李開復:
AI最大的機會蘊藏在與傳統企業的結合中,這種價值的產生極其迅速,只需要幾個月,甚至短短幾周。
未來突破很難預測,對奇點、超級智慧的爭辯,在我看來都過於樂觀了。
小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,不要與巨頭核心業務正面硬碰。
阿萊克斯·彭特蘭:
AI絕非試圖取代人類,而是促進多元文化之間的相互連接、團隊合作,讓人們更好的進行社交和連接彼此。
最困難的其實是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。
人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。
我在對話中表示,當我們試圖解決AI問題時,應該用技術來解決技術的問題,可以尋求與監管部門協作,而不只是丟給他們,“新技術會衍生新的問題,我們應該多方嘗試用更進階的技術性解決方案,就像電腦病毒剛出現時,殺毒軟體隨之誕生。”
彭特蘭教授認為,人工智慧的核心,是促進多元文化之間的相互連接。不只是工程師或科學家,連經濟學家、政治家都必須參與進來。“國家之間應該促進合作、制定互通標準,就像TCP/IP互聯網協定那樣,避免AI冷戰。” 我們都贊同,AI發展從來不是單打獨鬥,跨學科思維、跨領域合作尤為重要。 這場對話是麻省理工學院中國創新與創業論壇(MIT-CHIEF) 組織的高峰對話系列活動,主題是《計算與未來: AI與資料科學如何重塑人類社會》。
麻省理工學院中國創新與創業論壇(MIT-CHIEF)由麻省理工學院的中國留學生創立,至今已有十年,是北美歷史最悠久的、由高校學生組織的中國創新創業論壇。系列高峰對話邀請了頂級科學家、投資人及創業者,共同探討科技創新及商業化過程中面臨的挑戰。
以下是我們對話的核心內容,由我的同事整理、分享給大家:
Part I 主題演講
▌李開復:各方應協作,讓AI 更務實
非常榮幸再次受到MIT-CHIEF的邀請,對於人工智慧的看法,這次我主要想講四點。
第一點是我書裡的主題,人工智慧的超能力。我們已經從人工智慧的發明期步入應用期階段,從應用落地層面來說,正迎來了AI發展最大的機遇。
很多科技公司目前已對人工智慧進行了多樣化佈局,從視覺、語言、觸覺和其他感知技術,到自動化機器人、無人駕駛等,對很多領域開啟了深遠的影響。雖然眼下所見的AI應用仍有局限性,但我預測未來的格局會非常龐大,依據統計,各行各業採用AI的程度目前不到5%,AI應用的中長期增長曲線相當可期。
第二點是我很欣喜看到的一點,AI正在和傳統行業深度融合。隨著人們對人工智慧的瞭解越來越多,更多的AI公司湧現出來。
AI最大的機會蘊藏在與傳統企業的結合中,創新工場也正在説明金融、製造、物流、零售、醫療等行業的公司進行AI變革。
作為AI投資人,我認為在這些行業如果找到正確的AI應用方向,就能帶來上千萬的回報。這種商業價值的產生是極其迅速的,通常只需要幾個月,甚至短短幾周就能看到成果。
現在人工智慧在傳統產業的滲透率仍在個位數,仍然有很大的提升空間。然而對於很多公司來說,它們需要的是高度定制化的方案,而非通用型AI方案,所以融合的過程中,不可避免會遇到不少挑戰和痛點。
第三,我早年做過很多科研工作,很高興能看到關於系統一和系統二(System One, System Two)的討論,我們期待人工智慧技術從系統一升級為系統二,即從識別、決策、優化等能力,升級到感知、認知等進階智慧的能力。
有不同的學派都在努力讓人工智慧更接近人類智慧,其中一個流派主張回歸經典的AI理念,甚至重新構建嶄新的模型結構,在深度學習技術的基礎上利用人類的知識。但我更支持另一個理論——深度學習的潛力還沒有完全釋放。
回看人工智慧過去60多年的歷程,最大的突破來自於計算能力和資料量大增而產生的可擴展演算法。我們看到了卷積神經網路(CNN)帶來的喜人成績,還有預訓練自然語言處理模型(Pre-Trained Models for Natural Language Processing)的廣泛運用。
預訓練模型與人類語言學習的模式類似,不管是英語還是中文,在習得這些語言之後,再去學習程式設計、藝術、化學。在無人監督的學習環境中,這種模式比我們想像得還要強大,就像阿爾法圍棋(AlphaGo)一樣。
最後一點我想說的是,如何讓AI變得更務實。
AI有很多問題,例如隱私、資料安全、治理和監管,在此就不一一討論了。當我們試圖解決這些AI難題時,有人認為讓監管部門加強管理是唯一辦法,其實不然,我們是否也可以朝著研發更厲害的技術性解決方案去努力?
就像電腦病毒剛出現時,殺毒軟體隨之誕生;面對千年蟲難題時,也迅速找到了技術應對方案。我們可以通過研發新技術,應對DeepFake深度換臉程式的挑戰;或者通過聯邦學習技術,在保證資料私密性的同時,滿足深度學習訓練需求。
作為握有技術能力的群體,我們需要與監管部門一起協作,而不只是把工作丟給他們。相信有了各方的助力,我們可以讓AI的應用變得更有深度,更加務實,更高效地克服現在面臨的種種問題。
▌阿萊克斯·彭特蘭:國家間應建立互通標準,避免“AI冷戰”
我對當前的深度學習技術不太樂觀。
最為主要原因是,深度學習不僅需要龐大的資料來源,而且要求這些資料長時間恒定不變,以保證模型訓練結果的可靠性,例如人類的面容、語言,就是相對穩定不變的資料來源。
但深度學習卻沒法應對快速變化的真實情況。亞馬遜在新冠疫情蔓延速度暴增時,出現了倉庫貨物緊缺,不得不停止送貨服務。這種經過深度學習高度優化後的系統發生崩潰,就是因為快速變化的疫情,和深度學習對恒定資料來源的需求是矛盾的。
另外,我想談談如何通過聯邦學習,促進資料的流通。
大多數公司沒有足夠豐富的資料,需要聯合不同的資料來源。基於這種需求,出現了很多新商業模式,比如“資料經紀人”——他們不出售資料,而是把資料借出去,作特定需求的使用。
“資料經紀人”業務湧現了很多,他們促進了資料的流通,也加強了資料的隱私性。因此,像聯邦學習這樣的技術和商業策略結合,有效解決了資料在合規性和所有權方面的難題。
聯邦學習也依賴於新的基礎設施建設,為資料應用和深度學習提供基礎環境,比如區塊鏈技術。現在世界上很多國家在做相關系統的建設實驗,新加坡等國家設置了一種相互競爭的區塊鏈系統,來解決支付和物流問題。我們最近也幫助瑞士做了類似的實驗,涉及不同資料的互通性和連貫性問題。
我們仍在研究如何用儘量少的資料,實現人工智慧的目標。少量資料是指不斷更新的短期資料,這些資料能使AI應對迅速變化的情況,並及時做出調整。
我們打算將AI與其他基礎科學結合,例如阿爾法圍棋(AlphaGo)就是這類結合的初步嘗試。這些方法不依賴于大量恒定資料,可能會比深度學習更加強大。
除此之外,我們在探討用AI保障聯邦學習過程中不同資料方的權益,這是實現不同國家之間的互通性、支付信任度、物流運輸等方面合作的關鍵前提。
另一方面,我們探索如何將AI技術應用於加密資料上。我們和大公司以及政府密切合作,找出解決系統入侵和保障網路安全的方法。
我同時花了很多時間研究與政府的合作。政府很多時候不知道如何通過大資料做決策,也不知道如何進行資料優化。而AI能夠幫助政府實現更高的效率,比如聯合國現在已經有了很多可持續發展目標的相關評估指標,世界經濟論壇也可以為會員國提供不同的標準測算。
基於我們已有的多中繼資料庫,現在可以利用AI實現全新的資料優化方式,將貧困、不平等這種之前無法量化的指標,通過可量化的指標進行評估。
同時,要真正實現這個目標,我們還需要制定統一的互通性標準。如果沒有這個標準,國家之間就不會相互信任去合作,就可能出現AI冷戰。
因此我們需要找到促進合作的方式,就像TCP/IP互聯網協議那樣。而之前我提到的,新加坡、瑞士等現在正在嘗試的區塊鏈系統,將有希望解決國家間缺乏互通標準的問題。
Part II 對話
▌ 美國線上教育發展難度更大,只在ZOOM上講課是不夠的
Q1:疫情加速了行業的改變,遠端醫療、線上教育開始蓬勃發展,這只是AI對人類社會產生影響的冰山一角。想請兩位談一談,目前看好AI在哪些領域應用的未來前景?
李開復:疫情的確對整個社會產生了實質性的影響,人們行為習慣發生了很多改變,更願意接受線上學習和工作了。
這種新的行為習慣產生了大量資料流程,為AI應用帶來了更多可能性。比如大健康領域以及遠端醫療中所產生的資料,可以訓練更智慧的模型。同時更多人開始在基因組學、新藥研發方面結合新的AI技術進行研究,因此我相信AI在醫療健康領域的潛能是非常巨大的。
AI與教育的結合也很值得期待。一方面可以説明老師處理重複性的日常事務,例如批改作業,讓老師得以將時間精力投入到更有創造性的事情上,能更悉心地為孩子提供優質教學。另一方面可以提高學生的課堂參與度和積極性,比如設置卡通版AI虛擬老師,讓課程充滿趣味性。
在中國,有很多線上教育公司在疫情之前就已經發展迅速,像創新工場投資的VIPKID,讓國外的純正英語老師線上上教授中國學生。目前,中國的線上教育已經擴展到了更多科目,包括體育、舞蹈、書法等素質教育課程。
相比之下,美國線上教育發展的難度會更大。畢竟只在ZOOM上講課是不夠的,好的線上教育必須要有好的內容。
▌AI核心是增強人際互聯,應注重文化多樣性
阿萊克斯·彭特蘭:李開復博士提到的教育案例,我不是很認同。
MIT大約20年前就在教育中使用AI,重點根本不是內容,我們甚至提倡將內容免費開放給大眾。
AI絕非試圖取代人類的作用,我們更強調用AI增強人與人之間的互動,讓人們更好的社交和連接彼此。比如手機上人工智慧技術,不是要取代你,而是讓你高效地找到最適合的工作、最正確的人,讓你更容易的獲取資訊,並進行創新。
我們可以利用資料激發更強的創新力,培養領導力。只有基於這樣的宗旨,才能促進更有創造力的教育和學習,這比關注教育內容本身重要得多。
在加拿大,有家創業公司正在訓練普通民眾學習AI,比如水管工,教學效果非常不錯。他們的教育方式不是簡單的教授基本知識,而是以一種能夠激發人們互動思考的方式。
我們之前在中國調研了3000多個孵化器,發現創業公司成功的要素裡,第一個是文化多樣性,也就是說創始團隊背景的複雜性和多樣性。第二個是團隊成員專業的多樣性,他們能否發揮自己所長,並很好地進行團隊合作。
1956年,馬文·明斯基 (Marvin Minsky)提出了人工智慧這個詞。但我們對於人工智慧的理解,不應該只停留在“人工”層面,而應擴展到多元文化之間的相互連接、團隊合作,我把它叫做延伸智能(Extended Intelligence)。這也是我想強調的,人工智慧這個名詞有一定的偶然性,但它的核心點是增強人與人之間的互聯性。
▌AI未來突破難預測,奇點、超級智慧過於樂觀
Q2:未來十年AI有沒有可能取得重要突破?比如GPT-3近期展現驚人的能力。兩位認為未來的突破方向是什麼?
李開復:過去60多年來,深度學習是唯一的重大突破。在這之後,卷積神經網路(CNN)和GPT-3等都算是重要的改善,我對於人工智慧的漸進式改善保持樂觀。
對科學家來說,他們更期待著技術上的突破式進展。但我覺得未來十年基礎科研或許不會有大的突破。但模型相對容易,只要有大量的資料,就可以從實驗室進入到行業應用,CNN和GPT-3都是模型加海量資料的成果。
我是務實派的,雖然持有樂觀態度,但並不是一位“未來學家”。未來的突破很難預測,對奇點(Singularity)的爭辯,甚至預測超級智慧的出現,在我看來都過於樂觀了。
阿萊克斯·彭特蘭:我同意李博士的觀點。很多生物機制很難解釋,包括用感知認識事物、理解聲音、尋找食物等,是深度學習演算法做不到的。但深度學習可以研究科學、制定規則、研究理論,並進行實踐。
從務實的角度來說,我最感興趣的就是聯邦學習。就醫療而言,我們有這麼多醫院,在新冠疫情期間做了很多的實驗,為什麼這些實驗資料不能進行聯合呢?
儘管資料有不相容的地方,但這也是一個很好的機會去探究不同的資料之間的關聯性。在未來,我們對資料的需求也許會越來越少,外科醫生或者物理學家或許不需要太多資料,因為他們對規則已經瞭若指掌了。
▌不要墨守成規,要跨領域、跨學科應對挑戰
Q3:人工智慧會有什關鍵挑戰?對於想從事這個行業的人,有什麼是需要瞭解的關鍵點?
李開復:首先,大背景在改變,新科技層出不窮,我們每年都需要學習新的東西。
其次,人工智慧可能引起各種問題,包括偏見、歧視、倫理道德等,是否危害人類的身體健康,無人駕駛技術該何去何從等等。
第三,人工智慧的研發需要深刻地理解技術對社會、生活與人類健康會產生的影響。我非常欣賞斯坦福和MIT這樣的高校,能夠把AI教育擴展到各個學科,讓研發人員及早意識到自己的責任和價值。
阿萊克斯·彭特蘭:是的,我朋友做過一個有關電的趣味類比,電動馬達最初在工廠裡用於生產的時候,並沒有發揮出多大的作用,因為大家並不知道如何改造生產流程。
AI在一些領域發揮的作用是顯著的,但應用到其他領域時,就需要改造流程。很多情況下,最困難的就是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。
而有意思的是,就像李博士提到的,像MIT和斯坦福這樣的高校確實在認真嚴肅地對待這個問題。
比如,我今天早上正好就這個話題跟G20領導人對話,大家一致認為我們必須從跨領域、跨學科的角度去面對這個問題,不能只是工程師或者社會科學從業者們在做,經濟學家,政治家等等都必須參與進來緊密合作。
隨著AI的應用領域越來越廣,除了必須具備強有力的技巧來建立社會規則,還需要對研究經費、企業投入等進行各種調整。
▌雖然大公司實力不容小覷,但依舊對小公司抱有期待
Q4:AI研究會消耗大量的資源,我們是否應該將資源往學術界平衡?現在已經發生資源的重新分配和平衡了嗎?
李開復:就人才而言,現在已經有重新平衡的跡象了。
過去,頂尖大學的學者基於待遇和種種考量,不少選擇去企業界工作。而近期,曾任職於百度、海爾、位元組跳動等公司的數位優秀AI科學家已經回歸高校。
但像GPT-3這樣的技術,仍然不是大學和小公司能支付得起的。支撐GPT-3運行的電腦是世界算力第五的超級電腦。每進行一次演算法訓練,就要花費460萬美金,只有像騰訊、穀歌、微軟這個級別的公司才能負擔得起如此強大的算力。
我觀察到,近年的AI創業公司已經和5年前截然不同了。它們一般由AI科學家和商業人才共同創建,為了解決特定問題而生,並非紙上談兵做突破性科研,切入的領域也往往是巨頭公司忽略的地方。
例如,為製造業進行AI賦能,不是一件輕鬆的事,需要去工廠實地勘查,瞭解運作方式。大公司因為賺錢很容易,不願意做這些性價比低的苦活累活。這些小公司的努力一旦有了成果,就會給產業界帶來革命性的影響。所以,雖然大公司的實力不容小覷,但我依舊對小公司抱有期待。
阿萊克斯·彭特蘭:大學和公司是一種融合的關係,不僅體現在人才流動上,也會進行資訊資源分享,彼此是整體性的合作態勢。
當然這也不是絕對,產業界的保密需求還是存在的,只是從學校的出發點來說,我們願意毫無保留地為大家提供更好的研究成果,並與企業合作,形成標準化平臺。
▌人工智慧取代人類需要上百年或更久
Q5:兩位認為什麼是AI不能取代的?
李開復:一類是創造力、分析能力、邏輯辯論能力,瞭解自己知道什麼不知道什麼,這些是人工智慧無法取代的。另外一類是同理心,人類之間的信任、友誼,自我認知、意識等。
阿萊克斯·彭特蘭:人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。
▌AI創業建議I:找到小切入點,不要與巨頭正面硬碰
Q6:李博士提到了AI在小企業中的運用,可否再舉例說明是如何運用的?
李開復:這個問題分兩部分:一個是小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,並且不要與巨頭核心業務正面硬碰。
對於那些中小型非AI、但想應用AI的公司,需要確保有足夠的資料,以訓練與核心商業價值掛鉤的AI模型,並且有願意變革的開放性公司文化。
所以,早期應用AI的公司可能規模較大,因為他們有足夠大的資料,和可相容變革的商業模型。每個例子都不同,不是任何一家公司都要應用AI。
阿萊克斯·彭特蘭:如果我們放寬AI的定義,或許水管工、合同工都有資料,通過一些簡單的分析、整合,AI也可以在很大程度上改進他們的工作。
這些都是很小的切入點,基於簡單的AI分析、機器學習,依舊可以產生巨大的潛力。
▌ AI創業建議II:知曉技術,同時理解商業
Q7:兩位再分享一下最後的建議?
李開復:我們在步入一個AI開始滲透到方方面面的令人振奮的時代,我希望所有的學生們都能參與到這個改革浪潮中。要深刻地理解人工智慧的商業落地,而不僅僅鑽研技術本身。
阿萊克斯·彭特蘭:不要太較真於深度學習或者冗長的演算法,一切始於要解決的現實問題。不要止步於技術本身,要明白資料類型、形態和規律,關注商業流程。
感謝葉樂斐、劉諾、藍萱、張昊、陳冬傑、劉子昂、張梓煜、錢淩寒、水一方、沈雍在校譯和審閱上對本文的貢獻。
深度討論教學法理論與實踐 在 偽學術 Youtube 的精選貼文
[旅行的旅行] 行動傳播技術空間中的旅行:#當我們用GoogleMap找路時 / 李長潔 🚎
.
時常有人問我,你每次去日本的那些超級冷門的風景、傳說地點、氛圍氣喫茶老店,到底怎麼找到的,聽都沒聽過這些地方。剛開始,我會查詢中文與外文的旅行資訊,像是旅遊手冊、觀光網站,都是基本工作,可以給旅客一點基本的地理想像,如方位、氣候、規模、人文特色等。接著,我會做一件事—大量地運用google map細查地方資料。
.
地圖,是一種人對空間權力的掌握,當旅人們從地圖繪製者的手中,搶回擁有地圖的權力,這將如何改變我們的旅行生活?然而,我們真正因為google map而搶回了對空間的掌握嗎?我們先從紙本地圖的使用開始。
.
▓ #紙本地圖的時代
.
不只是到了旅遊的當下才使用google地圖來找路,而是平常沒事時,就打開地圖滑呀滑,細察預計拜訪的地點,了解地理資訊。不過,在2005年以前,旅行時掌握地理環境的技術大都依賴紙本地圖,旅客與觀光客在出發前,會購買旅遊手冊、旅行文學,透過特定旅行專家與旅遊資訊編輯的視野,來觀看地方(林子廉,2009)。在那時之前,各種「旅遊天書」隨著出國人數的增加,而銷售量大增。
.
出國旅行度假,不單僅是選好地方、買張機票、然後去就可以說「#這是我的旅行」,旅行的體驗是由生活中的不同媒介內容(電視、廣告、電影、書籍、旅遊手冊,現在還有社群網站)與你的真實旅程所交織而成(Urry, 2002)。當然也包含地圖。
.
地圖是一種地理狀態的再現。我們覺得地圖模擬了真實的環境樣貌,但事實上,地圖是一種「#簡化」、「#挑選」、「#裁切」,尤其是紙本地圖,在有限的平面版面上,地圖的終極目標並不是一比一的還原,而是透過地圖繪製與資料整理,表現製圖者對大地的擁有權、解釋權。
.
在從前的旅行中,我會在行前買一份巴黎的城市地圖,在台灣時就把旅行手冊上看到的景點標示在地圖中;並在旅程中逐一刪除,有時候還會用紅筆將散步走過的路徑畫上,以展示我對巴黎的熟稔程度。基本上,整張巴黎地圖我都畫滿了。
.
▓ #google地圖的出現
.
2005年,Google Map正式上線,一開始只是電腦版,同一年裡很快地推出手機版本,並且加入Google Earth的服務,直至今日,google的地圖是Google公司流量第二大的營運項目。Google Map運用了地理資訊系統(GIS),整合地表空間幾何特性以及地理屬性等兩種資訊之資料庫, GIS 中記錄的資料藉由適當的軟體解譯後可重現地表相關地形與地貌,使用者可以免費且自由地在地圖檔上標記並添加註記。這個地圖很快地成為旅行者的最佳找路工具,可以用微觀與巨觀的視野,審視空間樣態(廖酉鎮、陳均伊,2013)。
.
相對於傳統紙本繪製,#地理資訊系統(Geographic Information System,GIS)的廣泛應用,省卻了實物儲存的難處,也使我們可以在同一空間的地圖上看到不同的主題的重叠和互動,我們更能按照我們的想法,在給定的地圖框架上任意標籤,製作對我們有意義的地圖(Lo, 2012)。
.
Google不斷推出越來越豪華的地圖服務,像是「#交通資訊」、「#街景服務」、「#旅行規劃」,最近更加入虛擬實境的概念,將導航升級成「#AR導航」,透過 GPS 獲取用戶的位置,並使用街景資料產生「視覺定位系統」(Visual Positioning System,VPS),快速辨識周遭地標建築定位用戶位置,並在手機相機中以巨大的動畫箭頭結合街景,藉以更清楚地告知方向。這些方便的工具是積累在行動通訊技術、運算技術與人群使用習慣的大量應用與快速進步上,嶄新的地圖技術深刻地改變了旅行、旅人與城市的互動關係。
.
▓ #人與機器結合下的旅行:地理媒介
.
人與機器在移動技術空間中,被結合成一種人機複合體,或是Bruno Latour行動網絡理論中的「人—物」,這讓人的體驗更加複雜。你有沒有一種經驗,就是打開Google Map後,隨著指標轉動身體,試圖協調數位與真實的空間方向。或是,跟著導航行走,耳畔響起「向左轉」,就毫不猶豫地走向左方的街道。又或是,最一般的情況下,使用者會打開軟體,了解地理定位下自己與週邊資訊(店家、車站等)的關係。
.
進入到隨身行動傳播科技時代,人與物結合下的移動與定位本身就是一種資訊,這些資訊詮釋了流動空間、網絡連結、移動過程的具體樣態。一方面,機器深刻地鑲嵌入人類的生活世界中,反過來說,人們亦透過機器產生全新、方便、延伸的特殊經驗。這種人機合一、日常鑲嵌的 #地理媒介(geomedia)(McQuire、潘霽,2019),在旅行實踐中更顯鮮明。
.
在Web2.0時代,藉由地理媒介所構連起來的網絡式公共空間,展示了人類時空感知的嶄新轉變。透過行動傳播與數位化的技術,遊歷的地點本身不只是被媒介再現,而是,這些地點本身就是媒介,在程式運算的框架下,人與人、人與城市有了全新的關係:Google Map的使用與資料的積累,很大的程度上,人們利用社會實踐、消費行為與協商互動來定義旅行的地方。
.
例如這次我們旅行到關東地區,特地前往宇都宮吃餃子。在行前我們藉由Google Map的即時資訊決定乘車的方式,查詢車站附近所有的餃子店以及他的評價、照片、菜單,用街景服務來定位自己如何到達要去的「餃天堂」。然後在這家算是有特色的餃子店鋪,我們竟然在餃子裡吃到了一根鋼刷鐵絲,店家也沒有很認真地看待。就默默地打開Google Map說明了當下的狀況,並給予較低的星級。
.
▓ #自願式的地理資訊(volunteered geographic information)
.
上述的情境是一種建構主義的場境,使用者們可能自知的情況下,#自願參與地理資訊的建構,這稱做自願式的地理資訊(VGI,volunteered geographic information)(Sieber and Haklay, 2015),Google Map的VGI使得人們更有機會參與城市意義的詮釋,在公共參與的意義上,Google Map也是一種社群媒體,它建築在遊客、居民、店家等大量用戶的傳播意向性上。在McQuire與潘霽(2019)的「地理媒介」評斷便提到中,媒介傳播技術、隨身行動和城市地理元素的深度融合,共同造就了「#成為公共」(becoming public)的體驗,打開城市生活的審美維度,同時推動了「成為公共」的過程。城市中的社會關係和權力關係,不再僅僅依據根植於城市空間結構的生活形態,而是更直接地被轉化為主動的「傳播」過程。
.
從知識論的角度來看,Google Map有著三種資訊類型:自然的資訊、技術的資訊與文化的資訊。自然的資訊,如同人們所可以感受到的地形等;技術的資訊則如道路、水系的測量描述;而文化的資訊則指涉各種人類的行為,如駕駛、消費等。透過運算平台,當然也包含IG、FB上的「#社會標註」,像是打卡、分享美照、「#」,使用者、物、與城市風景大量交織成數位形式與真實形式共存的存在,並且在公共性的概念下交往互動。
.
可是,我們還是可以想像與批判,一個反烏托邦正在進行。有時候我們不知道自己正是地理媒介的延伸,甚至不得不參與地理資訊的建立。當你想要運用導航系統時,其使用者本身正參與著車流量預測的演算過程。當我們行動時,我們也正經歷一種數據式的物化,個人與機器結合後,個人在時空中的所有作為都有可能面臨資本主義的收編,例如在Google Map上顯示個人化的位置性商業廣告。
.
▓ #流動的社群與信任革命
.
旅行者們對Google Map的使用,構成了一種流動與移動的社群,這個社群強調的並非穩定的社會記憶,他們更欣賞獲得片刻的超凡體驗,與享受如遊戲般的過程,在虛實間讓自己更能夠掌握旅行的地方。從Google Map的旅遊嚮導設計就可以發現,Google Map將每一位參與地理資料建構的人們都當作「專家」,這個構想在另一個旅行APP「#TripAdvisor」裡也非常鮮明。你可以在「TripAdvisor」裡分享更多評價、文章與圖片,分享你在移動時的超凡體驗,以獲得「#頂尖攝影師」、「#飯店達人」等等標章,以提高個人體驗的可信度。
.
不過,有批評家認為,我們太容易把Google Map、Google Earth上的作為,理解為一種全景全知的圖像、透明的秩序,甚至是前面討論的參與和賦權的工具(Kingsbury & Jones, 2009)。閃耀著令人暈眩光茫的球體,反映了人類的戴奧尼索斯的妄想,我們狂亂地航行,歡天喜地地喧囂,我們全心全意、不加思索地信任它,卻低估了虛擬世界對真實世界的集體監控。
.
▓ #回歸地方化?
.
不過,站在創用的立場,我還是傾向對科技保持信任。信任研究者Bostman(2017)在《#信任革命》中談到,只有「信任」,人類才能在進程上有超越性的變革。當然,對Google Map的信任早在2010年以後就幾乎被廣大的使用者們接受了,雖然偶而還是會看到我父親打開地圖導航後,然後罵導航太笨,繼續走自己的路。但無疑得,Google Map扮演了旅行實踐的重要推動角色,它把商品、交通、約會與各種推薦搓合起來,讓旅行同時是個人的行動,也是集體的社群參與。也因為這些更加錯綜複雜的信任,旅人們才能獲得更多足以創新生活的服務。
.
回到McQuire的地理媒介概念中,如果傳統大眾媒體帶給旅行者與地方的是一種想像的、再現的、去地方化的全球化幻覺。那麼這些隨身、隨地的地理媒介,像是Google Map,則在旅行者與地方之間形成更回歸地方化的關係,同時還包含了跨文化溝通的實現,透過這樣的地理媒介技術,更能提高人們對差異性與流動性的接受程度,還可以確保城市網絡中與他者共存的技能。
_
_
#參考文獻:
.
1. 林子廉(2009)。旅遊手冊如何影響遺產觀光客對於原住民石柱真實性知覺、旅遊動機及體驗。文化大學觀光系碩士論文。
2. Urry, J. (2002). The tourist gaze. Sage.
3. 廖酉鎮, & 陳均伊. (2013). 讓地圖活過來一 Google Earth 運用於地球科學教學設計之應用. 科學教育月刊.
4. LO, K. H. (2012). 論班雅明式史觀和空間觀: 並以領匯霸權地圖為例. Cultural Studies@ Lingnan 文化研究@ 嶺南, 32(1), 1.
5. Sieber, R. E., & Haklay, M. (2015). The epistemology (s) of volunteered geographic information: a critique. Geo: Geography and Environment, 2(2), 122-136.
6. McQuire, S., 潘霽(2019)。From Media City to Geomedia: Cross-disciplinary Insights into Information Society from a Pioneering Australian Scholar。資訊社會學研究,36。
7. Botsman, R. (2017). Who Can You Trust?: How Technology Brought Us Together–and Why It Could Drive Us Apart. Penguin UK.
8. Kingsbury, P., & Jones III, J. P. (2009). Walter Benjamin’s dionysian adventures on Google Earth. Geoforum, 40(4), 502-513.