銀行如何提供超級個人化服務?百人數據團隊靠AI打造中信腦
為了顧及全產品、全客群、全通路、全覆蓋,中國信託採取的對策是走入AI與大數據,更為發展AI應用訂下3大KPI,來掌握研發資源的最適化;今年,中信更成立數據治理委員會,希望將數據治理走向更全行化的關鍵議題
文/李靜宜 | 2021-06-10發表
「透過科技力,來創造競爭力。」中國信託銀行數據暨科技研發處處長王俊權,用一句話點出中國信託大力發展AI與大數據的戰略核心。
3年多前,中國信託定調以AI與大數據作為主要發展方向,並成立了數據研發中心,要用AI來加值業務場景的服務與產品。設立初期僅有一人,到現在已擴大為百人團隊,更在2020年初正式提升為數據暨科技研發處。王俊權正是該團隊的一號員工,更是中國信託內部大力推動AI與大數據的關鍵人物。
中國信託的經營策略是,顧及全產品、全客群、全通路、全覆蓋。而為了守住既有的優勢,中信採取的對策是走入AI與大數據,來作為轉型的利器。不只要轉型,王俊權表示,中信更希望透過AI與大數據,孵化出不同於以往的經營模式。
「CTBC+AI」是中國信託發展AI的大方向,在各業務線上,都能將既有的經營方法加上AI,來提升效率與效能,更要以這樣的科技力創造競爭力。更以優化、平臺、全面、轉型、顛覆這5大階段任務,往下推動AI。
王俊權解釋,中信的策略是,從最小且最有把握的項目開始,所以,透過AI來優化既有的經營方式,是中信切入AI的第一項任務。運用AI優化的專案成功後,下一步,中信就能將AI技術進一步平臺化;有了平臺之後,就能將AI技術全面導入到銀行。
走過了優化階段、平臺階段到全面發展階段,AI已經落地到中信的金融場景,也陸續有了一些階段性成果。王俊權表示,中信現在聚焦「轉型」與「顛覆」,希望透過AI幫助組織轉型,最終期待是要用AI提出顛覆的想法,創造新的經營模式,他透露,目前已有幾個專案正在進行中。
依循著CTBC+AI這項大主軸,中國信託打造了「中信腦」,定調3條研發路線: 電腦視覺、自然語言處理(NLP)、機器思考,也成立了3大實驗室,聚焦研發6大AI應用核心,包括了精準行銷、市場預測引擎、文字與文件辨識應用、人臉與物件辨識應用、機器閱讀到機器對話。從應用場景來看,則鎖定營銷經營、流程優化、風險控管這3項。累計至今,中信在業務單位落地的AI專案超過了20個。
第一類應用場景的AI,中信稱為「營銷經營+AI」,囊括個人化推薦、需求預測,目的是協助增加收益,並提升客戶滿意度、客戶資產、新申購產品數等。王俊權提到,像是推薦引擎專案,中信金控整體客戶數有1,100多萬戶,產品與通路又多,需要透過AI推薦引擎來實現精準行銷,預測顧客未來的金融需求,才能進一步推薦。中信也將這類預測技術,應用到金融商品的預測,比如房價預測、股市預測、匯率預測等。
「流程優化+AI」則是中信第二大類應用場景,包含法金作業流程、客戶申請流程、線上作業流程,希望用來協助內部提升作業效率,來減少作業成本,最終目的也同樣要能夠提升客戶滿意度。 目前,中信內部有多項端對端的流程數位化專案,像是個金、法金、AML(反洗錢)、HR等業務,都有導入AI來優化既有流程。
最後一類場景的應用是「風險控管+AI」,則應用在AML作業、偽冒偵測、稽核,來改善內部作業效率,減少風險的損失。比如,王俊權提到,前年底,中信銀行上線了一套用自然語言處理技術分析負面新聞的平臺,這個AI反洗錢專案的成果,後來更從臺灣擴大應用到7個國家的海外分行。
王俊權表示,3大實驗室所負責的6大AI核心,就是沿著這3大類應用分頭進行,其中,因為銀行面對數位化的壓力較大,所以,又以銀行為應用主力,再逐漸將AI技術擴大到金控旗下子公司,如投信、台灣人壽、中國信託資融等。
自行培養AI研發能力,更訂定3大AI管理KPI
AI發展策略上,中國信託除了自主研發,也會與廠商協作。不過,這兩種策略該如何拿捏,中信內部也走過一段辯論的路。王俊權表示,最後的判斷依據是,「金融業需要的核心能力,中信會投入有限的研發資源。若不是中信認為的核心能力,則盡可能用市場上的解決方案,來加快回應市場的時間。」
舉例來說,銀行業使用分析模型並非新鮮事,AI技術與傳統統計回歸最大的不同是,能夠處理大量非結構數據,像是人臉、電文等資料,可是,這些數據機敏性較高,如果銀行不能自行掌握技術,而需委外,王俊權認為,第一個問題就是,銀行創新的保密性較弱,再者,廠商進入銀行接觸到如此多的機密性資料,有時也有法遵問題。
尤其,金融業對個資的管制嚴格,非結構化資料很難離開金融業,但是,在臺灣,許多AI技術原廠來自海外,對於銀行來說,整體應用或導入的彈性都相對較低,這些都是中國信託選擇培養自家AI研發能量的關鍵因素。
中信在AI應用發展策略,更訂出3大關鍵績效指摽(KPI),作為研發資源最適化的參考。王俊權表示:「對資源有限,需求無限的單位而言,研發的管理是一大關鍵。」首先,中信不會輕易增加AI生產線,因每開一條生產線就會涉及維運與資源分散的議題。所以,「AI生產線的管理」是第一項KPI。
「AI研發資源調度的管理」是第二項KPI。王俊權提到,資源有限狀況下,應該分配多少資源,投入短期的落地變現,還是長期的亮點顛覆,「是一種決策的藝術。」過去,中信希望AI可以迅速擴大到各單位,所以,王俊權採取80/20法則,將80%的資源用在短期落地變現,讓大家有感,保留20%在真正創新的研發。不過,他表示,這個比例每年或每季會進行調整,要讓研發資源投入到需要的地方。
第三項KPI則是「核心複用的比率」,也就是同一項核心技術盡可能重複利用的比率。王俊權要求研發團隊,每條AI生產線至少要有3個落地應用。目前,中國信託共有6條AI生產線,以及20幾個AI落地應用的專案,他提到:「平均每條AI生產線,有3~4個核心複用。」未來,更希望將每個AI核心,擴大到金控內各個應用,所以,要盡可能提升核心的複用,他對團隊的期待是,能提高到兩位數的複用率。
他進一步舉例,3年前,中信導入工研院智能文審技術,來辨識客戶申辦信用卡、貸款所需檢附的財力證明,像是存摺、扣繳憑單等金融常用的固定格式文件。去年,中信將文字辨識應用,複用到分行的場景,上線AI票券辨識服務,在審票機中加入AI、OCR技術來辨識支票,來減少櫃員人工審票與顧客等待的時間,及提升作業人員登打的產能。
目前,中信已做到一張支票上的7個要件,包括到期日、抬頭人、金額、禁止背書轉、發票章讓章或手寫、背書、帳號,都能夠用AI辨識。王俊權提到,中信將自行研發的印刷體的文字辨識核心、手寫英數的AI辨識核心、文印鑑辨識技術,通通導入支票辨識上,「這就是一種AI核心的複用」。此外,為了持續優化辨識正確率,中信更導入AI反饋機制,內部自己發展出標記功能,來改善標記效率,長期目標是達到9成的辨識正確率。今年,中信預計將該AI應用擴大到22家分行。
中信還有另一項AI核心應用是人臉與物件辨識應用,王俊權坦言:「人臉辨識技術,對於組織的轉型與顛覆是亮點有餘,可是力道不足。」不過,若能結合防偽能力及數位流程,可能會創造出藍海的新應用。中信正在思考,如何運用人臉辨識、活體辨識、微表情辨識、情緒辨識等AI核心,交錯組合來打造遠端核身相關應用。
金融業需緊跟科技的腳步,轉變為自身的競爭力,才能在指數型成長的趨勢下,站上領先地位。AI與大數據,正是下一波競爭力的最大利器。─── 中國信託銀行數據暨科技研發處處長 王俊權
推動超級個人化服務,中信靠大數據建立5大行銷策略
「中信銀行每個月有1.5億筆的金融數據,1.9億筆的非金融數據。更可觀的是,疫情期間,顧客更加喜歡使用數位服務,每月高達2億筆的顧客數位數據。」王俊權首度揭露了中信內部統計的海量數據。不只如此,中信銀行1年與顧客會有20億次的行銷溝通,顧客造訪行動銀行、網路銀行或到行銷網頁觀望的次數,更是高達16億次。
「中國信託的數據含金量很高,因此,全都要採集起來,作為銀行KYC的關鍵第一步。」他提到,光在2017年到2018年這段期間,中信內部就採集了大量數據,來建立360度客戶全景標籤。即便,當時各個單位已有自己的全景標籤,中信仍認為要有一個可以全行共用的主數據庫。
有數據來了解顧客,銀行就能出手,中信的策略是以數據掌握顧客人生不同階段需求,提供超級個人化服務。王俊權表示,中信策略是運用AI與大數據,透過個人化溝通方式,來提升顧客的成交機會。中信更先將這種作法,落地到銀行的「艱困區」,若在艱困區測試後有成效,再轉移到「黃金區」主戰場。「一方面不會影響到既有的業務動能,另一方面團隊也會比較有信心。」
在推動超級個人化服務,中信採取了5大行銷策略,並各自搭配合適的AI技術。第一項策略是使用最適合的通路對不同顧客溝通;第二項是尋找顧客有興趣的話題來互動,王俊權透露,今年底將從人工轉為全自動化,用AI生成銀行與顧客行銷的文案。
選擇對的時間,則是第三項策略,比如,當外幣跌到一定數值時,跟該名顧客歷史申購外幣的成本有競爭性,就能在此時發送推薦資訊給顧客。
第四項策略則是打造貼合顧客需求的產品,他提到,中信已有不同產品的預測模型,能預測未來3個月或1周後,該名顧客可能需要的產品。可供業務單位、EDM數位行銷,來聚焦其中高成交率的顧客。最後一項策略是對的活動,即便是賣同一項產品,不同活動的優惠或行銷設計都要不一樣。
王俊權認為,不僅不要過度叨擾顧客,更希望提供一次就能擊中顧客的服務。甚至,目標是做到自動化行銷,他透露,目前正在建置平臺的階段,除了要能自動採集數據,更要自動反應顧客下一步的預測,讓銀行出手可以更快,或盡可能減少PM或行銷出手時會遇上的人工斷點,甚至,讓每次出手後的反饋可以更為即時,來推動多波段行銷。
成立數據治理委員會,優先梳理2類數據
「數據治理是比下水道還要更下水道的底層工程。」特別對於大型金融機構來說,海量的數據勢必要有與過往不同的梳理方式,王俊權如此說著。
因此,今年中信銀行成立了數據治理委員會,由總經理親自主持,各個業務單位主管都參與,「希望將數據治理走向更全行化的關鍵議題。」他坦言,今年是試行階段,但中信已經注意到這個趨勢,而且必須往這方向走。
中信在數據治理特別強調「以用為治」,去年,更研究了全世界數據治理做得較好的企業,比如,數據治理發展超過20年的華為。王俊權坦言:「對中信而言,數據治理既然是一場長期抗戰,就必須明確為何而戰。」
由於資源有限,中信在數據治理的戰略,優先從兩類業務來推動,第一類是不能犯的錯,這類資料的處理一旦犯錯,銀行容忍度很低,如監理報送這類數據就需要優先梳理。另外一類是業務效益較大者,王俊權表示,若沒有好的數據治理標準,業務效益很難有長期的呈現。這是中信今年訂下數據治理的方向,也希望從小開始,慢慢擴大到全行。
經理人小檔案
王俊權
中國信託銀行數據暨科技研發處處長
學歷:臺灣大學國際企業研究所商學碩士
經歷:早年在美國矽谷的科技公司做美股分析,回臺後陸續待過4家銀行,主要負責風險管理;2005年加入中國信託銀行擔任全球個金風險管理處處長,2018年兼任數據研發中心最高主管;現為中信銀行數據暨科技研發處處長,兼任中信金控數據主管
附圖:中國信託銀行數據暨科技研發處處長 王俊權 (攝影/洪政偉)
資料來源:https://www.ithome.com.tw/people/144842?fbclid=IwAR0XaBPczoiqTWTEQH8qHfNDbmyyTpA43Akd2gYWhsBbh0oIbWsBNWdF4Fk
同時也有1部Youtube影片,追蹤數超過70萬的網紅艾爾文,也在其Youtube影片中提到,這集整理4個面向來分享我的 #閱讀心得,主題與 #生產力 有關。書中提到,透過提高生產力,可以人生、工作都有更高的成效,提高生活的滿意度。 ▸訂閱我的頻道:https://goo.gl/VsQgD2 ▸學習成長的影片:https://goo.gl/Ce7e3T 今天我要來分享的這本書《Smarte...
「滿意決策模型」的推薦目錄:
- 關於滿意決策模型 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
- 關於滿意決策模型 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於滿意決策模型 在 經理人月刊MANAGERtoday Facebook 的精選貼文
- 關於滿意決策模型 在 艾爾文 Youtube 的最讚貼文
- 關於滿意決策模型 在 Re: [問題] Herbert Simon 行政模型與行為決策觀… 的評價
- 關於滿意決策模型 在 學員分享的"以颱風為例說明行政學中行政決策的途徑/模型選擇" 的評價
- 關於滿意決策模型 在 滿意決策途徑(satisficing decision making approach) 的評價
- 關於滿意決策模型 在 simon決策理論的推薦與評價,FACEBOOK、PTT和網紅們這樣 ... 的評價
- 關於滿意決策模型 在 simon決策理論的推薦與評價,FACEBOOK、PTT和網紅們這樣 ... 的評價
- 關於滿意決策模型 在 三種決策模型 :: 讀書心得分享網站 的評價
滿意決策模型 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
「擴增智慧」全新概念誕生!人機交互協作,能超越當前的 AI 嗎?
2021/04/22
by
陳泓儒
人工智慧(AI)應用愈來愈普及,預計到了 2025 年,整體市場規模將達到 1,900 億美元。目前,AI 已被逐步擴展,應用於各種商業場景,而在AI發展的同時,一個稱作「新 AI」的概念也在近期被提出。
「新 AI」又被稱作擴增智慧(Augmented intelligence),據 Gartner 的定義,擴增智慧是指在以人為中心的前提下,人類與 AI 攜手合作以提高認知表現的協作模式。透過這種人機協作,達到比任何一方「單打獨鬥」得到更好的結果,預計 2021 年,擴增智慧將在全球創造 2.9 兆美元的商業價值及62億小時的勞動生產力,未來也將成為各領域企業極力發展的目標。
新 AI 將會用於什麼場域?想善用新 AI 的企業,又該找尋什麼樣的人才?
AI 學習能力有限,訓練消耗甚鉅
隨著自動化改變了全球勞動力的形態,許多行業不得不對員工重新進行大規模的技能培訓,然而,基於對 AI 取代人類的恐懼,目前仍有一部分人對 AI 充滿著不信任感,因此,擴增智慧的概念才會如此迷人,它希望能融合人類與 AI 的精髓,相互配合達以達成雙贏的局面。
AI 發展至今已經可以做到一般人無法完成的事情,如 AI 可以輕鬆吸收大量的知識,此外,其執行任務的專注度和洞察力都遠勝過於人類,加上不會感到疲倦。鑑於此,AI 已在許多產業中發揮作用,然而目前為止,它仍得依循人類制定的規則運作,沒辦法自己「幹大事」。
也許會有 AI 技術的研究人員反駁,只要寫入夠多的模型,給它夠多的資源,AI 就能有不輸人類的理解和學習能力,但這背後的資源消耗甚鉅,據統計,一個最先進的AI模型每次訓練所消耗的能量比「5 台車跑到報廢」還多,相較之下,人類的大腦只需要「一頓早餐」就能開始思考、學習新知。
而在擴增智慧的概念中,人類和AI做事是對等的,兩者無法互相取代,但有交集就能相互合作,如何結合這兩種強大力量將成為未來的主要方向。
工作生活套 AI,做事更有效率
在擴增智慧的理念中,AI 將和人類一同工作,不僅能提高人類的生產力,還有可能因與人類的創造力相結合,而產生過去從沒想過的解決方案。例如,美國醫學會(American Medical Association)將擴增智慧用於加強患者護理體驗、改善人口健康、降低總體醫療成本,增加對醫生的專業滿意度。當醫生遇到棘手病症時,可以運用 AI 找到許多解決方法,不過各方法可能會因患者的體質或當地的法規、醫療環境等而無法運用,這就要靠醫師判斷去調整,因此最後決策權還是在醫師手上。
新創公司 Personal AI 則將擴增智慧作為人腦的延伸,其運用 AI 技術將客戶的記憶透過區塊鏈技術加以「保存」,讓客戶不需要再用力地回想破碎的記憶,協助人們更有效地保留這些生活細節。透過人與 AI 的交互,不僅能節省人們的腦容量和思索時間,還能使人們更專注於體驗生活並創造值得回憶的記憶。
AI 人才,將成未來趨勢
既然擴增智慧的理念主打人和 AI 相互合作,相關人才的思維要跟上就顯得重要。未來要跟 AI 溝通的將不再限於工程師,而是各領域的人們,如上述範例中,醫生要有 AI 的基本概念,兩者才有機會共同合作。
有一定的 AI 素養,才能了解人 AI 工作原理的核心概念,以及 AI 應用於自家產業別的優缺點,並靠 AI 獲取自己在工作上遇到問題的能力和得到創造力。當然,擴增智慧是將人類和機器的智慧結合,兩者都將在其中發揮作用,因此也不僅要理解 AI 的概念,還需要使用者「天馬行空」, 思索人機組合的新用途,將合作效益最大化。
企業老闆可以透過擴增智慧理念,將新技術和員工的創造力結合,將業務加以精簡,但反過來聘僱員工時,也得確保有 AI 素養才能發揮效果。
擴增智慧將人和 AI 都發揮了比以往更多的效果,這個概念將可能成為未來主流。在 AI 不斷進化的同時,人若在 AI 素養上也能同速率提升,確保自己能與 AI 溝通,就能使自己在工作領域上,藉由「1+1 大於 2」的觀念,成為領先者。
資料來源:https://fc.bnext.com.tw/articles/view/1325
滿意決策模型 在 經理人月刊MANAGERtoday Facebook 的精選貼文
很多人對自己的工作很不滿意,卻說不出「有多不滿意」。
如果你也是這樣,那我建議你,想 #離職 #換跑道前,一定要想清楚兩件事。不然可能會後悔很久、又得苦苦熬完一份工作......
滿意決策模型 在 艾爾文 Youtube 的最讚貼文
這集整理4個面向來分享我的 #閱讀心得,主題與 #生產力 有關。書中提到,透過提高生產力,可以人生、工作都有更高的成效,提高生活的滿意度。
▸訂閱我的頻道:https://goo.gl/VsQgD2
▸學習成長的影片:https://goo.gl/Ce7e3T
今天我要來分享的這本書《Smarter Faster Better》,中文為《為什麼這樣工作會快、準、好》,作者是之前出版《為什麼我們這樣生活,那樣工作?》的查爾斯.杜希格。他畢業於哈佛商學院與耶魯大學,得過普立茲獎,也是暢銷書作者。光從背景來看,他應該是個工作效率很高的人,但其實他跟大部分人一樣,也面臨到事情很多、時間卻不夠的問題,也煩惱該如何在工作與生活中取得平衡。
而為了解決這方面的困擾,他學習了很多方法,最後整理出這本書。裡面總共分為了8個主題,分別是動機、團隊、專注、目標、管理、決策、創新、有效解讀資訊,而這8個主題,全部都和一個重要的基本原則有關:
--------------------------------------------------------------------------------
★這些人氣影片也別錯過★
--------------------------------------------------------------------------------
10件事讓2018年變成最好的一年
https://youtu.be/PqWZnNy8XGA
高效習慣,成功者每天都在做什麼?
https://goo.gl/WQprfL
10本可以改變人生的書
https://goo.gl/nkPvNJ
只要3小時,勝過別人一天的工作量
https://goo.gl/AKo2CP
--------------------------------------------------------------------------------
▶︎其他艾爾文出沒地方◀︎
--------------------------------------------------------------------------------
FB‣‣https://www.facebook.com/richfriend.fans
IG‣‣https://www.instagram.com/alvin701/
個人最新著作‣‣https://goo.gl/cesjCR
滿意決策模型 在 學員分享的"以颱風為例說明行政學中行政決策的途徑/模型選擇" 的推薦與評價
5.滿意決策模式: 在制定政策前,先設定替選方案的評比標準,依據主要客觀的環境及實際需要而定的有限理性決策。 (1)蒐集情報:氣象局資料以及過去相關決策的民調 ... <看更多>
滿意決策模型 在 滿意決策途徑(satisficing decision making approach) 的推薦與評價
滿意決策 途徑(satisficing decision-making approach)出自賽蒙(Herbert A. Simon)1947年,在其著作《行政行為:行政組織 決策 過程研究》中所提出。 ... <看更多>
滿意決策模型 在 Re: [問題] Herbert Simon 行政模型與行為決策觀… 的推薦與評價
噹噹,我試說明。
說模型,感覺怪怪的,它是administrative model,叫模式也許好點。
因為它主要是強調過程。
Simon認為行政就是在做決策,在他之前的學者都只探討如何做,
卻沒探討為何而做,所以他用administrative model來先說明決策產生的過程。
然後他下一步再說明,做決策的人實際做決策的類型,跟他的行為有關。
首先在做決策的行為上,會收集許多資訊做判斷,但造因於多元價值、
注意力與未來不確定性的影響,對問題和方案不能做出最完整的考慮;
其次,決策者會根據過去累積的經驗以及自己推理印證的結果,所形成的直覺,
來作決策,因此他無法找出最佳解,只能是滿意解。
也就是說,決策者作決策的行為其實就只是在作價值判斷而已。
用最簡單的例子來做說明,如果你是某大社團的社長,手下還有兩個企劃長,
因應校慶要搞一個大型活動,於是你交代企劃長各規劃一份企劃書出來,
企劃長當然就會努力收集他們所能想到的各種資料和idea撰寫,
最後你會收到兩份企劃書,那你會怎麼決定要用哪份企劃書?
上述案例,決策過程大家都知道,先收集情報、再設計活動,最後社長決定方案,
這就是administrative model;
那社長如何決定方案?必然就是根據有限的企劃書資訊,
加上自己的經驗與覺得哪份企劃書的作法最有效果的推理,進行價值判斷。
準此,對照而言,你講的行政模型是用來說明決策過程,
而行為決策觀點是用來說明人是如何做決策判斷的。
以上獻曝,也許有錯,尚請版友指正。
最後,回答問題,
你講的行政模型和行為決策觀點,內涵不同,
但都是在說明同一件事情:人如何做決策,一個是從過程論,一個是從行為論。
※ 引述《ddoddo (水餃)》之銘言:
: 想請問大大
: 這兩者皆是Herbert Simon所提出的
: 看內容而論 兩者似乎有很大的相關
: 都是在討論對經濟人方面的省思
: 探討在有限理性下 追求滿意解的行政人
: 可是兩者在課本上又分開來談
: 試問 行政模型 與行為決策觀點是不是相同??
: 因為行政管理 行為管理理論兩者相異
: 所以特來問明白
--
____________________
|____| |____| !!!!!!!
| |_______________
| ____ | | /
| | | | | /
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄  ̄ ̄ ̄  ̄ ̄
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.219.59.148
... <看更多>