當孩子理解
原來專注力是多麼的重要
就會有機會
開始變得專注
.
當孩子腦袋
曾被逼到思考力即將斷線的極限
就會自然感覺
平常都是輕鬆自在
.
今天一口氣逼著國小的孩子
從畢氏定理的證明
到直線方程式的變化
.
讓他們感受到大腦
被榨到最後連一滴都沒有的乾
.
最後告知孩子:
你們渡過了,也撐住了
所以也成長了
.
下一次準備好
來場大腦極限的挑戰吧!
.
今天兩個小時多一點點的課程
大功告成~~~~~
我給自己打92分
同時也有2部Youtube影片,追蹤數超過8萬的網紅賭Sir【杜氏數學】HermanToMath,也在其Youtube影片中提到,?賭博數學入門(全5堂)筆記+影片免費下載: http://www.HermanToMath.com ---------- ?️賭Sir是杜氏數學Herman To Math的始創人 ?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】...
「畢氏定理證明」的推薦目錄:
- 關於畢氏定理證明 在 拖鞋亮綠教育 Facebook 的最讚貼文
- 關於畢氏定理證明 在 Facebook 的最佳解答
- 關於畢氏定理證明 在 Facebook 的最佳貼文
- 關於畢氏定理證明 在 賭Sir【杜氏數學】HermanToMath Youtube 的精選貼文
- 關於畢氏定理證明 在 光引擎 Youtube 的最讚貼文
- 關於畢氏定理證明 在 如何證明畢氏定理?🤓|直觀方法|空間思維 - YouTube 的評價
- 關於畢氏定理證明 在 畢氏定理的證明(歐幾里得Euclid's Proof) - YouTube 的評價
- 關於畢氏定理證明 在 8年級數學|你一定要會的5個畢氏定理公式 - YouTube 的評價
- 關於畢氏定理證明 在 畢氏定理的證明(Bhāskara's Proof) - YouTube 的評價
- 關於畢氏定理證明 在 畢氏定理 的評價
畢氏定理證明 在 Facebook 的最佳解答
怕孩子浪費時間就拼命塞東西讓他學嗎?真正的學習需要可以吸收消化並且運用
大人常常覺得反正孩子的時間很多,就多讓他學習點東西,以免浪費了時間,但是這樣真的對嗎?
吃早餐時,讀國二的幼子跟我聊起怎麼證明畢氏定理的公式。他常常會在用餐時間跟我討論一些他覺得有趣或是有疑惑的東西,然後他突然問:
「媽媽!像是大角對大邊,這種東西需要背嗎?」
我站起來說:「不需要背啊!你看媽媽兩隻腳站著就像是三角形的兩邊。當兩隻腳打開的腳小,對的邊是不是小?當兩隻腳打開變大,角對的邊是不是就變成大邊了?你記得了,就比較容易證明。數學是有趣的學問,但數學有時候太抽象,所以常常需要具象化才容易思考,才能變成你帶得走的知識和能力。」
孩子拼命的學習,如果沒有經過消化和吸收,怎麼會變成自己的知識呢?就像是我們如果只是拼命的吃東西,卻沒有時間讓胃消化和吸收,怎麼能夠提供身體足夠的養分呢?甚至有社會新聞報導,有人就是一直吃、一直吃,吃到胃裝不下被撐破了!才緊急送醫急救。
拼命找學習內容讓孩子來學習,就像是讓胃拼命塞進東西,孩子跟胃一樣,都需要時間來消化和吸收。
在競爭激烈的現代,面對爆炸的資訊量,家長總害怕自己沒有給孩子更多、更好的協助和幫忙,這種焦慮我懂。
在五月剛進入居家防疫時期,我看著國二的幼子沒有任何的安排,聯絡簿都因為被抽查而沒有發回,但因為他們剛在一天之內考完七科的月考考試,我決定還是先觀察。觀察一周後,各科老師慢慢有系統性的課程出來。但我不確定這樣的學習方式會持續多久?而一年後孩子就要參加高中會考了!我決定跟之前推薦的線上課程詢問相關課程。
家長沒有辦法幫孩子讀書考試,但是可以提供孩子必要的協助和幫忙。
每一個孩子的特質都不同,有人性急,有人個性溫吞,但總是有孩子可以自己調適的學習方式。家長要協助孩子找到自己最適合的學習方式,而不是整天無所事事,或是一整天都排滿了課程,這兩種極端都會讓珍貴的時間被耗損。
現在為了居家防疫,有很多免費的線上學習平台,像是均一學習網,未來兒童、未來少年的線上閱讀等,都是很好的媒材。
學習是一件有趣的事,但有時也充滿了困難和挑戰,要記得不要把孩子的學習時間排滿。給孩子一些反芻和消化吸收的時間,甚至可以跟孩子聊天討論,當孩子可以把學習到的內容用口語化說出來,用文字化寫出來,或是變成他解決問題的想法,這些學習就會變成孩子真正帶得走的能力了!
畢氏定理證明 在 Facebook 的最佳貼文
[HUSH]見到我咁耐唔出Facebook Post,當然係有啲嘢啦。趕時間嘅不如跳落去15。你選擇ignorant咋,唔關我事。
==============
月頭訂最抵!2021比別人知得多。subscribe now(https://bityl.co/4Y0h)。Ivan Patreon,港美市場評點,專題號外,每日一圖,好文推介。每星期6篇,月費80,半年已1600人訂! 畀年費仲有85折
==============
TLDR:Andrew Wiles 1993年證明咗 400年嘅懸案「費馬最後定理」,「其實呢部份唔難」。佢個證明搞足10年都唔係最難。最難係:嗰10年佢完全唔同任何人講,仲要一路出啲其他paper,唔係為保住份工,係為等其他人唔知佢另外有嘢研究緊。個個仲以為佢回晒塘只係識交行貨。
1. 講個悶悶地嘅故事,1993年6月,數學家Andrew Wiles證明咗「費馬最後定理」。呢個應該係近幾百年數學界最偉大嘅時刻。
2. 「費馬最後定理」呢,其實都唔係好難,中學甚至小學數學程度都會明,但留返remark先解(*)。呢個定理證明咗又點?「係冇乜點的」。數學嘅嘢就係咁。至於個證明?我都睇唔明,我估你都睇唔明架啦。實情當日有份見證嘅行家,聽講都冇三份一人睇得明。
3. 但呢個定理足足等咗差不多400年先有人證明到(最初費馬提出嗰時係個猜想,佢話自己有證明,不過本書唔夠位寫,嘻)
4. 「費馬最後定理」,我實在諗唔到點樣用其他領域嘅嘢去相比。比起咩拎歐聯呀大滿貫呀拎諾貝爾獎呀都仲要堅。你諗下,400年嘅謎題,幾多天才窮一生之力,都解決唔到。卒之有人證明到。只可惜當年冇咩Youtube之類(但已有email)
5. 事實上,每一個曾經熱愛數學嘅小朋友,都會被「費馬最後定理」吸引。因為個定理本身唔難明,真係小學生都可以明。任何一個熱愛數學嘅小朋友,都會幻想或夢想可以證明到呢個定理。我當然都不例外,正如個個小學雞踢波都想變戴志偉或者美斯,球員總係想捧歐聯或世界盃,打籃球想變米高佐敦咁。Andrew Wiles亦都不例外。
6. 咁所以,Andrew Wiles應該真係百年甚至幾百年一遇嘅偉人了。然後有人可能知道,並冇「諾貝爾數學奬」呢樣嘢,但有個類似嘅東西,最高榮譽,Fields Medal.但Andrew Wiles甚至冇拎到Fields Medal。原因?唔係死咗(而家仲在生),而係Fields Medal只頒畀40歲以下嘅數學家,Andrew Wiles剛剛超齡
7. 呢個背景係重要的,當年Andrew Wiles已經超過40歲。有啲情況係過份被戲劇化或浪漫化,但的確,數學係年輕人嘅玩意。好多都好早成名,十幾廿歲最旺盛。30歲都唔出名嗰啲,基本上已經收得工見晒頂。咁又冇話冇用嘅,但會變成係教書,指導後輩咁咯。
8. 當時Andrew Wiles就係咁嘅情況,實情佢最初教Princeton 時都幾耀眼,但在1983-1993年間,基本上人人都以為佢回晒塘,研討會又唔見佢,只係出啲冇乜料到嘅文。
9. 事實係點?事實係佢嗰10年,就只係專心研究點證明「費馬最後定理」!完全冇同任何人講(除咗佢婆),冇任何先兆,所有同事學生都唔知。
10. 呢個係相當反常嘅,首先現代學術嘅嘢,已經好多都集體創作,唔係以前咩牛頓自己在家隔離就發現好嘢咁。況且,數學系係最冇秘密嘅。點解?好簡單,因為唔會拎到專利,又唔會搵到錢,證明咗呀?哦,恭喜你。
11. 咁你可以話,Andrew Wiles想獨攬呢個榮譽(佢亦做到咗)。我估都可以理解嘅,400年嚟最大嘅難題喎。
12. 但,證明本身已經難。更加難係,唔可以同人講。呢度都未係最難。最難係,佢專心呢個世紀難題之餘,仲要係不停咁有啲「行貨」論文出街!咁人地先唔會懷疑佢係咪做緊啲咩大件事!(**)
13. 當年Andrew Wiles個證明,甚至冇走去事先宣佈。唔係「本人證明咗費馬最後定理,你問我答」,而係用咗個好悶蛋嘅題目 "Modular Forms, Elliptic Curves and Galois Representations"。不過畢竟行家一出手就知,加上聽聞嗰排Andrew Wiles成個人都變晒(如釋重負吧),所以已經有人傳,「喂,條友可能會講證明費馬最後定理」,甚至有人去落注(你以為數學家唔賭錢?),但莊家都封盤。當日已經好多行家覺得係見證歷史時刻
14. 然後,Andrew Wiles講咗一大輪嘅證明後。只係好輕描淡寫咁講咗句:「所以,費馬最後定理成立」「我想我就在這裡結束」(***)。然後就係歡呼聲,相機快門嘅聲,仲有開香檳嘅聲(都話有行家知道有大件事)。冇錯就係呢個Post張相
15. 好啦,我打咁大段嘢,都係話你知。「發唔發現我呢排冇乜出Facebook Post?」咁我唔係證明緊哥德巴赫猜想(****),但,都係搞緊啲勁嘢。否則點會Facebook Post都唔出?
16. 而呢排,我就唯有學Andrew Wiles咁,出住啲「行貨」。例如呢篇。不過人地啲行貨都係頂級期刊喎。唔好忘記我仲要日日寫Patreon喎,仲搞埋錄音,仲搞埋勞蘇基金。
17. 至於有乜勁嘢嘛,之後話你知,當然唔止係勞蘇基金。
18. 但真係咁的,你地以為我教一世書時,我考緊CFA,轉咗做銀行(雖然當中有啲曲折,請睇舊文《安雅會談》)。你以為我做分析員一路睇中資金融股時,我變咗做策略師兼財演(whatever).你以為我係日日上電視嗰時,我已經搞緊 Patreon.正如你以為我日日R你訂Patreon嗰時,我已經搞緊勞蘇基金。
19. 然後呢?跟住去邊度?又係畀你估嘅再多一步。I think I’ll stop here
(*)OK,都係解兩句。希望你仲記得「畢氏定理」,唔記得唔緊要。咁知道9+16 = 25啦,咁啱三個都係平方數喎!即係3^2+4^2 = 5^2 (希望大家識得呢個^係乜,唔係法文crêpe上面頂帽)。咁好啦,會唔會有三個組正整數(唔計零呀仆街)a,b,c,,可以做到a^3+b^3=c^3?即係會唔會有兩個數,分別3次方之後,加出嚟可以係第二個數嘅3次方?費馬先生話冇咁嘅三個數。唔止,就連4次方,5次方,12次方,任何正整數次方都冇(除咗1同2)。費馬先生當年(差不多400年前)在佢本書度寫咗呢個猜想,仲話佢有個絶妙證明,「不過本書空白位唔夠,唔夠位寫」。個命題聽落唔係好難,一般有中學甚至小學程度都明講乜。但,呢個堪稱係數學史上最大嘅難題。結果1993年被證明了。
(**)同朋友講起,《戰雲密報》The Post一片之,名記者又係幾個月冇新嘢出,就畀行家估佢整緊單好堅嘅堅料。正係越戰嘅Pentagon Papers
(***)呢句「我想我就在這裡結束」(I think I’ll stop here)亦係《費馬最後定理》一書第一章嘅標題。作者係Simon Singh.本書非常好睇,係我睇過最精采嘅書之一。有中譯版。
(****)哥德巴赫猜想嘛。基本上而家取代咗費馬最後定理,成為數學史上最大難題。不過哥德巴赫本人就冇話自己證明咗但本書唔夠位。呢個猜想仲間單過費馬最後定理,所以我順手講埋。個猜想就係:任何一個大過2嘅雙數,都可以寫做兩個質數之和(和即係加埋!)。例如4=2+2(呀大佬,你知2係質數呀可?),6=3+3,8=3+5(不能4+4,4唔係質數呀!),10=3+7。聽落有趣又簡單,但,點證明?又,《遇見哥德巴赫猜想》亦係一本書,真係講哥德巴赫猜想的,亦都好睇。暫時去到 4 × 10^18 嘅所有雙數,都成立。但大家應該知道,「數學嘅嘢唔係咁運作的」。就算你用電腦check 幾多個數,都係冇用的。「你點知再下一個都得?」
==============
月頭訂最抵!2021比別人知得多。subscribe now(https://bityl.co/4Y0h)。Ivan Patreon,港美市場評點,專題號外,每日一圖,好文推介。每星期6篇,月費80,半年已1600人訂! 畀年費仲有85折
==============
畢氏定理證明 在 賭Sir【杜氏數學】HermanToMath Youtube 的精選貼文
?賭博數學入門(全5堂)筆記+影片免費下載: http://www.HermanToMath.com
----------
?️賭Sir是杜氏數學Herman To Math的始創人
?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】、【CE Maths+A.Maths】的數學導師
?全港第一最多訂閱粉絲的數學教育YouTuber
?YouTube觀看次數超越700萬、訂閱粉絲超過60000人
----------
? Mensa Club member
? 中文大學 數學碩士畢業(Big Data stream)
? 中文大學 風險管理學士畢業
----------
?流行文學作家,出版著作:
《賭馬男人嫁得過》?(2020)
《YouTuber新手到網紅》?(2019、2020再版增訂本)
《5**數學男人嫁得過》?(2019)
《碌葛男人嫁得過》?(2018)
《賭波男人嫁得過》?(2018、同年再版)
----------
#賭徒破產定理 #GamblersRuin #百家樂
----------
?YouTuber Go網絡課程 全港最平+獨家 報讀優惠:
http://hermantomath.blogspot.com/2019/03/youtuber-go-link.html
?賭Sir親自教你量產影片 做一個睡眠飽滿嘅YouTuber:
https://www.youtubergo.com/lab/asp-products/%e3%80%8ayoutuber%e9%87%8f%e7%94%a2%e5%bd%b1%e7%89%87%e7%a7%98%e6%8a%80%e3%80%8b%e8%aa%b2%e7%a8%8b/
?YouTuber Go直播足本重溫 95折優惠碼「hermantomath」:
https://hermantomath.blogspot.com/2020/04/youtuber-go.html
?無限操數王(epractice) 全港最平+獨家 優惠(可同時使用):
?50%OFF 半價優惠碼:MC83-AI93-NFW0-331E
?25%OFF 額外邀請碼:J7N9-RDRP-NFAH-OH13
官方網頁:https://www.dsemth.com/
?教你「教外國人學廣東話」賺錢課程:https://forms.gle/BGEqVnSLcDr941HUA
?成為杜氏數學電視台的股東:https://www.youtube.com/channel/UCH2t6jvINIOeYzBQR0iI5kw/join
?italki學英文送你$10美金:https://www.italki.com/i/6BDcd0?hl=zh-tw
?Tidebit全港最穩妥的比特幣(Bitcoin)交易所:http://bit.ly/2LIWA4J
?Uber免費送你$50優惠:https://www.uber.com/invite/2utyzr
?Trip.com送你酒店8%折扣優惠: http://t.trip.com/FTTE3b0
----------
賭Sir考試戰績:
新制中六DSE: (2016 M2 + 2017 M1)
?數學必修 (Mathematics) 一take過 奪5**
?數學延伸M1 (Calculus and Statistics) 一take過 奪5**
?數學延伸M2 (Algebra and Calculus) 一take過 奪5**
國際高考International Advanced Level: (2017 + 2018)
?Core Math 1 2 一take過 奪A
?Core Math 3 4 一take過 奪A
?Further Pure Math 1 一take過 奪A
?Further Pure Math 2 一take過 奪A
?Further Pure Math 3 一take過 奪A
?Mechanics 1 一take過 奪A
?Mechanics 2 一take過 奪A
?Mechanics 3 一take過 奪A
?Statistics 1 一take過 奪A
?Statistics 2 一take過 奪A
?Statistics 3 一take過 奪A
?Decision Math 1 一take過 奪A
舊制中七高考: (2011)
?純粹數學 (Pure Mathematics) 一take過 奪A
?應用數學 (Applied Mathematics) 一take過 奪A
舊制中五會考: (2009)
?數學 (Mathematics) 一take過 奪A
?附加數學 (Additional Mathematics) 一take過 奪A
![post-title](https://i.ytimg.com/vi/C7NusqhvR-E/hqdefault.jpg)
畢氏定理證明 在 光引擎 Youtube 的最讚貼文
光引擎樂團 http://www.facebook.com/LightEngineBand
首張迷你專輯 My Journey‧旅程 收錄歌曲
Q.E.D.:quod erat demonstrandum 故得證之意,宣示定理真實性的建立。
這是一首歌頌知識與真理的歌曲。
步入社會後,就會開始懷念起學生時代單純的美好。在純粹知識的世界裡,一切如此分明。長大後的世界,是非界線變得模糊,令人不知所措。儘管如此,我們依舊努力用著自己的方式,追尋著那個,絕對純粹的世界。
3.1415927
16384次艱辛*
追尋與真理最近距離
轉角遇見費布納西**
鸚鵡螺的曲線曼妙美麗
樹葉一片片排列整齊
* 古代數學家用正多邊形的面積來逼近圓面積,原理簡單,但計算時要不斷開平方,過程非常繁複。南北朝的祖沖之算到16384邊,而得知圓周率介於3.1415926與3.1415927之間。
** 費布納西(Fibonacci)數列:1,1,2,3,5,8,13,21,34,55... 費布納西於西元1202年提出,在葉序問題、最佳化理論、結晶結構等領域都有直接應用。
畢達哥拉斯和商高先生
都發現勾股弦中的秘密*
引領千年後費瑪最後定理**
懷爾斯的熱情與堅定不移
解開懸宕三百年的世紀謎題
* 畢氏定理,又稱商高定理或勾股弦定理,a2 + b2 = c2。
** 費瑪最後定理,源於畢氏定理,17世紀的數學怪傑費瑪在書頁空白處寫下:「xn + yn = zn,當n大於2時沒有整數解。我已為這個命題找到一個非常巧妙的證明,然而這裡狹窄的篇幅不足以讓我寫下。」如此簡短的敘述,卻成為數學史上最深奧的謎團。一直到二十世紀,才由安德魯懷爾斯(Andrew Wiles)破解。
一次一次一次證明 都更接近真理
零是零 一是一 這世界黑白分明
不同不同不同 不同於模糊難解的人心
這浩瀚宇宙是如此美麗
127.0.0.1 *
最美好的秘密基地
二進位言語
改變世界的超能力
沒有終止條件的遞迴函式**
不斷呼喊自己 不到終點永不放棄
* 127.0.0.1 = localhost = home
** 遞迴(recursion),是「函式(function)不斷呼叫自身」的一種程式撰寫法。而為了防止程式無窮盡的遞迴下去,必須為所寫出來的遞迴函式設定一個終止條件(termination condition)。
一次一次一次證明 都更接近真理
零是零 一是一 這世界黑白分明
不同不同不同 不同於模糊難解的人心
這浩瀚宇宙是如此美麗
一次一次一次 喔 接近真理
零是零 一是一 絕對的純粹
不同不同不同 不同於模糊難解的人心
這浩瀚宇宙是如此美麗
![post-title](https://i.ytimg.com/vi/bZz0z4QIzKg/hqdefault.jpg)
畢氏定理證明 在 畢氏定理的證明(歐幾里得Euclid's Proof) - YouTube 的推薦與評價
![影片讀取中](/images/youtube.png)
證明 載於幾何原本Book1, Proposition 47補充:- 由於歐幾里得於Prop 1.41 已 證明 了: 在兩平行線之間, 若底相同, 平行四邊形面積是三角形兩倍可 ... ... <看更多>
畢氏定理證明 在 8年級數學|你一定要會的5個畢氏定理公式 - YouTube 的推薦與評價
![影片讀取中](/images/youtube.png)
在這支影片中我會介紹這些公式的 證明 方法,不過熟記公式後,還要搭配類題練習,才會看出成果✍️ ✍️ ✍️ 1. 畢氏定理 的 證明 2.座標平面上的兩點距離3 ... ... <看更多>
畢氏定理證明 在 如何證明畢氏定理?🤓|直觀方法|空間思維 - YouTube 的推薦與評價
有很多方法可 證明畢氏定理 ,現介紹一無字 證明 方法,運用直觀及空間思維便 ... 明白|建立清晰的數學概念|#Shorts# 畢氏定理 #勾股定理#數學 證明 #智趣數學. ... <看更多>