分享好文,中學生要學電腦嗎?
作者:創新工場CTO、人工智慧工程院執行院長 王詠剛
文章来自半轻人微信公众号(ban-qing-ren)
………………………………
朋友的孩子高中剛畢業,已拿到美國頂尖大學(非電腦專業)的錄取通知。疫情影響,不知何時才能去學校報到。孩子想抓緊學習一下程式設計,為大學打好基礎。這孩子找我聊了一個多小時,從如何學程式設計,聊到非電腦專業和電腦專業的路徑差異,又聊到如何從不同角度認識電腦與程式設計。聊得比較寬泛,不知是否對這孩子有用。
回想我自己的高中時代:那時雖迷戀程式設計,卻完全沒有懂行的人指導。在我們那個四線城市的廠礦中學裡,開設電腦興趣課的老師知道的資訊還沒我多。我高一時跑到北京中關村逛街,卻完全沒意識到中國第一代頂尖程式師當時就在我身邊的低矮辦公樓裡寫代碼(這話說得並不準確,比如求伯君那年就主要是在珠海做開發),鼎鼎大名的UCDOS、WPS、CCED就出自他們之手……我在當時街邊的一家書店(位置似乎就在今天的鼎好大廈對面)買到了許多種印刷品質極低劣的電腦圖書。用今天的標準看,那就是一批盜版影印或未授權翻譯的國外圖書。可那批書竟成了我高中時代最寶貴的程式設計知識來源。
顯然,我在高中時根本就是野路子學電腦。現在後悔也沒用,當時我的眼界或能觸及的資源就那麼多。如果能穿越回30年前,我該對喜歡程式設計的自己說些什麼呢?這些年,我與世界上最好的一批程式師合作過,也參與過世界上最有價值的軟體系統研發——我所積累的一些粗淺經驗裡,有哪些可以分享給一個愛程式設計的中學生?
【問題1】中學生要不要學電腦?
當然要!
每個中學生都要學。只不過——建議大部分中學生使用“休閒模式”,小部分(不超過10%)中學生使用“探險模式”。
啊?兩個模式?那我該進入哪個模式?⟹請跳轉至【問題2】
【問題2】選哪個模式?
你癡迷電腦嗎?比如,你玩遊戲時會特別想知道這遊戲背後的代碼是如何編寫的嗎?再比如,就算老師家長不同意你學電腦,甚至當著你的面把電腦砸了,你也要堅持學電腦嗎?如果是,恭喜你進入“探險模式”⟹請跳轉至【問題200】
你對數學有興趣嗎?比如,你看到街邊建築的曲線,就會在腦子裡琢磨曲線對應的函數或方程嗎?每當手裡攥著幾粒骰子,你就會不由自主地計算概率嗎?如果是,歡迎進入“探險模式”⟹請跳轉至【問題200】;當然,如果有些猶豫,也可以先進入“休閒模式”⟹請跳轉至【問題100】
即便你對電腦和數學興趣不大,家長、老師還是強烈建議你學電腦嗎?就算你一百個沒時間一千個不願意,家長、老師還是會逼著你學電腦嗎?如果是,建議你主動進入“休閒模式”並向家長、老師彙報說“我已經按照前谷歌資深軟體工程師的專業建議在認真學程式設計了”⟹請跳轉至【問題100】
其他情況,一律進入“休閒模式”。⟹請跳轉至【問題100】
【問題100】休閒模式 | 主要學什麼?
“休閒模式”將電腦視為我們生活、工作中的必備工具,主要學習如何聰明、高效、優雅地使用計算設備。這裡說的計算設備,包括所有形式的電腦、手機、遊戲機、智慧家電以及未來一定會進入生活的自動駕駛汽車。
什麼什麼?你已經會用電腦、會玩手機、會打遊戲了?別著急,慢慢往下看。
【問題101】休閒模式 | 我會用搜尋引擎嗎?
我知道你會用百度搜習題答案。但,習題答案不是知識。你會用搜尋引擎來搜索和梳理知識嗎?請試著用電腦和你喜歡的搜尋引擎來解決如下兩個問題:
(1)圓周率𝜋的計算方法有多少種?每種不同的計算方法分別是由什麼人在什麼時代提出的?借助電腦,今天人們可以將圓周率𝜋計算到小數點後多少位?將圓周率𝜋計算到小數點這麼多位元,一次大概需要花掉多少度電?
(2)全球大約有多少個廁所?在發展程度不同的國家,分別有多少比例的人可以享用安裝了抽水馬桶的衛生廁所?為什麼比爾·蓋茨曾大力推動一個設計新型馬桶的研發專案?比爾·蓋茨的公益組織在這個專案上大約花費了多少資金,最終收到了多大的效果?
如果你沒法快速得到上述問題的全部答案,那就給自己設一個小目標:一個月內,學會用搜尋引擎系統地獲取、梳理一組知識點的全部技巧。
【問題102】休閒模式 | 接下來學什麼?
建議學好典型的工具軟體。比如,我知道你會用Office了,但用Office和用Office是很不一樣的。對生活、學習、工作來說,學好、學透一個工具軟體比鑽研程式設計技巧更實用。
你會用Excel來管理班級公益基金的預算和實際收支情況嗎?
你會用Excel做出過去20年裡全球大學排名的演變趨勢圖嗎?
你會用Word排版一篇中學生論文嗎?論文中的圖表和最後的參考文獻部分該如何排版?
你會用Word編排一份班級刊物,包含封面、扉頁、目錄、插圖頁、附錄、封底等部分,可以在列印後直接裝訂成冊嗎?
PowerPoint呢?你有沒有研究過蘋果公司發佈會上那些幻燈片的設計?當約伯斯(多年以前)或蒂姆·庫克站在幻燈片前的時候,他們的演講思路是如何與幻燈片完美結合的?
還有哦,別忘了學學如何為數碼照片做後期,如何用電腦或手機剪視頻,如何為剪輯好的視頻配字幕,如何將照片、音樂、視頻等素材結合起來,做出一段吸引人的快手/抖音短視頻。
最後,抽空玩玩那些設計精妙的遊戲吧,比如《紀念碑穀》、《塞爾達傳說:曠野之息》之類;同時,遠離那些滿屏廣告,或者一心騙你在遊戲裡充值花錢的垃圾。
【問題103】休閒模式 | 不學學知識嗎?
當然要學知識。下面每種實用的電腦知識都夠大家學一陣子了。
(1)色彩知識:你知道同一張數碼照片在不同品牌的手機螢幕上、不同的電腦螢幕上、不同的智慧電視上顯示時,為什麼經常有較大色差嗎?你知道有一些色彩只適合螢幕顯示,不適合列印輸出嗎?你知道軟體工具裡常用的RGB、HSL之類的色彩空間都是什麼意思嗎?如何在設計PowerPoint幻燈片時選擇一組和諧美觀的色彩?
(2)字體知識:你知道什麼是襯線字體,什麼是無襯線字體嗎?你知道網頁中常用的英文字體都有哪些嗎?你知道商務演講時最適用于幻燈片的英文字體有哪些嗎?你知道電腦和手機常用的黑體、宋體、仿宋體、楷體等中文字體分別適合哪些實際應用場合嗎?你會將不同字體混排成一個美觀的頁面嗎?
(3)網路知識:你知道5G是什麼嗎?你知道5G和4G在通信頻寬、通信距離上的具體區別嗎?你知道什麼是路由器,什麼是防火牆嗎?你知道如何配置路由器,如何配置防火牆嗎?微信或QQ聊天時,對方發的文字、語音或視頻是如何傳送到你的手機上的?
(4)應用知識:淘寶中搜索得到的商品資訊是從哪裡來的?商品是按什麼方式排序的?為什麼購物APP經常會推薦給你一些曾經買過、看過的商品?你知道如何為自己建立個人網站嗎?你知道如何管理微信公眾號嗎?
(5)安全知識:你知道網路上的釣魚攻擊是怎麼回事兒嗎?你知道什麼是電腦漏洞嗎?你知道駭客為什麼想把一大批受攻擊的電腦變成可以遠端操控的傀儡機嗎?你知道為什麼現在很多手機APP都要通過短信發送驗證碼嗎?如果驗證碼被壞人截獲,你會面臨哪些風險?
這裡只是舉例。實用的電腦知識還有很多。大家可以自己發掘。
【問題104】休閒模式 | 我需要學程式設計嗎?
可以學,但不是必須。即便學,也只需要根據自己的需要,學那些最能幫你解決現實問題的部分。
【問題105】休閒模式 | 我該學什麼程式設計語言?
在“休閒模式”裡,電腦就是工具,程式設計也是工具,夠用就好。學什麼程式設計語言,完全看你想要電腦幫你做什麼。
• 如果你想對資料處理有更多自主權,那不妨學學Python;
• 如果你想做簡單的交互演示程式,那就先把JavaScript學起來;
• 如果你想更好、更快地寫論文,那不妨學學LaTeX(什麼什麼,LaTeX不是程式設計語言?你太小看LaTeX了);
• 如果你想學做簡單的手機APP,那麼,Android手機就學Java,蘋果手機就學Swift好了;
• 如果你只想知道程式設計是怎麼回事,那……從Python或JavaScript開始就行。其實,跟五六歲的小朋友一起學學Scratch圖形程式設計也不錯。
【問題106】休閒模式 | 我需要學人工智慧嗎?
在“休閒模式”裡,最需要學的不是“人工智慧的實現原理”,而是“什麼是人工智慧”,以及“人工智慧能做什麼,不能做什麼”。
• 在手機上試一試,人工智慧做語音辨識時能做到什麼水準?哪些話容易識別,哪些話不容易識別?
• 打開機器翻譯軟體,試一試哪些資訊翻譯得好,哪些資訊翻譯得不好?
• 手機上的拍照軟體一般都有人臉識別功能。試一試人臉識別在什麼場景下做得好,什麼場景下做得不好?
• 找一部講人工智慧的科幻電影,用自己的判斷解讀一下,電影裡哪些技術有可能成為現實,哪些技術存在邏輯矛盾。
【問題107】休閒模式 | 推薦什麼參考書、參考文獻?
書不重要,豆瓣評分7分以上的電腦應用、程式設計甚至科普類圖書都可以拿來翻翻。
直接在知乎裡搜索你想瞭解或學習的知識點可能更有效率。
如果你意猶未盡,覺得自己剛活動開筋骨,還想挑戰更高層次,歡迎進入“探險模式”。⟹請跳轉至【問題200】
否則,“休閒模式”到此結束。⟹請離開此問答
【問題200】探險模式 | 主要學什麼?
“探險模式”需要有挑戰精神。電腦科學的世界技術演進快,脈絡複雜,要想在探索時不迷路,你得通過有順序、有系統地學習電腦知識,慢慢構建出一張可以在未來幫你走得更遠的思維地圖來。
在“探險模式”裡,電腦就不止是一件能快速計算的工具了。電腦更像是我們大腦的一種延伸。這既包括認知能力的延伸,也包括認知邏輯的延伸。隨著學習深入,大家會逐漸體會到電腦所具有的多維度能力:
電腦是一種可以表示不同類型資訊(數、符號、文字、語音、圖像、視頻、虛擬空間、抽象邏輯)的“資訊管理機”;
同時,電腦也是一種可以連續執行指令以完成特定的資訊處理任務的“指令處理機”;
同時,電腦還是一種可以在知識與邏輯層面完成特定推理任務的“知識推理機”;
同時,電腦也是一種可以從人類給定的資料或自我生成的資料中總結規律,建立模型,自主完成某些決策的“智慧學習機”。
“探險模式”的目標就是盡可能準確地認識電腦,掌握有關電腦運行的最基本規律。有了這些基礎。未來在大學期間或工作中,你就能更容易地設計電腦軟硬體系統,或是設計出碳基大腦(人類)與矽基大腦(機器智慧)之間的最佳協作方案。
【問題201】探險模式 | 我的英語水準足夠嗎?
蘋果每年秋季的新品發佈會,不加字幕的話,你能聽懂多少?
能聽懂大部分:建議在學習電腦的過程中,盡可能使用英文教材、英文文檔。
能聽懂小部分:建議將原來準備學電腦的時間,分出一部分來學英語。
只能聽懂“你好”“再見”之類:⟹請離開此問答。然後,把原來準備學電腦的時間用於學英語,六個月後再回來。
【問題202】探險模式 | 我的數學水準足夠嗎?
如果你是數學和數學應用小能手——較複雜的數學問題總能快速找到核心思路,或快速簡化為簡單問題;很容易就能將抽象概念映射到具體的數學圖形,或將數學問題與相應的現實問題關聯在一起:請繼續探險之旅。
如果你應付正常數學課程感到吃力:建議將原來準備學電腦的時間,分出一部分來學數學。
如果你還搞不清楚什麼是方程、函數、集合、概率……:⟹請離開此問答。然後,把原來準備學電腦的時間用於學數學,六個月後再回來。
【問題203】探險模式 | 為什麼強調英語和數學?
(1)統計上說,最好的電腦參考資料大都是英文寫的,最好的電腦課程大都是用英文講的,最新的電腦論文大都是用英文發表的。
(2)函數、方程、坐標系、標量、向量、排列組合、概率這些中學數學裡會初步學習到的數學知識,是電腦科學的基礎。
【問題204】探險模式 | 電腦知識那麼多,正確的學習順序是什麼?
最重要的順序有兩個。建議先從順序一開始,學有餘力時兼顧兩個順序。
順序一:自底向上,即,自底層原理向上層應用拓展的順序。
電腦原理的基礎知識:
為什麼每台電腦(包括手機)都有CPU、記憶體和外部設備?
(馮·諾依曼體系結構的)記憶體中為什麼既可以存儲資料,也可以存儲指令?
CPU是如何完成一次加法運算的?
程式設計語言的基礎知識:
資料類型,值,變數,作用域……
語句,流程控制語句……
過程、方法或函數,類,模組,程式,服務……
編譯系統的基本概念:
電腦程式是如何被解釋或編譯成目標代碼的?
演算法和資料結構的基礎知識:
陣列,向量,鏈表,堆,棧,二叉樹,樹和圖……
遞迴演算法,排序演算法,二叉樹搜索演算法,圖搜索演算法……
應用層的基礎知識:
為什麼電腦需要作業系統?設備驅動程式是做什麼的?
網路通信的基本原理是什麼?流覽器是怎麼找到並顯示一個網頁的?
資料庫是做什麼用的?
虛擬機器是怎麼回事?
人工智慧系統的基礎知識:
先熟悉些線性代數、概率和數學優化的基礎知識。
什麼是機器學習?從簡單的線性回歸中體會機器學習的基本概念、基本思路。
什麼是神經網路?什麼是深度神經網路?為什麼神經網路可以完成機器學習任務?
如何使用PyTorch或TensorFlow實現簡單的深度學習功能?
順序二:自頂向下,即,自頂層抽象邏輯向下層具體邏輯拓展的順序。
• 電腦的本質是什麼?
• 什麼是圖靈機?什麼是通用圖靈機?
• 什麼是讀取﹣求值﹣輸出迴圈(Read–eval–print Loop,REPL)?
如何用自頂向下的方式理解(解析、解釋、編譯)一段程式碼?
• 靜態語言和動態語言的區別?
如何理解變數與資料類型之間的綁定關係?
• 什麼是函數式程式設計?
程式設計語言中,函數的本質是什麼?
函數為什麼可以像一個值一樣被表示、存儲、傳遞和處理?
• 什麼是物件導向?
類的本質是什麼?
如何用物件導向的方式定義個功能介面?
如何依據介面實現具體功能?
• 什麼是事件驅動?
什麼是事件?事件如何分發到接收者?
如何在事件驅動的環境中理解代碼的狀態和執行順序?
【問題205】探險模式 | 如何提高程式設計水準?
在掌握基本知識體系的基礎上,學好程式設計只有一條路:多程式設計,多參加程式設計比賽,多做程式設計題,多做實驗項目,多找實習機會——其中,能參與真實專案是最有價值的。
【問題206】探險模式 | 該從哪一門程式設計語言學起?
我個人推薦的程式設計入門語言(可根據情況任選):
Python
Java
Swift
C#
JavaScript / TypeScript
Ruby
……
可能不適合入門,但適合後續深入學習的語言:
C
C++
Go
Objective-C
組合語言
機器語言(CPU指令集)
Shell Script
Lua
Haskell
OCaml
R
Julia
Erlang
MATLAB
……
【問題207】探險模式 | 如何選參考書和參考資料?
(1)強烈推薦的參考書和參考資料:
• MIT、Stanford、CMU、UC Berkeley這四所大學中任何一個電腦專業方向使用的教學參考書或參考資料。網上可以查到這些學校電腦專業方向的課程體系,有的學校甚至公開了課程視頻。其中往往會列舉參考書和參考資料連結。
• 維琪百科(英文)上的數學、電腦科學相關條目。
• Github上star數在1000以上的開原始程式碼和開來源文件。
(2)強烈推薦但須小心辨別的參考資料:
知乎上的數學、電腦科學相關條目。使用時需要格外注意三件事:
儘量只看高贊答案或高贊文章;
辨別並避開廣告軟文;
辨別並避開純抖機靈的故事或段子。
Stack Overflow上的程式設計問題解答:
自己動手實驗,辨別解答是否有效。
CSDN上的程式設計問題解答:
自己動手實驗,辨別解答是否有效。
(3)其他推薦的參考書和參考資料:
國內專業作者寫作的專業技術書籍(豆瓣評分7分以上的)。
大廠(Google、Facebook、Microsoft、Amazon、阿裡、騰訊、百度、頭條等)資深工程師的技術公號、專欄、博客等。
著名圖書系列:如O’Reilly的動物封面的系列圖書(請注意最新版本和時效性)。
國內翻譯的著名技術圖書(譯本在豆瓣評分7分以上的)。
(4)儘量避免的參考書和參考資料:
• 已經過時的圖書或參考資料。
• 作者或譯者人數比章節數還多的專業圖書。
• 百度百科上的數學或電腦科學相關資料。
什麼什麼?你這篇問答居然沒有推薦一本具體的圖書?是,沒錯。如果你覺得即便有了上面的線索,自己還是找不到好書好資料,那也許你還是適合“休閒模式”⟹請跳轉至【問題100】
同時也有1部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 本影片主要推導 Cayley-Hamilton 定理,並講解幾個 Cayley-Hamilton 的應用,後半段講解極小多項式的觀念,並利用極小多項式推測相似矩陣的 Jordan form 【加入會員】 歡迎加入張旭老師頻道會員 付費定閱支持張旭老師,讓張旭老師能夠拍更多的教學影片 ht...
線性代數定義 在 C.C.M Math Facebook 的最佳貼文
小編曾經也是買了數學系線性代數的原文書,讀得津津有味。
每次只要能搞懂定義、回答出問題,心中只有一個字:爽!
---
生活、找工作很不容易,人們充滿各種心事。
來牛奶找工作的【牛奶瓶】,把你的煩惱寫下來,會有命中註定的人回覆你。
👉 https://to.milk.jobs/app
線性代數定義 在 Eddie Tam 譚新強 Facebook 的最佳貼文
中世紀制度舊石器時代情緒 能否以神級科技改良?
上周提到著名哈佛生物學家E. O. Wilson的一句名言,人性(humanity)的最大問題是我們擁有"paleolithic emotions, medieval institutions, and god-like technology"(舊石器時代的情緒,中世紀的機構和制度,和如上帝般的科技),一個他認為非常危險的組合。
Wilson已年屆90歲高齡,本來是位昆蟲學家,被公認為研究螞蟻的首席權威,但他後來學術研究涉獵到進化學,被推崇為sociobiology(社會生物學)之父,以進化論來研究和解釋動物的社交行為。他亦因積極為環保發聲而被譽為biodiversity(生物多樣性)之父。除此,他亦是一位兩度獲Pulitzer獎的通俗科學作家——(《On Human Nature》 1979、《The Ants》 1991),絕對是一位多才多藝的學者。
科學發展太快 人類情緒趕不上
他的這句名言有深遠意義,絕對值得細嚼。雖然他是一位科學家,說話都是經過思考和有一定證據的,但這樣概括的一句話,也當然不可以完全認真視為有充分科學根據的金科玉律。Wilson的主要目的是警惕世人,人類社會發展不平衡,科技發展可能已經太快,已超越了我們人類情緒和社會制度的控制能力,是個極危險的情况,可隨時帶來戰爭和地球生態環境災難,大幅減少biodiversity,甚至導致人類自己的滅亡!他認為解決方法是回到先解答哲學上的幾個大問題:我們是從哪裏來的?我們的生存意義是什麼?我們的未來是怎樣的?
我不是哲學家,亦未必贊同什麼事都需要升到哲學甚至宗教層面(Wilson是位agnostic,不可知論者)。人類的未來當然是個大問題,即使不提哲學,基本共識應為防止使用核武,掀起第三次世界大戰。另外,亦應致力環保,減少人類對氣候變化的影響(這可能牽涉到free will,自由意志問題)。
詳細一點來分析Wilson的說話。他的意思是人類發展不平衡,情緒發展停留在舊石器時代,即是為了適應當時生活艱苦,每天掙扎求存,弱肉強食的環境,需要的是簡單的思想,衝動的暴力行為,自私和只顧短期眼前利益,毋須長期宏觀視野和計劃能力。但後來人類竟然又發展出極厲害的各種科技,包括蒸氣機、電力、飛機、電腦、互聯網、基因工程,和足以帶來世界末日的核武等。我贊同這個基本觀察,但這又是否意味着一個矛盾?以我簡單的了解,左腦掌控邏輯運作,包括科學和數學,右腦掌控感情有關運作,包括創意和藝術等。Wilson的觀察如屬實,是否代表人類的左腦進化發展比較右腦快和進步?原因又是什麼呢?
左腦似乎進化得比右腦快
其實除了左腦似乎進化得比右腦快,人類身體其他部分也進化了不少。在Wilson與DNA的double helix(雙螺旋型)結構發現者James Watson的對話中,Watson亦指出在進化過程中,人類的毛髮減少了很多,且以中國人為例子(Watson常被指控為種族主義者)。我亦知道中國人的下顎骨通常較細,既代表不需大力咬肉或用口來打鬥,但亦導致中國人較常見的睡眠窒息症(Apnea)。
第二點,即使人類的情緒進化得較慢,但人類利用邏輯和理性,仍能發展出大型社會秩序,發明分工合作,提升效率,然後以貿易來作交換。國家的崛起亦帶來法律,好處是國家擁有了使用武力的專利權,大大減少了個人之間的暴力行為,亦即成功以社會制度來控制人類所謂舊石器時代的情緒。
但社會制度和各種機構,包括國家和政府,宗教和金融系統,又是否如Wilson所說,發展停留在中世紀階段呢?在這一點,我傾向於贊成他的觀點。首先政府和法律制度,都是經人類經驗累積下來的一堆東西,充滿矛盾和偏見,反而並沒有明確包含科學的自然規律。舉例說,在法律訴訟,譬如一宗連環交通意外,基本上是一件關乎牛頓力學的事情,但法律上並沒有牛頓定律,所以控辯方只可傳召一些科學家來作專家證人(expert witness),最後判決權仍在法官或陪審團手上。亦即是說最後的判決是可以違反科學的。
很多政治經濟制度已過時
亦有人指出過,如果著名的古希臘科學家亞里士多德(Aristotle)復活過來,跟現代的物理學家討論相對論和現代量子物理學,亞厘士多德肯定一頭霧水,完全不明白,連需要的數學包括tensor analysis(張量分析)和linear algebra(線性代數),都肯定一竅不通。但如果偉大的哲學和政治理論家柏拉圖(Plato),也同樣復活過來,然後有些政客跟他解釋例如現今美國的政局,保證不用幾天,柏拉圖就完全充分理解共和跟民主兩黨的主要爭拗點,彈劾特朗普的利與弊。相信他能輕易勝任為任何一方的政治顧問!
我絕對贊成很多政治和經濟制度都已經過時(宗教就不討論了),非常需要更新。傳統金融制度倚賴fractional banking(份數銀行)概念來製造金錢,發揮multiplier effect(乘數效應),表面上很有效率,但其實包含銀行必須高槓桿運作,造成金融系統的潛在不穩定性,和難以避免的道德風險。市場和計劃經濟都各有利弊,市場經濟倚靠每人的自私心態,理論上達到最高的資產配置效率,但就置公義於不理。反過來計劃經濟,則倚靠altruism(利他主義),一切以公平和公義掛帥,效率反而成次要。
Wilson曾經說過,社會主義不太適合人類,因為每個人都有私心,反而最適合螞蟻社會。因為螞蟻擁有真正的利他主義,每隻螞蟻姐妹(公螞蟻只負責繁殖)都一生勤勞,負責覓食和打仗,供養唯一有生殖能力的蟻后,盡顯捨己為人的精神。所以螞蟻非常成功,從約1.5億年前出現之後,開始雄霸昆蟲界,到現時雖只佔約3%的昆蟲種類,但若以數量或biomass(生物質)來計算,則高佔了昆蟲界的80%了!
料人類有智慧平衡社會效率與公義
但我相信人類有足夠智慧和技術(大數據,AI和5G等非常有用,區塊鏈不肯定),去找出一個比傳統政經制度更科學化的新社會制度,務求達到一個比純粹資本或社會主義,在取捨效率和公義之間更佳的平衡點。但必須加上另一個前設,就是在這個蛻變過程中,最好當然是社會能夠保持和平和穩定,因為暴力和動盪的代價太高了,更違反了社會進步的定義。
第三點,人類是否已擁有神級的科技呢?如神的定義是創造生命和宇宙,那麼人類仍只可算在幼兒班階段。我們雖已為human genome(人類基因組)解碼,但CRISPR等基因編輯技術仍未成熟,仍具極大爭議性。我絕對沒有信心現今技術水平足以幫助人類改良自己的基因,譬如防止疾病,增長壽命,令身體功能更強壯,或甚至幫助我們舊石器時代情緒的進化。粗淺的基因改造是可以的,但後果堪虞,極難預測其副作用和後遺症。
Neuroscience(神經科學)方面,近年雖有很多突破,但距離完全理解consciousness(意識)仍頗遠,更遑論自由意志。AI發展也看似突飛猛進,但我已曾指出過,現時發展主要在ANI(Artificial Narrow Intelligence),雖已有不少如臉孔辨認和金融交易等應用,但某些任務需要人類常識,例如照顧老人家或小孩的機器人(自動駕駛?),就需要更廣泛的AGI(Artificial General Intelligence),暫時仍只在理論和摸索階段。
至於創造宇宙的能力,人類力量卑微,肯定沒有,連探索太空也只算在起步階段。人類勉強只算達到Kardashev的第一種類文明,只能充分利用地球的資源來雄霸一個星球,仍未達到第二種類文明,定義為充分利用一顆恆星的資源,殖民到整個太陽系的不同星球上。
神級科技遠未及 卻有神級破壞力
但不幸從摧毀人類自己和破壞地球的能力來說,人類肯定已達神級。原子彈之父Robert Oppenheimer,在觀看完1945年7月16日,人類歷史上的第一次核試後(Trinity explosion,名字已帶宗教色彩),他有感而發,引用了印度教經典《Bhagavad-Gita》裏,保護之神Vishnu化身為摧毀之神Shiva前的一句話:Now I am become Death, the destroyer of worlds(現今我化身為死亡,所有世界的摧毀者)。
祝各位新年進步!
中環資產投資行政總裁
線性代數定義 在 數學老師張旭 Youtube 的最佳解答
【摘要】
本影片主要推導 Cayley-Hamilton 定理,並講解幾個 Cayley-Hamilton 的應用,後半段講解極小多項式的觀念,並利用極小多項式推測相似矩陣的 Jordan form
【加入會員】
歡迎加入張旭老師頻道會員
付費定閱支持張旭老師,讓張旭老師能夠拍更多的教學影片
https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【會員等級說明】
博士等級:75 元 / 月
- 支持我們拍攝更多教學影片
- 可在 YT 影片留言處或聊天室使用專屬貼圖
- 你的 YT 名稱前面會有專屬會員徽章
- 可觀看會員專屬影片 (張旭老師真實人生挑戰、許願池影片)
- 可加入張旭老師 YT 會員專屬 DC 群
碩士等級:300 元 / 月
- 享有博士等級所有福利
- 每個月可問 6 題高中或大學的數學問題 (沒問完可累積)
學士等級:750 元 / 月
- 享有博士等級所有福利
- 每個月可問 15 題高中或大學的數學問題 (沒問完可累積)
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額不可轉讓)
家長會等級:1600 元 / 月
- 享有博士等級所有福利
- 沒有解題服務,如需要,得另外購入點數換取服務
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額可轉讓)
- 可參與頻道經營方案討論
- 可免費獲得張旭老師實體產品
- 可以優惠價報名參加張旭老師所舉辦之活動
股東會等級:3200 元 / 月
- 享有家長會等級所有福利
- 一樣沒有解題服務,如需要,得另外購入點數換取服務
- 本頻道要募資時擁有優先入股權
- 可加入張旭老師商業結盟
- 可參加商業結盟餐會
- 繳滿六個月成為終生會員,之後可解除自動匯款
- 終生會員只需要餐會費用即可持續參加餐會
【勘誤】
無,有任何錯誤歡迎留言告知
【習題】
無
【講義】
無
【附註】
本系列影片僅限 YouTube 會員優先觀看
非會員僅開放「單數集」影片
若想看到所有許願池影片
請加入數學老師張旭 YouTube 會員
加入會員連結 👉 https://reurl.cc/Kj3x7m
【張旭的話】
你好,我是張旭老師
這是我為本頻道會員所專門拍攝的許願池影片
如果你喜歡我的教學影片
歡迎訂閱我的頻道🔔,按讚我的影片👍
並幫我分享給更多正在學大學數學的同學們,謝謝
【學習地圖】
EP01:向量微積分重點整理 (https://youtu.be/x9Z23o_Z5sQ)
EP02:泰勒展開式說明與應用 (https://youtu.be/SByv7fMtMTY)
EP03:級數審斂法統整與習題 (https://youtu.be/qXCdZF8CV7o)
EP04:積分技巧統整 (https://youtu.be/Ioxd9eh6ogE)
EP05:極座標統整與應用 (https://youtu.be/ksy3siNDzH0)
EP06:極限嚴格定義題型 + 讀書方法分享 (https://youtu.be/9ItI09GTtNQ)
EP07:常見的一階微分方程題型及解法 (https://youtu.be/I8CJhA6COjk)
EP08:重製中
EP09:反函數定理與隱函數定理 (https://youtu.be/9CPpcIVLz7c)
EP10:多變數求極值與 Lagrange 乘子法 (https://youtu.be/XsOmQOTzdSA)
EP11:Laplace 轉換 (https://youtu.be/GZRWgcY5i6Y)
EP12:Fourier 級數與 Fourier 轉換 (https://youtu.be/85q-2nInw7Y)
EP13:換變數定理與 Jacobian 行列式 (https://youtu.be/7z4ad1I0b7o)
EP14:Cayley-Hamilton 定理 & 極小多項式 👈 目前在這裡
EP15:極限、微分和積分次序交換的條件 (https://youtu.be/QRkGLK7Iw4c)
EP16:機率密度函數 (上) (https://youtu.be/PR1NSAOP_Z0)
EP17:機率密度函數 (下) (https://youtu.be/tDQ3o8uQ_Ks)
持續更新中...
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
Twitch:https://www.twitch.tv/changhsu_math
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#克萊漢彌爾頓定理 #極小多項式 #喬登型式