摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
同時也有1部Youtube影片,追蹤數超過24萬的網紅啟點文化,也在其Youtube影片中提到,【線上課程】《理財心裡學》~擺脫家庭影響,從心培養富體質 課程連結:https://pse.is/EPBWE 第一講免費試聽:https://youtu.be/HgrDK7pqR-0 不定期推出補充教材,讓學習無限延伸:https://pse.is/NJ5VE 【10/13開課!】《學「問」~高難...
記憶體頻寬影響 在 EE Times Taiwan Facebook 的最佳貼文
【AIoT 世代的到來,如何影響記憶體的應用】
隨著物聯網與人工智慧發展迅速,對於記憶體的需求也跟著變多,而記憶體是如何從單純配角,演變成現在舉足輕重的角色?🧐
近來科技發展迅速,#物聯網 已經與我們生活密不可分,McKinsey 預估至2025年每年將會有2.7~6.2兆美元之間的市場規模。另一方面,隨著 #人工智慧 (AI) 崛起,無論終端感測器或是裝置,賦予AI之後,能讓資料可以即時推論處理,縮短系統反應時間🕐和降低整體系統功耗。那這又如何改變記憶體在AIoT的應用⚙呢?
本次 #線上研討會 將會探討記憶體在智慧物聯網的角色上。其演變成舉足輕重💪的角色,主因除了作業系統之外,還多了人工智慧模型;因需要搭配低功耗高頻寬小容量的記憶體,才能有效達成智慧物聯網的運算效能。趕快來一探究竟華邦推出的 Green Power Boost DRAM 產品藍圖是如何符合低功耗高頻寬小容量的特性的吧!
-----------------------------------------------------------------------------
演講日期:2021年6月23日 (四)
演講時間:10:00 a.m. - 11:30 a.m.
演講嘉賓:
✨華邦電子 DRAM產品行銷部經理 曾一峻
立即報名 👉 https://eetimes.pse.is/3f9g8a
記憶體頻寬影響 在 投資癮 Wealtholic Facebook 的精選貼文
這兩周台股成交量為4兆新台幣
今天想要分享自己對於長期投資的一些調整。
-
✔️以環境的角度
經濟的數據很多,較簡單的看法多數會用景氣燈號去判斷,目前由貨幣總計數M1B變動率等9項指標構成,每月依各項目的變動率與檢查值做比較,看落在何種燈號區給予分數及燈號,目前的景氣燈號為紅燈,那這9項涵蓋了影響台灣經濟最主要的關鍵數據,所以直接看燈號為自己判斷景氣最簡單的方法,當然這些跟籌碼一樣會做參考,並不會成為唯一的買進或賣出原因,真正在決定下單那一刻還是回歸到價格與風險控管,不過以回測訊號跟指數來看,景氣燈號在去年8月才轉綠燈,股價還是領先指標提前反應一段,由於台灣是以出口為導向的海島型經濟體,國內資源有限,必須透過國際貿易的發展來帶動經濟,每個月都有重要的數據牽連著我們的經濟。
-
✔️以公司的角度
【2317鴻海】
回顧一下鴻海去年Q4至今年Q1營收的表現,以過往的營收來看,每年Q1為淡季,Q4為傳統出貨旺季,鴻海在去年Q4獲利表現亮眼,相較歷年呈現年成長,延續到2021Q1除了去年基期較低以外,整體營收水準拉升到4000億,主要是受到iPhone與兩大日系遊戲機熱賣所帶動,展望今年鴻海目標全年毛利率朝7%努力,集團力拼在2025年毛利率拉升到10%,關鍵就是創立MIH聯盟,期望將營收動能擴展到電動車市場,不過MIH在未來還是有挑戰性的,就像當初宏達電的VR一樣有題材還沒營收一等就是五、六年最近又開始熱,題材出來預期心理先表現一波,等營收獲利發酵才可能再熱一次,以鴻海目前產品的四大類來說,受惠目前消費者使用電子產品依賴性提升,消費性電子產品領域占公司營收6成左右,未來能不能從電動車達到目標,我希望會有但目前暫時不得而知。
-
【2408南亞科】
南亞科與美光同是記憶體晶片大廠受惠於遠距工作、學習趨勢,帶動筆記型電腦需求,PC DRAM出貨創單季新高,市場需求強勁,南亞科等供應鏈因此受惠。南亞科的主要產品為動態隨機存取記憶體(DRAM),不過全球DRAM市場屬於寡佔市場,主要由三星、海力士、美光及南亞科四大廠形成,南亞科屬於全球第4大,雖然在產能擴張有限之下,先進製程的轉換難度高,每年成長的空間幅度有限,不過目前5G手機和AI軟體對記憶體需求增加,推升產品價格上漲,也看好下半年疫苗普及後,資料中心伺服器、車用及消費性電子等DRAM需求同步成長,會帶動產業呈現正循環。
-
【3711日月光】
日月光為全球第一封測大廠,由於車用需求急速拉升,相關晶片採用打線封裝,推升打線價格,加上目前交貨期長達6-9個月,產能擴充速度不及客戶需求速度,預期將缺貨一整年,預估第一季產能利用率超過85%,日月光集團去年合併營收為4769億元,歸屬母公司稅後淨利275億元,2020年EPS為6.47元,公布股利政策擬配發4.2元現金股利,電子代工(EMS)雖然步入淡季,但受惠封測業務暢旺,日月光對首季及全年營運展望樂觀看待,並規劃提高資本支出,隨著5G及WIFI等頻寬、高速運算(HPC)升級和車用市場快速串升,日月光也將提出高稼動率、智慧製造等整體解決方案。
-
✔️以自己的角度
看到這邊或許以為我要推薦這三家公司,但其實是分享我減碼的理由,以三家公司的財報、價格、籌碼、題材、未來展望來說目前都是好的樣貌,但有沒有更刺激的東西目前沒看到,未來幾個月內財報表現應該都還是會好表現,但「投資」買的是未來,反觀去年市場對於未來一片看壞的情況下,當時的投入對未來有較多的想像空間,自己的長期投資不需要每天研究,但在每日看盤的時發現一些細微的端倪才會拉到更遠的角度去看整體環境並考慮做一個【遠】的決定
-
以目前看來,大環境並沒有太多的想像空間,甚至還有資金要被抽回的疑慮,在台廠方面等到其他國家恢復原本公司該有的競爭力時,自然也會回到該有的挑戰,而實際交易市場最近兩周台股成交量呈現4兆的交易量,更讓我注意了其他指標走向,這段時間大方向的觀察從資金走向、外匯市場、美元指數、美股指數、疫情、原油、股價,原物料價格等等的綜合觀察,以經濟理論通膨將資金趕入利率較高的股票市場使得股價推升,但等意識到物價膨脹的關係使實質購買力每況愈下時,才意識到錢越來越不值錢,再將資本市場的資金抽回,或者更努力工作,才能解決錢不值錢的問題。
-
對於經濟數據或是財報來說就像老師在看學生每個月段考成績一樣,學生的成績高低未必能確定學生未來的好壞,成績好跟成績差的學生在未來發展可能顛倒,就像去年各項經濟數據不如預期,結果股市還是不斷上漲,但大多數的分數是可以參考預期的,理論上成績好的發展會比成績壞的還要樂觀,而成績差的學生也有可能慢慢轉好,經濟數據對於股票市場的走向沒有絕對的立即正向關係,但可以透過觀察去建立自己在投資領域裡的宏觀思維,判斷這學生未來可能的發展,而發展這件事是多元的,就像是學經濟的孩子未來不一定會比玩音樂的孩子更有錢。
-
過去的節目較少分享長期投資的部分,因長期投資一年只會有幾個決定,久久才會動作一次,也就沒有一直聊,節目的分享有時像是只有心法或者太過雞湯,但因為投機交易這幾年太孤獨難免會有湯味,而交易市場更深的層面多是交易心理,希望透過一點經驗分享給聽眾不一樣的思維,也提醒新手投資人對股票市場不要有過度的期望
-
目前行情很好但訊息太多難免會摸不著頭緒,看別人賺錢想搶進,看別人賠錢想閃避,而真實的投資卻剛好要相反,我們時常會有羊群效應的從眾心理,從眾心理很容易導致盲從,而盲從往往會陷入宿醉狀態,在真實的投資交易裡對錯不是重點,人人都會看錯,但投資人只要秉持兩個要件,獨立且自己承擔。
歷史幾個較著名的年份,1991年、2001年、2008年、2020年,這些年都是資產重分配的重要時機,而小回檔就像是近期2010、2015、2018這種,每次的資產重分配可能是過往股民的解套,解套的原因多數是新鮮人的幫忙,而現在的新鮮人,也有可能是10年後的長期股民,但還好年輕就是本錢,我們都還有許多犯錯的空間和時間。
另外分享一件事,每個人的派對不一樣,不管加權指數未來上漲還是下跌,市場都會有新的派對,而在投資的角度來說,進場會想買越低越好,賣出會想要賣越高越好,但無論投資還是投機如果真的要進場先釐清三件事
1、遊戲法則
2、投入資金
3、退場時機
#壞行情找好標的好行情要冷靜
#放別人的對帳單冷靜一下
-
不推薦買賣個股,僅個人觀念分享
投資癮各平台
https://linktr.ee/wealtholic
記憶體頻寬影響 在 啟點文化 Youtube 的最佳解答
【線上課程】《理財心裡學》~擺脫家庭影響,從心培養富體質
課程連結:https://pse.is/EPBWE
第一講免費試聽:https://youtu.be/HgrDK7pqR-0
不定期推出補充教材,讓學習無限延伸:https://pse.is/NJ5VE
【10/13開課!】《學「問」~高難度對話的望聞問切》~第20期
掌握達成共識的關鍵能力!
課程資訊:http://www.koob.com.tw/contents/232
更多學員心得分享:http://goo.gl/A07zZ0
【線上課程】《過好人生學》~讓你建立迎向未來的思維與能力!
課程連結:https://pse.is/H8JXH
第一講免費試聽:https://youtu.be/-EHOn0UxMys
不定期推出補充教材,讓學習無限延伸:https://pros.is/KQZZH
【線上課程】《自信表達力》~讓你不再害怕開口
從「敢表達、說清楚」到讓人「聽得進、會去做」的完整學習
課程連結:https://pse.is/RG5NC
第一講免費試聽:https://youtu.be/fAjySLoa2f8
不定期推出補充教材,讓學習無限延伸:https://pse.is/NUJK9
【線上課程】《時間駕訓班》~
學會提升效率,擺脫瞎忙人生,做自己時間的主人
課程連結:https://pse.is/DDDHB
第一講免費試聽:https://youtu.be/flfm52T6lE8
不定期推出補充教材,讓學習無限延伸:https://pse.is/GXZWM
【線上課程】《人際斷捨離》~
讓你留下怦然心動的關係,活出輕盈自在的人生!
課程連結:https://pse.is/E5MW5
第一講免費試聽:https://youtu.be/YyLvd1cNcDw
不定期推出補充教材,讓學習無限延伸:https://pse.is/LVRLY
【我們有Podcast囉~】歡迎到Podcast應用裡搜尋「啟點文化一天聽一點」訂閱我們!
Apple Podcast~https://pse.is/N2WCZ
Google Podcast~https://pse.is/PEN2Z
在Himalaya收聽~https://www.himalaya.com/ekoob
在Spotify收聽~https://pse.is/PQT76
在SoundCloud收聽~https://soundcloud.com/ekoob
桌遊【人際維基】~一玩就懂得別人的在乎:https://goo.gl/Ej4hjQ
到蝦皮購買【人際維基】:https://goo.gl/ASruqR
=========================
歡迎來到「一天聽一點」,我們每週一到週五晚上7點,準時為你更新,結合心理跟生活的真實運用,每天陪伴你進步一點點,如果你每天都想要有所進步的話,就請你一定要訂閱我們的頻道。
昨天跟大家分享了《匱乏經濟學》裡面的「稀缺心態」。
「稀缺心態」會導致我們進入一種「隧道效應」,同時也會讓我們進入一種「預支」跟「透支」的生命形態。
那除了隧道效應,跟預支與透支之外,稀缺心態還會怎麼樣全面性的影響我們的生活呢?
接下來談第三個影響哦!第三個影響就是,稀缺心態會導致我們沒有辦法留下任何的餘裕,也就是沒有多餘的「時間」跟「空間」。
其實你不妨想一下,為什麼那些窮人他們會覺得生活特別的累?
其實回到真實的生活現場裡,如果你活在一種「花一塊錢」都要糾結、比較一下;花一點時間都要考慮再三,這個時間用在別的地方會不會更有效?
這樣的一個思維,直覺上看起來好像都是很審慎評估的,但其實如果你的每一件事情、每一分錢都要進行這樣的執行的話,那會讓你造成很龐大的心智負擔。
而這些心智負擔會消耗你的注意力、消耗你的精力,進一步又強化了你的「隧道效應」,因為你已經沒有辦法再處理別的訊息了!
這種感覺就好像是,你使用手機或者使用電腦,你裡面預備要執行的程式太多,你都沒有去把它刪掉的時候。
有沒有發現,每一次開機、每次關機,或者是每一次執行新的程序,花很長、很長的時間。
甚至於你有一種好像覺得自己的手機,自己的電腦跑不動的感覺!那為什麼會跑不動?就是因為你的不管是記憶體,還是CPU,它都沒有餘裕啊!
就像我們開車在路上,以一般的交通研究來說,如果一個道路的佔有率,超過了85%,它會塞車的幾率是100%的。
因為當車子多到一定的程度的時候,只要其中有一個司機,腳踩了一下剎車,那麼後面所有的司機都會連鎖反應的踩剎車。
你可能有過那種經驗,開車在高速公路上,然後塞車塞了一陣子,你覺得前面一定是有什麼問題,或者是一定有什麼事故。
結果呢你慢慢開,開到了某個階段,你就可以盡情的踩油門,你也沒看到有什麼事故,沒有什麼意外呀!
對呀,因為當那一個區段的車子的佔有率,超過了一定的比例,其實根本不用有任何的事故,就會導致整體的速度放慢下來。
那麼你想想看,在你的生活裡不管是時間、不管是金錢,是不是也是如此?
就像是如果你平常沒有儲蓄的習慣,你平常沒有做時間規劃安排的習慣,特別是幫自己安排休息的時間。
是不是任何的意外,都會導致你的時間或財務,整體的崩潰,這就是因為「稀缺心態」導致你沒有餘裕啊!
那你可能會想那「稀缺心態」導致沒有餘裕,到底是因還是果呢?其實我會覺得它是互為因果的。
因為有很多時候,比如說工作來講好了,你總覺得要把時間塞滿,才叫做有做事;可是呢,我反而在自己的線上課程【時間駕訓班】裡,我有特別提醒!
千萬記得哦,不要以為把時間塞滿叫做「有效率」,真正有效率的人,反而要把自己的休息,把自己的放空,有意識的排進自己的行事曆。
因為我雖然這種時間的餘裕,看起來好像會讓一個人效率沒有辦法提高,但是它帶來的整體的正向回饋,是非常高的。
因為你心中覺得自己可以休息,它就是一種很奢侈的心理感受,它會讓我們覺得自己不用急忙、不用匆忙。
隨之而來的就是,我們會感覺更放鬆、更自在;就算犯錯了也沒有關係,這是一種心理上的奢侈呀!而這樣的享受感、奢侈感,對於一個人的主觀幸福是非常重要的!
其實金錢也是一樣,今天你可以花一筆錢,不用太考慮它的CP值,或者是不用太考慮它的對價關係;在合理的範圍裡,這樣的感受,是不是會讓你覺得自己很棒呢!
所以呢,如果長期讓自己處在「稀缺心態」裡,這真的很容易讓人沒有辦法有任何的餘裕;而這裡面最凸顯的,就是從小到大我們接收的信念。
好像有些人會覺得休息是不好的,或者是好像買一些對自己好的東西,就叫做浪費錢!你沒發現其實不一定是你沒時間沒錢,而是你的信念,導致你根本不可能讓自己留有餘裕啊!
而第四個稀缺心態影響的部分,這一點也是最重要的一點,就是它會引發我們認知頻寬的不足,什麼叫「認知頻寬」呢?
它就是我們所有、所有認知能力的總和,包含我們去計算權衡,包含我們去關注一件事,包含我們決策去執行,甚至於是抵抗誘惑的能力,這些都是我們的認知頻寬。
就像是前面舉的例子一樣,你可以把它想像成我們心智的CPU。
你可以感受一個情境噢,你手上正在忙一件事,同時有人找你講話,而這個時候旁邊的電話又響了;然後你發現你後面正在燒開水的水壺的聲音,也發出了煮沸的聲音,請問一下這個時候,你能夠同時做好這些事嗎?
可是呢,有很多時候,我們總覺得自己可以同時做好很多事。所以呢,你同時應付別人、同時眼睛在看螢幕,然後還瞄一下你的手機響的那個畫面到底是什麼?
然後腳呢,同時往後走,你會發現這樣的狀況就是,你每一件事情感覺上都做了,但是沒有一件事情做得好!
然而久而久之呢,這一定就會傷害我們對於長期真正重要事物的規劃。什麼叫做「長期規劃」?
在財務上面,就包含有意識的儲蓄,有意識的去理財,然而對個人而言,就是有意識的去學習,去運動、去健身。
可當你的認知頻寬還不夠的時候,你可能都會在忙於這些表面的事物,所以那些投資未來的事情,要麼你就根本不在乎,要麼就是你理論上知道要在乎,但是你實際上根本沒有去做。
所以呢,它會造成一個很矛盾的現象,理論上來說對一個窮人就是沒有錢,可是你會發現,他們要麼就是太過在乎錢,要麼就是太過不在乎錢,而且我遇到蠻多的是太不在乎錢!
怎麼說呢,先不管他們表面上的認知如何,回到他們的行為,你會發現這些進入財務惡性循環的。
常常是透支他們的信用,常常是衝動消費、衝動購物,常常是把錢花在短期的享受,而不是長期的投資!這就導致他們的債務永遠沒有還完的一天,而且是惡性循環,越來越糟。
那如果體現在時間的管理上,你會發現這樣的人,他們理性上都知道,他們要專注在最重要的事。
可是他們通常在實務上,就會關注太多的事情,而關注太多的事情,因為自己的恐懼,而恐懼就是稀缺心態,又會導致他們認知頻寬嚴重不夠。
所以呢,在他們的心中,再茲念茲的都是那些沒有做完的、應該去做的,或者是很急迫、有壓力的那些事,這就是心理學裡面講的「蔡尼格效應」。
那些事情一直縈繞在他們的心中,那也因為如此,他們根本沒有足夠的頻寬去處理真正重要的事。
於是更容易出現錯誤的決定,然而在錯誤的決定之後,又會導致他們的時間跟財務更加的稀缺。
聽出來了沒有,其實當你沒有給自己餘裕,當你把自己的認知頻寬全部佔滿了之後,那只是讓你有一個好像「你很努力」的錯覺,就像我常說的,你無論做任何事情,你不能讓自己只是很努力而已。
你要讓自己很清楚知道,你為什麼做、你為何而做?而當你做它能得到什麼,並且去檢核是不是真的能夠得到。
然而這一切的動作,都需要你在心中要先「留有餘裕」,而且要能夠留下你的認知頻寬。
然而當你聽到這裡,你可能也發現了,這一切的結果好像跟我們內在一些很核心的信念是有關的。
沒有錯!其實我們的信念,都受到我們過去的經驗,還有原生家庭的影響。
尤其是我們在面對財務的時候,原生家庭到底在你的心中種下什麼樣的信念?這個是你需要好好的認真看待的。
如果你沒有發現這些,或者是你沒有好好的覺察這些的話,你會發現你可能很看不慣自己父母親,面對財務的方式,然而你很有可能就複製了他們的行為。
又或者是你的父母親真的很有錢,可是你因為自己內在的一些功課沒有穿越,你會反其道而行,從此討厭錢。
可是你的理性上,又知道自己必須要好好的看待錢,然而你的行動怎麼樣就是做不到,我相信置身其中的你一定很辛苦吧!
所以呢,這些稀缺心態,導致我們信念跟行為的因果關係,我覺得它們真的很重要!
然而更重要的是,你能不能給自己一個機會去看看,自己在面對金錢面對財物的時候,你的核心信念到底是什麼,而又怎麼來的?
並且從中找到適合自己調整的方法,用很實際的,不管是記帳啊,財務規劃,讓自己活出一個更富有的人生。
其實如果你想要在這方面前進的話,我很鼓勵你可,以加入嘉玲老師的線上課程【理財心裡學】。
尤其是【理財心裡學】哦,到6月30號的晚上12點前,都可以用1399的優惠價加入學習。
我想無論你的功課是面對財務,還是更廣大的人生怎樣活得富有,這門課都會帶給你很大的幫助。你加入了嗎?歡迎你的加入~
然而更希望你透過我們這一系列的分享,讓自己開始活得更好,活得更自由;希望今天的分享能帶給你一些啟發與幫助,我是凱宇。
如果你喜歡我們製作的內容,除了YouTube之外,我們也有Podcast的頻道,你只要在Podcast的應用裡面,搜尋「啟點文化一天聽一點」,你就可以訂閱我們,也記得給我們5顆星的評價,我們需要你用具體的行為來支持我們。
然而如果你對於啟點文化的商品,或課程有興趣的話,如同今天最後提到的【理財心裡學】,相關連結在我們的影片說明裡都有,期待你的加入。
也期待你能夠把握6月30號1399的特別優惠,那麼今天就跟你聊這邊了,謝謝你的收聽,我們再會。
