凱利公式喺高級賭徒的世界大名鼎鼎,咁到底咩係凱利公式呢?
先問你一個問題,如果你眼前有一個簡單 1 賠 1 嘅公平賭局, 而你可以重覆參與幾多次都得 ,你有$100,你會點賭?⚖️
如果你係冒險主義, 每一次都100%全押注All-in所有金錢,雖然贏嘅話次次都立即翻倍💰;但一輸就會立即變零,一無所有💸
如果你係保守主義,謹慎地每次下注$1,贏就賺$1 ,輸就蝕$1, 小朋友玩泥沙,咁嘥時間不如正正經經打份工好過😫
全押注太多,賺$1又太少,咁應該投入幾高比例呢? 作為高級賭徒,你一定要識凱利公式(Kelly Formula)📌
——————————————
🧮 凱利公式係一條可應用喺多次隨機賭博遊戲嘅公式,令到資金的期望值最高
🌟 f* =(bp-q)/ b 🌟
f* = 應投注的資本比值
p = 獲勝的概率(也就是拋硬幣正面的概率)
q = 失敗的概率,即 1 – p(也就是硬幣反面的概率)
b = 純利率(也就是一賠1的1)
公式上面的分子 bp-q 代表「贏面」
———————————————
例子:一局遊戲,贏的概率 p、輸的概率q 都為 0.5
贏就一賠1,所以純利率=1
👉(bp – q) / b = (1 * 0.5 – 0.5) / 1
👉= 0%
❗拿出資金的 0% 進行下注,已經能夠使賭局收益最大化。
⚖️ 即係話,原來就算賭局係公平嘅,根據數學都唔值得押注任何金錢。更何況,世界上大部分賭局都對玩家唔 fair 嘅,可想而之,連 fair 都唔值得賭,更何況係唔 fair 嘅呢? 大家有睇過賭 Sir 嘅 Youtube Channel 就知道喇,所以大家切勿沉迷賭博啊❗
———————————————
🎲賭Sir|高階數學考試專家
🎓21 項數學公開試.以一 Take 過考取完美戰績
DSE:Math+M1+M2【5**】
CE & AL:Math+A.Math+Pure+Applied【A】
IAL:C12+C34+F1+F2+F3+M1+M2+M3+S1+S2+S3+D1【A】
IGCSE:Mathematics+Further Pure Mathematics 【9】
🖥最高人氣補習網紅・貼地教數別樹一格
頻道 #杜氏數學 2016年創辦,訂閱65,000+,多條教學影片點擊100,000+;2018年獲出版社邀請,撰寫暢銷書《5**數學男人嫁得過》推廣「聰明應試」理念,並鼓勵年青人堅守自信。
🧠以心理學、高效學習融入補習教育當中
從中文大學風險管理學士畢業之後,鑽研超速學習法(Ultralearning)及教育心理學,將高效學方法先行用於自己身上,無間斷學習新知識;四年後重返校園,完成中文大學數學碩士(大數據分析)課程,期間考入門薩學會(Mensa),實證超速學習法。
🏆座右銘
好多人以為自己因為對數學無興趣,所以數學低分;事實剛好相反:因為自己數學低分,所以對數學無興趣。試諗下,若然你有歌神嘅聲線,你仲會對唱歌無興趣嗎?
------------
#健身 #健心 #健生 #健腦 #數學#DSE #dser #math #maths#afterschool #dsemath #examskills#mathtutor #followme #2022DSE#2023DSE #2024DSE #tutor#mathtutor #DSEfighter #tutotial
同時也有2部Youtube影片,追蹤數超過8萬的網紅賭Sir【杜氏數學】HermanToMath,也在其Youtube影片中提到,杜氏數學 官方網站: http://www.HermanToMath.com 賭Sir 幫你急救 DSE 數學: https://HermanToMath.skx.io ---------- ?️賭Sir是杜氏數學Herman To Math的始創人 ?全港唯一「完爆」【DSE Core+M1+M...
「賭博期望值公式」的推薦目錄:
- 關於賭博期望值公式 在 賭Sir(杜氏數學) Facebook 的最佳貼文
- 關於賭博期望值公式 在 阿堯投資筆記 Facebook 的最佳解答
- 關於賭博期望值公式 在 幣圖誌Bituzi Facebook 的精選貼文
- 關於賭博期望值公式 在 賭Sir【杜氏數學】HermanToMath Youtube 的最讚貼文
- 關於賭博期望值公式 在 賭Sir【杜氏數學】HermanToMath Youtube 的最佳貼文
- 關於賭博期望值公式 在 Re: [問題] 關於期望值- 看板Inference - 批踢踢實業坊 的評價
- 關於賭博期望值公式 在 生活中的程式- 【賭博中的數學─為何大戶不喜歡高風險投資 ... 的評價
- 關於賭博期望值公式 在 如何做好資金管理,凱利公式告訴你答案 的評價
- 關於賭博期望值公式 在 期望值公式2023-精選在臉書/Facebook/Dcard上的焦點新聞和 ... 的評價
- 關於賭博期望值公式 在 期望值公式2023-精選在臉書/Facebook/Dcard上的焦點新聞和 ... 的評價
- 關於賭博期望值公式 在 [閒聊] RUST 賭博 - PTT 熱門文章Hito 的評價
- 關於賭博期望值公式 在 [閒聊] RUST 賭博- 看板C_Chat - Mo PTT 鄉公所 的評價
- 關於賭博期望值公式 在 Re: [閒聊] 遊戲王贏家可以拿走對方一張卡PTT推薦- C_Chat 的評價
- 關於賭博期望值公式 在 Re: [閒聊] 遊戲王贏家可以拿走對方一張卡 - PTT評價 的評價
賭博期望值公式 在 阿堯投資筆記 Facebook 的最佳解答
<期望值 or 確定性?>
週四分享 Pabrai 演講,後來跟朋友聊到不管是 Pabrai 或 Francis Chou 這幾年的報酬率都不好。他覺得問題可能是 Pabrai 給自己限制每檔股票只能壓 10%
Position Sizing 一直是很多投資人的疑問,所以有人借助科學來幫忙,也就是週四那篇文章我討論的凱利公式
之後我反覆想,週五晚上在 IG 給了一個投票,問題是:投資哪個重要?期望值高或確定性高?
讀過賭博書的一定會回答:期望值高
但我的想法是確定性高,尤其對下檔的確定性要很高
舉個例子吧
A 策略 70% 漲 50%、30% 持平
B 策略 50% 漲 100%、30% 持平、10% 虧 20%、10% 虧 50%
以期望值來說。A 期望值是 35%,B 期望值是 43%。當然選 B
期望值比較像加法的概念,但投資我覺得像乘法
以 A 來說,你玩十次預期的報酬率是:1.5^7*1^3=17.08
以 B 來說會是:2^5*1^3*(0.8)*1*(0.5)1=12.8
所以看起來應該是 A 策略要壓比較多
而為什麼我上面會說下檔的確定性更重要?因為就算下檔有機會歸零,只要我知道這個特性(例如 call)那我在 Sizing 的時候就會考慮進去,就算我知道上檔很高,但就像左輪手槍,中一次就出局了。舉個極端的例子,上檔 1 萬倍,但勝率 10%,下檔歸零,機率 90%,以期望值來說我應該一直賭,但不代表我應該壓我大部分的身家在這個投資上,因為我可能沒有第二次了
這大概也是蒙格說,就算他知道波克夏開大一點的槓桿,在 99% 機率下會賺更多,但他們仍選擇不開
------
打著打著覺得上面這樣想好像還是漏掉點什麼,大家讀完有什麼想法嗎?我有哪邊漏想或想錯的嗎?
賭博期望值公式 在 幣圖誌Bituzi Facebook 的精選貼文
【牧清華】凱利當初只是用在傳統賭局上,並非投資交易,卻被許多投資人誤解,以為凱利沒有用。這種情況,就像是你不會開法拉利,你會嫌車子爛嗎?
真正買法拉利新車的車主,是要到原廠受訓一段日子才能開車上路! 然怪最近好多超跑撞爛了,可能都是買二手裝闊,沒事先訓練唷?!
賭博期望值公式 在 賭Sir【杜氏數學】HermanToMath Youtube 的最讚貼文
杜氏數學 官方網站: http://www.HermanToMath.com
賭Sir 幫你急救 DSE 數學: https://HermanToMath.skx.io
----------
?️賭Sir是杜氏數學Herman To Math的始創人
?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】、【CE Maths+A.Maths】的數學導師
?全港第一最多訂閱粉絲的數學教育YouTuber
?YouTube觀看次數超越700萬、訂閱粉絲超過50000人
?著作:《YouTuber新手到網紅》、《5**數學男人嫁得過》、《碌葛男人嫁得過》、《賭波男人嫁得過》(獲Google嚴選2018年度50大最佳書籍)
----------
賭Sir收集著數派街坊:
❤️YouTuber Go網絡課程 全港最平+獨家 報讀優惠:
?報讀初班 $600 (原價$800):https://www.youtubergo.com/payment/b-hermantomath-0600.html
?報讀初班+中班 $1500 (原價$1800):https://www.youtubergo.com/payment/bm-hermantomath-1500.html
官方網頁:https://www.youtubergo.com/
❤️無限操數王(epractice) 全港最平+獨家 優惠(可同時使用):
?50%OFF 半價優惠碼:MC83-AI93-NFW0-331E
?25%OFF 額外邀請碼:J7N9-RDRP-NFAH-OH13
官方網頁:https://www.dsemth.com/
❤️Tidebit全港最穩妥的比特幣(Bitcoin)交易所:http://bit.ly/2LIWA4J
❤️Uber免費送你$25優惠:https://www.uber.com/invite/2utyzr
----------
杜氏數學 國際官方網站 http://www.hermantomath.com
----------
Title:
賭場VS賭波VS賭馬,如何預測賽果?
----------
Subtitle:
天有不測之風雲,何以天文台能夠預測天氣?
----------
Script:
賭場、賭波和賭馬,形式上非常不同:
賭局 賠率 機率
賭場遊戲 己知 己知
足球博彩 己知 未知
賽馬博彩 未知 未知
由於形式不同,戰術亦截然不同。但戰術不同,目標卻始終如一:「正EV」。只要EV是正數,賭博便佔優。重溫一次EV的計算方法:
EV = 淨贏注 × 贏錢機率 - 淨輸注 × 輸錢機率
換言之,賭場遊戲的賠率固定、機率固定,因此EV都是固定,而且一般來說都是固定的負數(因為對賭場來說便是正數)。對賭客來說,除非遇上賭場犯錯,例如推出新遊戲,規則上容許賭客獲得正EV#,否則於賭場遊戲長賭必敗無疑。
#《爽爆:全職賭徒鑽賭場漏洞 月贏80萬 》
http://hk.apple.nextmedia.com/news/art/20121017/18042618
至於足球博彩,雖然是固定賠率制,但由於足球比賽變化莫測,不似賭場遊戲純粹訴諸物理力學,因此機率是未知之數,自然EV也是未知之數。只要有一定方法,便有可能取得正EV。
或許你會問:既然足球比賽變化莫測,一個不慎擺烏龍、一個不智領紅牌、一個球證誤判越位入球等,都會影響賽果,試問又怎能夠計算呢?
這個問題就等如天有不測之風雲,天文台為何能夠預測天氣呢?當然間中亦有錯判,但雖不中亦不遠矣,這就是數學的力量。其實博彩公司訂立賠率的時候,都會先以數學計算賽果機率,然後輕微調低作抽水。由此可見,只要比博彩公司計算機率計算得更準確,便能夠於賭局中佔有上風。
舉個例,朋友和你在街頭足球場看見兩隊業餘球隊比賽,朋友見一隊年輕力壯,另一隊白髮蒼蒼,於是開盤:「年輕隊1賠0.8、和局1賠2.1、元老隊1賠3.1」,這個時候,你發現元老隊球員原來是前甲組職業球員,年輕隊則是自己兒子的球隊,而你知道自己的兒子和他的朋友是乒乓球隊友,根本不懂得踢足球,因此,你預算元老隊的勝率遠超年輕隊。明顯地,這個賭局是你佔了上風。
換言之,這是一場資訊(Information)戰,擁有更多資訊的佔優。為什麼?因為資訊較多的一方,更能較準確地計算賽局機率(這也是馬評家晨早起床看晨操的目的,獲取一般馬迷不知道的資訊)。於上述例子,雖然不涉及數學運算,但仍算是一種粗略估算。當然,面對博彩公司,粗略估算是不足夠的,你需要比博彩公司更精確的機率計算,而方法就是:建立一個數學模型(Mathematical Model)。
提供重要資訊
計算預測結果
你先從現實世界搜集重要資訊,例如對賽兩隊的近績、對賽往績、預計陣容等,而對賽果影響力較小的,可選擇性地抽取,例如天氣溫度、領隊教練、花邊新聞等。然後,將這些資訊輸入到電腦程式,並由電腦進行運算,得出答案後,把電腦程式輸出的賽果,視之為對現實世界的預測賽果。程序大致如此,天文台預測天氣也是透過數學建模(Mathematical Modeling),量化重要的氣候現象,來預測未來天氣。
然而,電腦程式是如何使用現實資訊的呢?首先預設一些公式,然後匯入大量球賽歷史資訊,例如上述的近績、對賽往績、甚至天氣溫度等,從而利用公式計算預測賽果,將它與真實賽果比較,便可得知每一條公式的預測準繩度,繼而從中選出預測力最高的公式,加以使用,計算EV。
最常見的疑問是:「公式的準繩度源於球賽歷史資訊,包括真實賽果,準繩度自然必被高估,試問對比真實賽果又有什麼意思?」
這個問題可以利用一個名叫回溯測試(Backtesting)的小聰明手法,匯入資訊時,只匯入一部份,留下剩餘的部份歷史賽事當作未來賽事,執行公式模擬投注。
舉例說,你找了1000場相關賽事,你可匯入首900場,來挑選公式,然後用尾100場作模擬投注,計算出使用公式的EV。
賽馬博彩也是透過數學建模,你除了需要計算機率之外,你也要模擬最後賠率。因為賽馬博彩是實行彩池制(Pari Mutuel,又稱同注分彩法),賠率會因應投注額的分佈而時刻調整。假設你投注的時候,一號馬是1賠10,臨開閘的時候可以變了1賠3,到最後派彩可以變了1賠6,而你最後獲得的賠率,就是根據最後派彩,而不是你投注的時候。
由此可見,如使用數學建模,賭馬比賭波容易獲得正EV。主要原因如下:
賽馬是賭客與賭客之間的對賭。實施彩池制,博彩公司抽取投注額的手續費獲利,無論賽果如何,博彩公司已經賺了,派彩只是用輸家的注碼賠給贏家。只要有大量非理性的賭客,賭局佔優的機率便會較高,就好像到麻雀館打麻雀,遇著三位菜鳥,贏面自然較高。
相反,足球博彩是固定賠率制,是莊家和賭客直接對賭,莊家自然費盡工夫調整盤口,為公司獲得正EV,博彩公司正EV,即是賭客負EV。要從足球博彩中使用數學模型取勝,就得比博彩公司計算得更精確才有機會成功。
實際操作上,數學模型的構造當然比以上描述複雜得多,例如考慮的因素、各個因素的比重、賽事的數量,甚至注碼大小等,都絕不簡單。然而,原理大致上就是如此。
這一堂不教任何數學建模的方法,因為所需要的數學水平起碼要有大學程度,如想擊敗賭場,開始學習數學吧,有心不怕遲,只要沒有了考試的壓力,學習數學其實很愉快,也很輕鬆,或許最後你做不了賭神,卻成了數學家呢!
就算不打算學習數學,也希望你明白背後的原理,不致於大庭廣眾之下獻醜,不會再說由於隨機因此無法預測,而別人提起數學模型的時候,你起碼聽得明白。
天氣預測的科學發展已成熟多年,人類掌控隨機事件的能力已遠超一般人所想。天文台雖然無法完美預測每一秒的天氣變化,但大概準確,已造福人群;同樣地,賭局預測,雖然不會場場中,但只要大概準確,使贏的多過輸的,已足夠使賭客獲利。數學並非萬能,但只要適當地使用,絕對是強大的武器。
Summary
賭場遊戲的賠率和機率都是固定。
足球博彩實行固定賠率制(Fixed-odds betting),賠率固定,但機率不知。
賽馬博彩實行彩池制,賠率不定,機率亦不知。
賽果預測的原理,與天氣預測的原理大致相同。
將現實世界重要資訊,匯入數學模型計算,用結果預測現實世界賽果。
把部份歷史賽事當作未來賽事,用以驗證數學程式的準繩度。
天氣預測無須分秒不差,賭局預測亦無須場場中,只要正EV就可以。
Terminology
資訊(Information)
數學模型(Mathematical Model)
數學建模(Mathematical Modeling)
回溯測試(Backtesting)
彩池制(Pari Mutuel)
固定賠率制(Fixed-odds betting)
-----------
杜氏數學 Herman To Math 考試戰績:
A ── 會考 Math 數學
A ── 會考 Additional Math 附加數學
A ── 高考 Pure Math 純粹數學
A ── 高考 Applied Math 應用數學
5** ── DSE Math 數學
5** ── DSE M1 數學延伸部分(一)
5** ── DSE M2 數學延伸部分(二)
A ── IAL Core Math 1 2
A ── IAL Core Math 3 4
A ── IAL Further Pure Math 1
A ── IAL Mechanics 2
A ── IAL Mechanics 3
A ── IAL Statistics 1
A ── IAL Statistics 2
----------
精選系列節錄:
《賭Sir數學戒賭》糸列
https://www.youtube.com/watch?v=dhL-dRcIN5I&index=1&list=PL_CM4U5au2k1cfK2zSph8XOLqIjOPQmvo
賭博期望值公式 在 賭Sir【杜氏數學】HermanToMath Youtube 的最佳貼文
杜氏數學 國際官方網站 http://www.hermantomath.com
----------
Title:
被莊家永遠隱藏的機率原來很易計?
----------
Subtitle:
一張凳、一本簿、一枝筆,便可以簡單運算?
----------
Script:
要知道某投注方法會否為你帶來長期穩定盈利,你要靠EV;而EV的計算,則涉及賠率(Odds)和機率(Probability)。一般賭局,賭率無論是固定,抑或不固定,都必定會顯示(例如球賽主勝、賽馬獨贏、六合彩派彩等);然而,勝負機率卻永遠隱藏。
計算機率可以非常複雜,看過賽馬博彩經典名著《計得精彩》的,相信都會深深感受得到。但計算機率亦可以非常簡單,有些連小學作業都有教。
為什麼又可以簡單?又可以複雜呢?這要由「機率是什麼」說起。
首先,機率就像重量、長度、價錢等,是一個量度值。當你想知道自己的體重,你會站在電子磅;當你想知道自己的身高,你會用尺量度;當你想知過大海船票幾貴,你會查一查價錢;而當你想知道一件事情發生的可能性,你便要計算機率。
那麼,有什麼事你會想知它的可能性呢?擲一粒骰「擲到七點」的可能性,你會想計算嗎?不。因為擲一粒骰「必定」不會擲到七點。那麼,擲骰擲到整數的可能性,你又會想計算嗎?不。因為擲骰「必定」擲出整數。由此可見,當你已經知道問題的答案是鐵定的YES或NO時,你不會問可能性。換言之,當你不肯定某事情是YES還是NO時,你才會想窺探可能性。
最家傳戶曉的例子,非擲毫莫屬:究竟下一回是公定字呢?
雖然機率是數學之中的一個範疇,但機率在語言之中也佔了一席位,縱使未曾學過機率,都會以「五十五十」來描述擲毫的結果,即擲到公和擲到字的機率均是百分之五十(50%)。
對有分數概念的則會以「二份之一」描述之。兩者相通,因為一整份是100%,各分一半自然是各佔50%,亦是兩份之中取一份,二份之一也。
分數概念對機率非常便利,將虛無飄渺的機率圖像化,轉化成「切蛋糕」的情況--由於你深信擲公和字的可能性均等,公和字就像一對雙胞胎,要吃相同份量的蛋糕,身為父母你便得把蛋糕一分為二,一份給公,一份給字,二份之一也。
此平平無奇的「二份之一」概念,更足以延伸至更多情況:
擲一粒骰子,擲得一點的機率是多少?
由於你深信一粒骰子六面的可能性均是相同,它們就像六胞胎平分生日蛋糕,你把蛋糕一分為六,一仔、二仔、三仔、四仔、五仔和六仔各取一份。擲得一點的機率,六份之一是也。
只要看得穿多少胞胎在分蛋糕,便能運算出機率。
雖然擲毫的機率十分顯淺,顯淺得令不少自稱患有「數學恐懼症」的人也會對機率產生興趣,然而,由擲毫和擲骰引起的誤解,同時惹來不少人放棄了機率,甚至徹底訴誅運氣鬼神之說。最常見的誤解是:
「擲公字的機率是二份之一,那麼,要是第一局己擲到了一次公,下一局將必定擲到字嗎?」
當然不是!否則每次擲硬幣不就只會公字公字公字……梅花間竹地出現嗎?這是天方夜譚吧。再者,若「必定」梅花間竹地出現,機率該是100%,這一點也抵觸了「二份之一」的說法。
「既然二份之一的機率,並不代表能夠預測下一局,對賭客來說又有什麼意思?」
答案很簡單,就是用來計算EV,預知定然的長遠結果。
明白了機率的意思和功用之後,接下來正式講解機率的3大運算方法:
1. 窮舉法(Exhaustive Method):一次隨機事件
先前提過,基本的機率運算,是平均分蛋糕的遊戲。由此可見,「有幾胞胎」以及「拿幾件蛋糕」都是舉足輕重的問題。幸好,這種「有幾」的問題,都只是嬰孩學「數手指」(即數數目)可以應付的問題。
由擲公字的例子起步,全部的情況有「公」和「字」,我們就這樣數:
「公……第一個;字……第二個。總共兩個。」
即問題涉及雙胞胎,將蛋糕分成兩份。
如想知擲得「公」的機率,我們又再數過:
「公……第一個。總共一個。」
可見「公」的機率便是「兩份之」中的「一」份,二份之一也。
擲骰子亦同樣,這樣數全部的情況:
「一點……第一個;兩點……第兩個;三點……第三個;四點……第四個;五點……第五個;六點……第六個。總共六個。」
即問題涉及六胞胎,將蛋糕分成六份。
如想知擲得「雙數」(即2、4、6)的機率,我們又再數過:
「兩點……第一個;四點……第二個;六點……第三個。總共三個。」
可見「雙數」的機率便是「六份之」中的「三」份,六份之三也。
兩題的答案,分別是「二份之一」( )和「六份之三」( ),究竟誰大誰小呢?欲比較分數,可以先將它化簡,繼續直接觀察,或者相減或相除。然而,分數的觸覺並非人皆有之,曾有趣聞說超過一半的美國受訪者誤以為「四份之一」比「三份之一」大。由此,我建議採取較「平易近人」的百份率(%),換算方法是--將分子除以分母,再乘以100,便是百份之多少,即多少%了。
機率(%)=分子÷分母×100
以上述的結果為例,先把1除2,再乘以100,得出50,即擲得公的機率為 50%;把3除以6,再乘以100,得出50,即擲得雙數的機率同為50%。平分秋色,「一樣那麼可能」。
由這兩個例子得知:只要能夠準確細數可能發生的情況(我稱之為懂得數手指)便能夠計算基本的機率了。
當然,懂得數手指並不等如一定數得清,當數量太多的時候,例如打麻雀(144隻牌)一起手便食糊(又稱食天糊)的機率,逐個數並非明智之舉。雖然「理論上」只要有一位有無比耐性的人,的確能夠把所有可能性徹底列出,但整個過程也拖太久了吧?
因此,數數目亦應該要有聰明的方法。
2. 列表法(Tabulation):兩次隨機事件
以擲骰子為例,擲一粒骰當然能夠「數手指」,因為只得6面。可是,如果擲兩粒骰呢?總有多少個可能的結果?
「第一粒骰一點、第二粒骰一點……一個;第一粒骰一點、第二粒骰兩點……兩個;第一粒骰一點、第三粒骰三點……三個……」給些少耐性,最終便會得知,總共有36個可能發生的結果。
列出來當然可以,但無可否認實在太煩了,而煩,亦自然代表較易出錯。究竟有沒有什麼方法可以將情況整齊地表達出來呢?
日常生活中,有一種表達方法,很值得參考,就是馬經表達「連贏」賠率的列表法。由於「連贏」是要預測單一賽事的冠軍和亞軍馬匹,因此會是兩個馬匹號碼互相配搭,例如「一號馬匹」搭「六號馬匹」,情形就像2粒骰的點數,「一點」加「六點」。
由「馬經作圖法」可以將擲兩粒骰的情況歸納如下:
每一格分別代表一個情況,例如橙色的格子代表「啡色的骰子五點,綠色的骰子三點」。 由此可見,擲2粒骰總共有36個可能結果。換言之,將蛋糕切成36份。
如問擲得總點數為10的機率,使用「馬經作圖法」答案一目了然:
非常明顯,共有3個格子,是兩骰點數相加為十(分別是(4,6)、(5,5)和(6,4))因此這三十六胞胎,現在有三胞胎說要吃蛋糕了,在「36份之」中吃了「3」份,答案是「36份之3」( )。(試利用公式把它轉成%吧!)
值得留意的是,這招「馬經作圖法」有一個值得每次使用之前都要小心思索的地方:
試想想,現有6張卡,分別畫了骰子的6面,現在你隨機抽取兩張,請問2張卡的點數相加為十的機率是多少?
很多人會照舊作答「36份之3」,原因是問題只是將骰子變成卡片,情況不甚改變,而且,使用「馬經作圖法」會得出了一幅相同的列表:
可惜這是錯的,答案錯,列表也是錯的,錯在算少了一著:擲骰子可以擲到相同數字,例如2粒骰都是一點,但抽卡並不能抽到相同數字呢!卡片只得1張,你怎樣也不能抽到2張都是一點。因此,列表應修正如下:
灰色代表根本不可能發生的情況,即不存在的胞胎。根據這個修正後的列表,蛋糕應平分為30份,而不是36份。符合相加為十的結果,亦不是3個,而是2個,因為根本沒可能抽出2張都是五點的卡片。有見及此,修正後的答案為「30份之2」( )。(試利用公式把它轉成%吧!)
3. 樹狀圖(Tree Diagram):兩次或以上隨機事件
雖然列表可以將可能性整齊地列出來,但列表也有它的局限之處,就是只能解決兩次隨機事件。如有三次或以上隨機事件,則要靠樹狀圖了。
以擲毫為例,如連擲三枚硬幣,擲得至少一次公的話,你便可以獲得8000元,這個遊戲值得花5000元去玩嗎?
首先,你得知道勝出這賭局的機率,即擲三枚硬幣能夠擲得至少一次公的機率。由於這涉及三次隨機事件,因此無法使用列表法,非用樹狀圖不可:
樹狀圖就像旅行路線圖,每一條路都是一個行程,每一個行程就是每一個可能性,不妨逐個寫出來看看:
由圖所示,這年遊戲總共有8個結局,而當中有7個結局能使你獲得8000元獎金,由此使用「分蛋糕」概念,你勝出遊戲的機率是8份之7,換算成百分率,即87.5%。
賠率則這樣計算:以5000元當作1注,如得勝則淨贏3000元,即贏3000÷5000注,又即0.6注。因此,你若參與這個賭局,你的EV = 0.6 × 87.5% - 12.5% = 40%,是一個正數。長賭下去,你將會獲取40%的純利,當然值得參與賭局。
----------
杜氏數學 Herman To Math 考試戰績:
A ── 會考 Math 數學
A ── 會考 Additional Math 附加數學
A ── 高考 Pure Math 純粹數學
A ── 高考 Applied Math 應用數學
5** ── DSE Math 數學
5** ── DSE M1 數學延伸部分(一)
5** ── DSE M2 數學延伸部分(二)
A ── IAL Core Math 1 2
A ── IAL Core Math 3 4
A ── IAL Further Pure Math 1
A ── IAL Mechanics 2
A ── IAL Mechanics 3
A ── IAL Statistics 1
A ── IAL Statistics 2
----------
精選系列節錄:
《賭Sir數學戒賭》糸列
https://www.youtube.com/watch?v=dhL-dRcIN5I&index=1&list=PL_CM4U5au2k1cfK2zSph8XOLqIjOPQmvo
賭博期望值公式 在 生活中的程式- 【賭博中的數學─為何大戶不喜歡高風險投資 ... 的推薦與評價
賭博 中的數學─為何大戶不喜歡高風險投資?】 前幾天有談過量化交易, ... 這兩種情形的賭注期望值都是12%,看起來是一樣的投資產品,但如果帶入凱利公式加以運用呢? ... <看更多>
賭博期望值公式 在 如何做好資金管理,凱利公式告訴你答案 的推薦與評價
我們一定會先去計算這個賭博它的期望值,看它是正的還是負的,正的就值得投資,負的就不值得投資。 期 望 值 ... ... <看更多>
賭博期望值公式 在 Re: [問題] 關於期望值- 看板Inference - 批踢踢實業坊 的推薦與評價
承上一篇, 我現在比較有興趣的是一注降到多少錢, 大家會有興趣玩.
期望獲利的公式承上一篇大概是 Y - (注金) + ( 注金 / 2^Y )
那麼當注金是...
100元 要玩2^100=1.26*10^30次時打平不賠.
50元 要玩2^50 =1.13*10^15次時打平不賠.
32元 要玩2^32 =4294967296次時打平不賠.
16元 要玩2^16 = 65536次時打平不賠. (看來已經很人性化了)
假設擲一次硬幣要花一秒鐘.
有一半的賭博擲一次就決定勝負, 另一半需要擲第二次以上.
那麼65536次的賭博需要擲硬幣的次數便是:
65536*(1*(1/2)+2*(1/4)+3*(1/8)+4*(1/16)+5*(1/32)+...+16*(1/65536))
= 65536*((2^17-18)/2^16)
= 2^17-18
= 131054 次
每秒1次擲硬幣的速度, 要不休息不做別的事光丟硬幣 1.52天
而假設10個好朋友同時一起玩, 大概要花3小時38分鐘. (不准跑去尿尿)
大概以104萬8576元的總資本, 有機會賺進你們的第一次盈餘.
扣除資金回本淨賺了多少? 16塊吧 大概.
因為65536次的賭博把你們的期望值提升到 16 - 16 + 16/65536 = 16/65536 = 0.000244
注金再降低的話看起來比較接近一般賭客會冒險玩玩看的程度了吧.(幻想賽到一次大筆的)
問題是, 當賭博條件訂到這樣的時候, 應該也是賭場保鏢黑衣人條件達到的時候.
還是. 算了吧.
去便利商店打工1小時都比這10個賭客3個多小時不准尿尿拼命擲硬幣還強.
打工小弟若以法定最低時薪95/hr.來算.
賺錢效率是賭客的216.14倍. (而且還可以中途去尿尿)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 115.43.184.229
※ 編輯: bigboat 來自: 115.43.184.229 (06/22 04:54)
... <看更多>