汽車軟體深度報告:汽車軟體產業鏈及未來趨勢分析
北京新浪網 10-01 20:00
來源:未來智庫
關鍵結論
電動智能趨勢下,汽車逐步由機械驅動向軟體驅動過渡。近年 SDV(軟體定義汽車)概念逐步被行業認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電 動化帶來的汽車電子構架革新,汽車硬體體系將逐漸趨於一致,軟體成為定義 汽車的關鍵,行業更具想像空間。即造車壁壘已經由從前的上萬個零部件拼合 能力演變成將上億行代碼組合運行的能力。本文通過對汽車軟體行業的系統性 梳理,幫助讀者把握行業成長中的投資機會。
我們提出零部件賽道三維篩選框架,基於起點(單車價值量)-持續時間(產品生 命周期)-斜率(產品升級速度)三維體系評價細分零部件的市場空間,軟體平均單車價值量由傳統車的 200 美元,提升至 2025 年新能源汽車的 0.23 萬美元,進 一步至 2025 年新能源汽車的 1.8 萬美元。未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間,57%的增量來自於 ADAS 及 AD 軟體。
軟體如何定義汽車價值?百年汽車工業面臨由機械機器向電子產品過渡的新變 局。汽車「駕駛感」及車機 APP 化的功能實現發生在我們看不到的隱秘角落— —上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。
汽車軟體成為未來汽車構架重要組成部分。而整車電子電氣構架提供的硬體、 操作系統實現的管理功能、基礎軟體平台構架實現的抽象化為 SDV 不可或缺的 三大關鍵部分,軟硬體的分離(研發分離、功能發佈分離)成為實現 SDV 基礎。
發展史與整車廠戰略。汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發 動機控制演算法→1980 年代中央計算單元創新→1990 年代信息娛樂系統創新→ 2000 年代安全系統→2010 年代開始向全新汽車電子構架及軟體系統演變。不 同於以前依靠多個 ECU 由部件供應商主導的無獨立軟體產品概念時代,主機廠 愈發需具備軟體的管理能力及核心軟體設計能力。整車廠中特斯拉引領車載軟 件行業最高技術,大眾重金重塑軟體架構,整車廠關乎開發周期、賦予附加值、 構架實現、軟體變現模式以及操作系統切入等問題上仍未進行標準化定義,卻 為影響行業發展的關鍵所在。
產業鏈機遇。新科技、軟體公司湧入帶動供應鏈管理的扁平化、邊界模糊化, 帶動供應鏈生態體系變革。供應模式上,預計 Tier1 與整車廠之間將採取兩種合作方式,其一,整車廠主導軟體,Tier1 負責硬體生產;其二,整車廠定義軟 件框架規範標準,Tier1 供應符合標準的相關軟體。盈利模式上,偏向製造業邏 輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業穩態階段,往 介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由於迭代周期快 且行業特性帶來的標準化程度低,賦予汽車新盈利模式。現階段特斯拉三大付 費模式打開車企軟體變現想像空間,開發基礎平台收許可費、供應功能模塊按 Royalty 收費及定製化的二次開發均為未來軟體供應商主流打法。
推演的 5 大未來趨勢。汽車終將成為搭載「差異化元素」的通用化平台。一方 面,ECU 功能模塊里循環迭代的代碼驅動汽車執行動作反饋;另一方面,車載 娛樂信息系統 APP 化吸引第三方開發者入場。海量數據將在車內流轉,關於賦 能域控制器、定位車機系統的各項軟體性能升級,包括功能中心化、乙太網應 用、整車 OTA 升級、信息交互上雲及深層次的信息安全防禦等,或將帶來汽車 軟體一系列發展機遇。
SDV 新階段:軟體如何定義汽車價值
百年汽車工業面臨由機械機器向電子產品過渡的新變局。跨入駕駛室,安靜的 啟動、柔中帶剛的加速、平穩過渡的剎車等為代表的汽車「駕駛感」逐步由機 械驅動向軟體驅動過渡,這一套功能的實現發生在我們看不到的隱秘角落—— 上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。近年來,SDV(Software Define Vehicles,即軟體定義汽車)概念逐步被整車 廠認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電動化帶來的汽 車電子構架革新,汽車硬體體系將逐漸趨於一致,整車廠很難在硬體上打造差 異化,此時軟體成為定義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件 拼合能力演變成將上億行代碼組合運行的能力。
汽車軟體為未來汽車構架重要組成部分
汽車軟體與硬體體系發生分化。近幾十年隨汽車構架升級、性能與用戶操作感 需求逐年提升,汽車軟硬體數量爆發,並愈發複雜化。在硬體方面,電控單元 數量迅速增長,於 2010 年面臨增速放緩的拐點(主要受整車成本與控制器數 量平衡的影響),2025 年隨行業集中式電子電氣架構趨勢持續推進,電控單元 邁向集成化從而控制器數量將較為平穩。在軟體方面,各大主機廠軟體功能體 系越做越大,其中「功能函數」作為軟體體系中的最小單元,其單車數量持續 增大,控制器內部的功能函數複雜度提升,疊加智能座艙新增的應用型軟體需 求,軟體重要性愈發凸顯。2010 年(增速放緩的硬體數量 VS. 急劇攀升的軟 件數量)與 2025 年(硬體產業成型 VS.軟體加速迭代塑造汽車差異性)為汽車 軟硬體發展中兩個重要的分水嶺。
汽車複雜的運作需軟硬體結合進行。無論是駕駛艙對汽車電子功能的調用,抑 或汽車與駕駛員和環境互動,均可抽化為軟硬體密切配合的模型,即駕駛員的 需求與汽車功能反應之間存在著複雜的控制鏈條:駕駛員通過機械硬體或部分 虛擬按鈕輸入期望(例如通過車載按鈕、踏板等輸入型機械硬體給出期望)→ 駕駛員動作轉換為電子信號傳入電控單元→執行器控制控制對象達到駕駛員的 需求→感測器向電控系統持續反饋控制達成的具體情況,軟體邏輯持續運算向 執行器發出指令,最終達成駕駛員的期望要求。以剎車輔助駕駛為例,在駕駛 員剎車信號不足或過慢的情況下,內置的一套軟體邏輯將被激活,讓制動系統 自動做出減速相應。在電控單元中快速進行的一次次軟體迭代循環,為汽車正 常運作的基石。
SDV 研發工具鏈仍以 V 流程為主。汽車研發系統過程能拆解為軟體、硬體、執 行器及感測器 4 大部分。與傳統車相同,V 模型為車企主流的開發流程,從產 品設計、子系統設計、控制器驗證及系統驗證等階段均有相對應的工具鏈進行 支撐,涵蓋從系統到軟體以及集成后的一系列測試等內容。SDV 模式下對工具 鏈的應用具部分變化:一方面,硬體愈發通用化,研發會集中在作為功能集群 的 ECU 開發上;另一方面,車的各種功能實現盡量靠軟體實現。
Step 1:產品設計階段。此階段核心為分析和拆解需求。由消費者的需求、車 型安全及性能的剛性需求以及法律法規需求定義出軟體的基礎構架,以及定義 出各大功能模塊。
Step 2:子系統設計階段。步驟為由系統構架需求定義軟硬體構架設計。關乎 軟體系統部分在這一步雛形初顯,能將技術問題具體化,例如定義軟體能實現 的功能、軟體功能模塊的分離、如何跟對應的控制器配合等。
Step 3:控制器驗證階段。完成硬軟體及控制器集成,代碼成型并迭代測試。
Step 4:系統驗證階段。測試軟硬體在整車上的裝載使用情況。
SDV不可或缺的三大關鍵部分——電子電氣架構、操作系統、軟體平台
整車電子電氣構架為硬體基礎。汽車電子電氣架構(Electronic and Electrical Architecture,文中簡稱 EEA)最初由德爾福公司提出,以博世經典的五域分類 拆分整車為動力域(安全)、底盤域(車輛運動)、座艙域/智能信息域(娛樂信 息)、自動駕駛域(輔助駕駛)和車身域(車身電子)等 5 個子系統。後續演變 成車企所定義的一套整合方式,可形象看作人體結構中的骨架部分,後續需要 「器官」、「血液」和「神經」進行填充。具體到汽車上來說,EEA 把汽車中的 各類感測器、ECU(電子控制單元)、線束拓撲和電子電氣分配系統完美地整合 在一起,完成運算、動力和能量的分配,實現整車的各項智能化功能。博世曾 經將汽車電子電氣架構劃分為三個大階段:傳統分散式電子電氣架構-域控制器 電子電氣架構-集中式電子電氣架構:
(1)傳統分散式的電子電氣架構:主要用在 L0-L2 級別車型,此時車輛主要由 硬體定義,採用分散式的控制單元,專用感測器、專用 ECU 及演算法,資源協同 性不高,有一定程度的浪費。產業鏈分工上,車型架構由整車廠定義,實現核 心功能的 ECU 及其軟體開發由 Tier 1 完成。
(2)域控制器電子電氣架構:從 L3 級別開始,通過域控制器的整合,分散的 車輛硬體之間可以實現信息互聯互通和資源共享,軟體可升級,硬體和感測器 可以更換和進行功能擴展。屬於過渡形態,ECU 仍承擔大部分功能實現,整車 廠將參與部分域控制器的開發。
(3)集中式電子電氣架構:以特斯拉 Model 3 領銜開發的集中式電子電氣架構 基本達到了車輛終極理想——也就是車載電腦級別的中央控制架構。此時集成 化趨勢將消減大部分 ECU,主機廠將逐漸主導原本屬於 Tier 1 參與的軟體部分 (預計以直接開發模式或定義規範標準后讓供應商參與),其目標是設計簡單的 軟體插件和實現物理層變化的本地化。
操作系統實現管理功能。車載操作系統(Car-OS)承擔著管理車載電腦硬體與 軟體資源的程序的角色。20 世紀 90 年代伊始,汽車上基於微控制晶元的嵌入 式電子產品的應運興起,需加入相關的軟體架構以實現分層化,即汽車電子產 品均需要搭載嵌入式操作系統。從產品品類上,汽車電子產品可歸納為兩類, 一是以儀錶,娛樂音響、導航系統為代表的車載娛樂信息系統;二是主管車輛 運動和安全防護的電控裝置。兩者對比而言,電控系統更強調安全性和穩定性, 因此應用於電控單元 ECU 的嵌入式操作系統標準更為嚴格。未來操作系統發展 面臨兩大趨勢,一是以 OSEK、AUTOSAR 為典型代表的操作系統標準聯盟將 定義統一的技術規範;二是智能網聯趨勢下數據融合度提升,由於各個部件的 安全標準等級不一從而整車上存在多種操作系統的運用,通常引入虛擬機管理 (可提供同時運行多個獨立操作系統的環境),如在智能座艙 ECU 中同時運行 Android(車載電子操作系統)和 QNX(電控操作系統)。
基礎軟體平台構架是實現抽象化的關鍵所在。從定義上,軟體架構為軟體系統 定義了一個高級抽象(軟體表達行為、屬性、相互作用、集成方式及約束均在 此架構上體現)。而 SDV 核心內涵是能夠通過軟體作用,動態地改變構架網路 節點之間的聯結或分離狀態,從而定義汽車不同的功能組成。基礎軟體平台需 具備三方面要求:一是可靠性,能保證汽車功能實現的實時和安全;二是通用 性,適用於不同車型和不同的操作系統上;三是網構架節點易於更換聯結方式。AUTOSAR 是全球各大整車廠、供應商聯合擬定開放式標準化的軟體架構,其 使得不同結構的電子控制單元的介面特徵標準化,從而軟體具更優的可擴展性 及可移植性,降低重複性工作,縮短開發周期。
汽車軟硬體分離為 SDV 基礎
軟硬體的分離涵蓋研發分離、功能發佈分離兩方面。軟硬體分離為實現 SDV 基 礎,電動化趨勢簡化造車流程,未來汽車硬體的研發、製造更偏向於流水線過 程,而軟體發展逐步具互聯網的快速迭代趨勢傾向。汽車軟硬體分離概念由此 而生,其包含兩方面內容,一方面,由於開發周期(汽車硬體 5-7 年的開發周 期 vs. 軟體 2-3 年的開發周期)及技術領域(偏向製造業 vs.偏向互聯網)的 差別,汽車軟硬體在開發上、供應上逐漸分開。另一方面,軟體的功能發佈可 以與車型完成分離,新軟體不僅適用於新車,仍可快速發佈到已量產車型上, 增強車型硬體的使用長尾期。
軟硬體分離在功能升級及工藝裝配上具優勢。基於軟硬體分離的新構架體系在 車型功能升級及製造模式上發生變化。功能升級上,新的擴充功能由軟體定義 通過雲端直接升級,無需再在硬體層面進行驗證;工藝製造上,與軟體分離后 的電子電氣構架不同於現階段「八爪魚」式的複雜構造,更易於自動化裝配。
當前車企實現更新的方式——硬體冗餘,後續依靠更新升級。
(1)硬體預置:傳統汽車定價由硬體及性能決定。而 SDV 模式下,相同硬體 的車型通過不同的軟體配置決定車與車之間不同的功能與體驗。車企在車型設 計之初需提前定義軟硬體,SOP 時將具備擴展功能的冗餘硬體預裝,後續將通 過付費型軟體升級或者功能開放回收成本。以特斯拉的 AutoPilot 為例,冗餘的 預設硬體將通過後期持續的軟體升級調動功能,為新創收模式。
(2)性能預置:性能預置分為兩個方面,控制器算力預留,為更多的軟體功能 和演算法預留空間。隨智能駕駛趨勢,車載算力大幅提升,由於無法預估後續所 需算力的極限,通常在實際情況中會預留算力空間。性能預留,通常在各性能 硬體上做事先預留,以應付如加速性能提升,續航里程提升,圖像的清晰度提 升,音響效果提升等升級事項。例如 2018 年 6 月,美國權威雜誌《消費者報 告》發現, Model3 剎車距離比皮卡福特 F-150 要長。ElonMusk 接受了《消 費者報告》的批評並承諾通過 OTA 儘快解決此問題。此後在不到一周時間, 特斯拉通過一次 OTA 升級解決了該個問題,《消費者報告》重新測試后發現, 升級后的 Model3 剎車距離縮短了 5.8 米。
追溯發展史:汽車軟體的前世
汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發動機控制演算法(軟體嵌 入應用模式)→1980 年代中央計算單元創新(顯示車輛基本信息)→1990 年 代信息娛樂系統創新(GPS、自適應巡航控制出現)→2000 年代安全系統(出 現高級駕駛員輔助駕駛概念)→2010 年代開始向全新汽車電子構架及軟體系統 演變(電子化和軟體化,出現無人駕駛概念)。
1980 年代之前,汽車僅搭載車燈、啟動機、火花塞等簡易電子設備,並未運用 任何軟體部分。整車電子設備通信及電能供給依靠銅導線傳輸。部分豪華車裝 置僅由收音機為核心部件的車載娛樂系統。
1970 年代,發動機系統具備演算法功能。出現點火系統、電子燃油噴射等裝置, 軟體直接嵌入應用使用,軟體之間無關聯具獨立性。
1980 年代隨 IT 技術起步,電子電氣化革命在傳統機械部件上進行創新。油耗 及行駛距離等信息可在車內做電子化顯示,搭載軟體的電控單元開始出現,如 防抱死系統 ABS、車輛穩定系統 ESP、電子變速箱等電子系統誕生,新功能由 嵌入式軟體的演算法控制,CAN 及 LIN 匯流排解決不同控制器之間的通信問題。
1990 年代,信息娛樂系統持續創新,軟體成為汽車重要部分。汽車軟體構架愈 發分散,出現 GPS 及自適應巡航控制等較高階的電子組件及軟體。同時,不同 控制器間持續延長的通信匯流排成為車企後續進行成本管控的重要一環。
2000 年代,安全系統推出,軟體開始主導汽車創新。「高級輔助駕駛概念」在 此階段興起,例如駕駛員未及時反應的障礙物可以系統運算下汽車自發停車規 避。此時的軟體系統更為高階,行業引入 AUTOSAR 標準軟體構架。車型方面, 電子化特徵明顯,賓士 S 級轎車車型電控單元超 80 個,通信匯流排近 2000 條。
2010 年開始,汽車電動化帶來電子電氣構架、汽車軟體新變局。智能駕駛、車 聯網概念引入,造車新勢力、互聯網企業等多玩家參與進造車環節,以特斯拉 為代表的整車廠重新定義軟體系統,新創 OTA 新升級模式。
產業鏈機遇:SDV重塑市場格局
新科技、軟體公司的湧入帶動了供應鏈管理的扁平化、邊界模糊化,推動產業 競爭要素髮生本質變化,帶動供應鏈生態體系變革。在傳統封閉式供應鏈的汽 車製造商在整條供應鏈中只負責一個環節,主要擔任汽車研發製造的角色。而 在新生態體系中,汽車軟硬體分離重塑產業格局,主機廠、供應商以及互聯網 企業均參與進汽車新生態體系,從汽車全生命周期覆蓋整個產業鏈條。
供應模式轉變,主機廠、供應商及互聯網企業入局
SDV 軟體開發模式下,不同於以前依靠多個 ECU 由部件供應商主導的無獨立 軟體產品概念時代,主機廠愈發需具備軟體的管理能力及核心軟體設計能力, 並引入供應商及互聯網企業參與此環節。在軟體領域,預計未來 Tier1 與整車 廠之間將採取兩種合作方式:
其一,整車廠主導整車軟體部分,Tier1 負責硬體生產。在傳統車企巨頭入場燃 油車領域 100 多年的歷史里,造車流水線仍以機械製造為主,Tier1 以分擔主機 廠重資產角色存在,通常與整車廠車型生產周期形成相應配套。而在智能化時 代,軟體主要以輕資產模式運轉,出於掌握核心技術考量通常為主機廠所主導。其二,整車廠定義軟體框架規範標準,Tier1 供應符合此標準的相關軟體。瞬息 萬變的技術導致車企研發容錯率下降。尤其對新入場的造車勢力而言,若在前 1~2 款車連續失敗,大概率將面臨淘汰。因此對部分在技術儲備、研發及資金 實力較弱的主機廠而言,可在其定義軟體標準後由 Tier1 進行對應的開發配套。
盈利模式轉換,將逐漸由硬體逐漸向軟體傾斜
硬體發展具天花板效應,軟體持續賦予車型新附加值。以經過 15 年發展的手機 產業鏈為例,硬體體系隨處理器性能持續提升、攝像頭像素及攝像頭個數持續 增加、屏幕材質與大小升級,其產業增速趨緩,硬體盈利模式逐漸固化。而隨 蘋果 iPhone 產品橫空出世定義軟體附加值新模式,小米做低手機硬體利潤並將 其定位於功能載體,至此軟體與服務成為手機產業鏈盈利模式的重要來源。對 標至汽車,偏向造業模式的傳統車具較固定的盈利模式,從而車企具較穩定的 利潤率,而目前在汽車電子電氣化架構趨勢下,軟體有多樣性應用的空間,無 論硬體抑或軟體體系均包含升級或新生環節,盈利模式尚未定型。而長遠來看, 偏向製造業邏輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業 穩態階段,往介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由 於迭代周期快且行業特性帶來的標準化程度低,賦予汽車新盈利模式。
特斯拉已構築初階車企軟體盈利模式。矽谷出身的特斯拉已證實一條軟體大規 模變現的可行性路徑,分為 FSD 付費、軟體應用商城及訂閱服務三種模式:
(1)FSD 付費模式:特斯拉車型在售出后標配 Autopilot 輔助駕駛功能,而實 現自動泊車、智能召喚的 FSD 全自動駕駛功能需付費使用。FSD 單價並未固 定,過去一年內特斯拉 FSD 售價經過三次提價(國外 8000 美元,國內 6.4 萬 元),成為特斯拉利潤的重要來源。以 2019 年 36.7 萬輛的交付量計算(30 萬 輛 Model3,6.7 萬輛 ModelS/X),假定 35%的 FSD 裝載率,6500 美元的 ASP, 則軟體收入近 8.3 億美元(其毛利率大概率高於 80%)。
(2)軟體應用商城:類似手機應用商城,可即時購買性能升級軟體包(包括輔 助駕駛功能、FSD 及各類性能升級包),通過 OTA 進行升級。
(3)訂閱服務:2019Q4 推出定價 9.9 美元/月的車聯網高級連接服務,包括流 媒體、卡拉 OK、影院模式等功能。2020Q2,特斯拉宣布計劃在年底推出定價 100 美元/月的 FSD 套件訂閱服務,為 FSD 的使用提供另一選擇。
對於第三方汽車軟體供應商,盈利模式仍不明晰,參考手機產業模式及目前行 業發展情況,預計其未來有望採用以下 3 種主流盈利模式:
(1)受主機廠委託,開發基礎平台並收取許可費用。
(2)供應功能模塊按汽車出貨量 Royalty收費(按銷售量和單價一定比例分成)。
(3)基於車企平台為其做定製化的二次開發,並收取費用。
市場空間:未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間
軟體市場進入快速擴張期。包括系統軟體和應用軟體在內的軟體系統將在智能 化趨勢中,由低基數實現快速擴張,據麥肯錫預計,軟體在 D 級車整車價值中 所佔的比例有望在 2030 年達到 30%,將成為未來汽車行業最重要的領域。
市場規模方面:電動智能化趨勢下硬體發展周期領先於軟體,增量市場彈性小 於軟體。據麥肯錫,2020-2030 年汽車軟體和 E / E 架構市場預計復合年增長 7%, 從目前的 2380 億美元增長至 2030 年的 4690 億美元。拆分來看,2020-2030 年軟體市場規模(操作系統、中間件及功能軟體)復合增速為 9%(由 2020 年 的 200 億美元,增長至 2025 年的 370 億美元,進一步增長至 2030 年的 500 億美元)。2020-2030 年動力系統市場規模復合增速為 15%,主要受動力源更 迭拉動。在硬體方面,ECU/DCU、感測器以及其他電子元件的復合增速分別為 5%、8%及 3%。軟體的應用帶動汽車集成及驗證環節革新,2020-2030 年集成 及驗證市場規模復合增速為 10%。
單車價值量方面:汽車軟硬體實現分離后兩者的發展模式將出現分化。其中硬 件體系的價值量隨模塊化、集成化發展,在規模化降本過程中其單車價值量增 長將較為平緩或略下降態勢;而軟體體系迭代速度快,在其對附加值模式的持 續探索下,價值量將持續上行。據麥肯錫預計,汽車中軟體單車價值量增速最 大,純電動車型將由 2025 年的 0.23 萬美元增長 7倍至 2030 年的 1.82 萬美元。同期 ECU/DCU、感測器、動力系統(除電池)及其他電子器件增速分別為 37%、 27%、-7%、5%。此外,在豪華車及主打智能化車型上,軟體的價值量佔比及絕對值將處較高水平。
汽車結構方面:全球汽車軟體與硬體內容結構正發生著重大變化,軟體驅動逐 漸成為主導。據麥肯錫預測,2016年軟體驅動佔比從 2010年的 7%增長到 10%, 預計 2030 年軟體驅動的佔比將達到 30%,屆時硬體驅動佔比僅為 41%。
軟體內容方面:應用型軟體為汽車軟體發展主力,ADAS 及 AD 軟體為主要增 量。據麥肯錫預測,2020-2030 年一體化軟體、驗證型軟體及功能性軟體市場 規模復合增速分別為 9%、10%、10%,其中功能性型軟體佔據汽車軟體半壁江 山(結構上佔比 6 成)。2020-2030 年按軟體功能劃分的市場規模中,最大增量 為 ADAS 及 AD 軟體,佔市場規模增量的 57%;信息娛樂、安全及聯網相關軟 件次之,占 20%;操作系統和中間件、車身和動力系統相關軟體、動力總成和 底盤相關軟體分別佔據 10%、10%、2%。
整車廠戰略思路:軟體為必爭之地
在汽車構架三步走過程中——傳統分散式電子電氣架構-域控制器電子電氣架 構-集中式電子電氣架構,主機廠將逐漸主導原本由 Tier 1 包攬的定製軟體部分, 軟硬體進行拆分發包的趨勢近年來愈發明顯。車企和互聯網軟體企業紛紛入局, 特斯拉引領車載軟體行業最高技術,大眾計劃緊跟,組建 5 千名軟體工程師開 發旗下所有車型統一的操作系統「vw.OS」,汽車屬性已然將逐漸由代步工具轉換 為移動的第三空間(例如未來的娛樂、辦公場所)。現階段整車廠與 Tier 1 的合 作模式仍在探索中,關乎開發周期、賦予附加值、構架實現、軟體變現模式以 及操作系統切入等問題上仍未進行標準化定義,卻為影響行業發展的關鍵所在。
特斯拉在軟體層面最大亮點是OTA 升級模式
特斯拉創整車 OTA 升級先河。其升級主要在兩個方面:一方面,將軟體升級發 送到車輛內的車載通訊單元,更新車載信息娛樂系統內的地圖和應用程序以及 其他車機類軟體。例如升級車機的運算速度、屏幕操作流暢度,運行高畫質游 戲以及增強可視化效果等,屬於駕駛艙內「看得見」的升級。另一方面,以直 接將軟體增補程序傳送至有關的電子控制單元(ECU),為 Autopilot 持續引入 及優化新功能。例如提升時速、修復駕駛漏洞等。軟硬體分離開發、硬體性能 冗餘的設計思路是實現 OTA 的必要條件,隨法規放開、演算法逐漸完善,特斯拉 以 OTA 升級軟體模式逐步解鎖新運用功能。此外,特斯拉顛覆車載軟體盈利模 式,以 6.4 萬元的 FSD 選裝軟體包定價、2000 美元的「 Acceleration Boost」 動力性能加速升級包獨創軟體付費的商業模式。
集中式電子電氣架構提供 OTA 基礎。特斯拉的整車 OTA 升級需要其超前的汽 車電子電氣架構做配套配合,傳統車企分散式電子電氣架構中 ECU 數量龐大, 單個 ECU RAM 內存容量有限,同時供應商的底層代碼和嵌入軟體差別較大, 難以完成整車功能的統一更新。而特斯拉採用集中式的電子電氣架構,分為 CCM(中央計算模塊,整合ADAS 及 IVI 域功能)、BCM LH(左車身控制模塊)、 BCM RH(右車身控制模塊)三個部分,2015 款的 Model S 大約有 15 個 ECU, 此後發佈的 Model 3 則直接通過 Hardware3.0 和三個車身控制器執行來控制行 駛、轉向和停止等功能,集中的架構和高算力的控制模塊支撐了特斯拉整車 OTA 升級。目前特斯拉已經可以通過 OTA 的方式實現改善車輛的底盤、信息娛樂、 電池續航、ADAS 乃至自動駕駛等多項功能,讓車的功能迭代更加靈活和便捷, 最終變成一台可以不斷進化的智能終端。
OTA 升級過程需數據網路配合,其安全性尤為重要。特斯拉 OTA 升級即指將程序從主機廠伺服器更新到指定 ECU,主要步驟為:車輛與伺服器通過蜂窩網 絡進行安全連接,將待更新的固件傳輸至車輛遠程信息處理系統及 OTA Manager,OTA Manager 將固件分發至需更新的 ECU 並管理更新過程,更新 完畢後向伺服器發送確認信息。整個 OTA 升級過程面臨安全考驗,騰訊科恩實 驗室曾實現對特斯拉的無物理接觸遠程攻擊,並將漏洞情況報告給特斯拉以做 修復。OTA 模式的信息安全(信息包加密及隔離)及功能安全(車輛狀態信息 傳輸)需得到足夠保障。
特斯拉 OTA 依然屬於行業標杆,傳統車企追趕特斯拉在研發 OTA 過程中仍面 臨困境。具先發優勢的特斯拉在 OTA 對動力和底盤系統有效升級層面、用戶體 驗、系統成熟和穩定性方面均處於行業領先地位,引領傳統車企和造車新勢力 跟隨布局,但仍面臨較多困難,體現在三個方面:其一,需投入較大的人力、 物力、財力,考驗主機廠研發實力;其二,OTA 打破固有的經銷商提供增值服 務的模式,利潤蛋糕重新切分具一定阻力;其三,OTA 安全性和穩定性上要求 較高,主機廠需理解部分互聯網領域技術。
大眾重塑軟體架構,推行 vw.OS 規劃
曾囿於軟體問題車型延遲交付。在特斯拉軟體技術快速迭代壓力下,大眾加緊 開發基礎架構,或因為開發過於倉促等因素,曾多次發生軟體問題,如新一代 純電動汽車 ID.3 因為軟體開發延遲造成交付時間推遲,新款高爾夫也曾因為倉 促上馬新技術(全數字座艙)於車輛中發現軟體問題而臨時停售。
大眾已著手構建軟體架構體系。為抗衡特斯拉及科技巨頭等新勢力的布局,大 眾愈發重視汽車軟體開發業務。2020 年 1 月 1 日起,大眾集團所有軟體開發工 作被集中至獨立新部門——Car.Software(2019 年 6 月份成立)。Car.Software 分為「互聯汽車和設備平台」「智能車身和駕駛艙」「自動駕駛」「車輛運動和能源」以 及「數字業務和出行服務」五個業務單元,其所有功能都將用於開發 vw.OS 車機 系統。一系列車型軟體問題出現后,寶馬製造工程高級副總裁 Dirk Hilgenberg 加入成為 Car.Software 負責人。此外大眾也對智能駕駛研發體系進行重組,如 拆分 L4 智能駕駛研發部分、合併各部門自動輔助駕駛研發。
大眾軟體計劃的內在驅動力來源於兩個方面:
其一:汽車軟體代碼愈發複雜。大眾曾做過統計,汽車軟體的行代碼遠大於其 他應用終端(汽車軟體 1 億行代碼 VS. Facebook 8 千萬行代碼 VS. PC 電腦 4 千行代碼 VS. 飛機 2.5 千萬行代碼 VS. 谷歌瀏覽器 1 千萬行代碼),是智能 手機的 10 倍。2020 年整車代碼量有望超 2 億行,達 L5 級智能駕駛代碼量有 望超 10 億行。
其二:汽車成為複雜的聯網設備,軟體將扮演重要角色。在大眾傳統車型上僅 需約 70 個 ECU,功能相對較為分散。而在未來的集成化計算單元體系下,軟 件的重要性將愈發凸顯,與 ECU 配合定義汽車功能,涵蓋操作系統、基礎軟體 以及其他應用軟體的車載軟體大眾均會自主開發。
大眾對研發投入、人員安排及軟體化目標做出規劃:
投入方面,大眾集團將在未來三到五年內投入 90 億美元(約合人民幣 630 億 元)資金進行軟體開發。員工方面,不同於製造環節的裁員情況,數字化部門 員工由 5000 名再次擴編至 1 萬人。軟體化目標方面,內部研發軟體佔比由不 足 10%提升到 60%以上,同時提出「8 合 1 目標」(將現有的 8 個電子平台整 合為一個平台)。2025 年前,所有新車型將使用 vw.OS 操作系統和定製的雲服 務(大眾與微軟合作),軟體在汽車創新中佔據 90%份額。
汽車軟體的未來推演
若考慮對汽車開發的終極假想,汽車最終會成為搭載「差異化元素」的通用化 平台。以目前視角,差異化元素涵蓋智能座艙(人與車互動的生態系統,包括 包括全液晶儀錶、車聯網、車載信息娛樂系統 IVI、ADAS、HUD、AR、AI、全 息、氛圍燈、智能座椅等方面)及智能駕駛(L1~L5 級智能駕駛等級)領域。而差異化元素主要由車型全新的電子電氣架構和軟體兩方面定義,一方面,ECU 里的功能模塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面, 車載娛樂系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉, 其深層次的安全防禦(檢測和防禦網路攻擊)愈發重要。經過產業趨勢推演, 提出以下 5 大汽車軟體趨勢預判。
趨勢 1.往車輛集中式電子電氣架構發展,功能中心化
集中式電子電氣架構為終極構架體系。以域控制器為代表產品的跨域集中式電 子電氣架構再往後走,就是集成化程度更高的車輛集中式電子電氣架構—— Vehicle computer and zone concept(車載電腦),終極階段為 Vehicle cloud computing(車雲計算)。未來車輛通過用高性能的中央計算單元取代現在常用 的分散式計算的架構,將實現「軟體定義車輛」的終極目標。再此過程 ECU 的整合過程持續提升,應用程序完全從硬體中抽象出來,控制單元概念最終被 智能節點計算網路接棒。
趨勢2.更高傳輸性能的乙太網作為主幹網路承擔信息交換任務
乙太網作為車內通信網路大勢所趨。隨車內數據傳輸總量及對傳輸速度要求持 續提升,以及在跨行業的標準協議需求驅動下,支撐更多應用場景、更高速的 乙太網有望取代 CAN(主要用於車載控制數據傳輸,最大帶寬 1MB/s)、LIN(低 成本通用串列匯流排,主要用於車門、天窗及座椅控制)、Most(主要用於發數據 包)等傳統汽車車內通信網路成為車內通信網路。在對同樣的 ECU 的軟體進行 更新時,CAN 模式下的傳輸時間是乙太網的 30 倍。因此,乙太網的運用趨勢 得到主流整車廠(如寶馬、通用等)及半導體公司(如博通、恩智浦等)認可, 均推出符合乙太網的應用元件。未來趨勢上,乙太網並非能一蹴而就完全替代 CAN、LIN,預計多種通信模式將在較長一段時間內共存——CAN、LIN 用於傳 感器和執行器等封閉低級網路間的數據傳輸;乙太網(取代 MOST 等技術)用 於域控制器及子部件間的信息交換。
趨勢3.OTA 空中升級模式普及
OTA 由特斯拉引領,向全行業普及。由特斯拉最先推行的 OTA 升級功能模塊 能持續修復汽車軟體缺陷、解決部分故障、解鎖或引入新功能以滿足用戶需求, 成為汽車軟體發展的主流趨勢。按照升級對象的不同,OTA 可分為 FOTA(硬 件在線升級)、SOTA(軟體在線升級)兩個大類,其中 FOTA 主要針對基礎硬 件和汽車底層安全相關功能的升級需求,例如剎車系統、制動系統及 BMS 等;SOTA 主要對座艙娛樂系統進行升級。對 ECU 而言,其內部為備份軟體準備了 額外區域空間,以備當前運行程序出現故障或升級中發生斷錯誤時自動滾回備 份軟體系統,防止車輛出現安全事故。
趨勢4.汽車在雲端交換信息
更為靈活的雲服務是 SDV 載體。從早期的機械時代過渡到目前的硬體時代,在 進一步進化至未來的軟體時代,汽車的功能實現方式持續演變,隨著客戶的個 性化定製需求日益增加,加之雲計算對智能、靈活和自動化的天然要求,由「軟 件定義」來操控硬體資源成為更合適的解決方案,未來大部分汽車功能在雲端 運行,為車企轉型提供聯接使能、數據使能、生態使能和演進使能。因此,在 雲計算的計算、存儲和網路等各方面的基礎設施上,均呈現出從軟硬體捆綁, 到硬體+閉源軟體,再到白盒硬體+開源軟體的演進趨勢。而雲服務也成為 AI、 智能汽車、大數據等新興科技實現商業化落地的載體(例如特斯拉在雲服務載 體上進行 OTA 升級)。近年來雲服務市場實現爆髮式增長,而車載環節尚處於 發展初期,後續增量空間大。
趨勢5.信息安全領域需深層次防禦
汽車電子的運用及智能網聯化趨勢推進車載信息安全要求提升。汽車脫離孤立 單元后,隨之而來的是攻擊面的新增,一方面車輛聯網后其數據面臨被盜取、 泄露風險,另一方面電控系統普及后存在轉向、剎車等關鍵功能被外部控制的 可能性(例如破解車機、T-Box、網管后,向 CAN 發送惡意指令)。即接入汽車控制終端的 APP、網路系統、ECU 代碼均可能成為新攻擊向量。雲(車聯網 平台)-管(車聯網基礎設施)-端(車載智能及聯網設備)均存在信息安全問 題,將造成車輛功能性安全隱患:
(1)雲端與管端:接送關鍵數據的中央互聯網關直接連接至車企後台,部分第 三方公司被允許數據訪問。目前網聯實現通常會通過 APP 實現應用層功能(例 如解鎖車門、調用空調功能等),此時存在手機端與雲端的通信過程,且應用程 序供應商能直接訪問開放的相關數據介面。通過雲端和對外通信管端能對車機 端直接進行攻擊。
(2)車機端:當功能系統被授權時,黑客能對CAN匯流排發送相關指令控制ECU。騰訊道恩實驗室曾對特斯拉 Model S 進行過無物理破解實驗,以 Wifi 熱點接入 向車載娛樂系統植入軟體取得車機許可權,在破解網關后能控制其多個電控單元。
為抵禦外部攻擊需建立深層次的安全防禦系統,嚴控與功能安全及數據連接。汽車的防護措施隨交互信息增多其力度持續提升。車企安全團隊通常基於雲-管 -端對症建立安全防禦系統以應對外部攻擊:
(1)雲端:車載終端是汽車安全架構的核心,主要注意 T-BOX(用於車端和 外界通信)和 OBD(用於將汽車外部設備連接到 CAN 匯流排)兩大塊的信息防 護。實時進行入侵檢測,防止 DDos 攻擊。
(2)管端:汽車在未來將頻繁接入和退出網路節點,存在被篡改信息的風險。通常需要對通訊過程及傳輸數據進行加密,採用專門的 APN 接入網路。
(3)車機端:加強安全固件驗簽及防 root 機制,管理介面並建立監控體系。此外,可在車輛功能模塊上單設安全晶元對數控進行校驗。
部分第三方供應商能參與至信息安全環節。汽車安全防禦對於以特斯拉、蔚來、 小鵬等為代表的有互聯網基因的造車新勢力來說,擁有一定先天的優勢。包括 特斯拉在成立之初便組建了來自谷歌、微軟等互聯網企業的 40 人的網路安全專 家,小鵬和蔚來與阿里、騰訊等互聯網廠商進行深度合作,未來華為等供應商 是此領域的預備軍。目前網路安全系統仍缺乏標準的信息安全方案,原本的汽 車軟硬體供應商難以以統一標準滿足不同整車廠的信息安全要求,並且在測試 階段很難直接接入車企平台進行網路安全試驗。預計未來行業將有提供信息安 全方案、網路安全模塊以及某一特定領域防禦系統的第三方軟體供應商出現。
投資建議和推薦標的
百年汽車工業面臨由機械機器向電子產品過渡的新變局,在我們看不到的隱秘 角落——上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計 算單元,與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應 響應指令。近年來,SDV(軟體定義汽車)概念逐步被整車廠認知,根源在於 「汽車如何體現差異化」問題的變遷,硬體體系將逐漸趨於一致,軟體成為定 義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件拼合能力演變成將上億 行代碼組合運行的能力。
SDV 趨勢下汽車軟硬體分離重塑市場格局,盈利模式由硬體向持續賦予附加值 的軟體傾斜。主機廠愈發需具備軟體的管理能力及核心軟體設計能力,並引入 供應商及互聯網企業參與此環節,開發基礎平台並收取許可費用、供應功能模 塊按汽車出貨量 Royalty 收費及基於車企平台做定製化的二次開發均為未來主 流的軟體供應商盈利模式。預計 2030 年 500 億美元市場空間,復合增速 9%。
汽車最終會成為搭載「差異化元素」的通用化平台。一方面,ECU 里的功能模 塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面,車載娛樂 信息系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉,其深 層次的安全防禦(檢測和防禦網路攻擊)愈發重要。關於賦能域控制器、定位 車機系統的各項軟體性能升級,包括車內乙太網應用、整車 OTA 升級、信息交 互上雲及深層次的信息安全防禦等,或將帶來一系列發展機遇。
資料來源:https://m.news.sina.com.tw/article/20201001/36497492.html?fbclid=IwAR1zWwTMiTHwfLyqZ7Qx698UjYwI3v0c-hs3gXdy560Rf5BgAS4Ts4QLbOQ
同時也有1部Youtube影片,追蹤數超過13萬的網紅TCar Test Drive,也在其Youtube影片中提到,TCAR試車頻道黃金試車手 - 葉明德 http://www.tcar.tv 4K UHD 2016 Porsche World Road Show 純粹樂趣 991 MK2 陽光,閃耀著來自Stuttgart的盾牌,Porsche全車系在大鵬灣賽道排開!讓人期待的Road Show即將展開…除...
賽驅樂減速機 在 狂人日誌:MadVnz Facebook 的最佳解答
[省大佬司機] 傻傻分不清 - 淺談汽車驅動
車輛的驅動模式基本上分為三種:前輪驅動 (Front Wheel Drive) / 後輪驅動 (Rear Wheel Drive) / 四輪傳動 (All Wheel Drive / 4 Wheel Drive),車廠根據不同的車款定位賦予驅動方式造就不同的駕駛樂趣,在此要先說明,每個驅動方式都各有優缺點,沒有誰比較厲害,而是要以老司機們的用車習慣與綜觀用途考量來選擇較適用的驅動車款。
前輪驅動 (Front Wheel Drive):你可以想像就像小時候玩的推車,兒伴從前面拉,動力是直接透過發動機作用於前輪的,這時前輪既要負責動力輸出又要負責轉向,對轉向的精準度是會有所影響的 (當然,本田的 Type R 例外) 也因此前驅車的重量大部分集中在車頭,車身配重較為不佳,所以加速過彎時一但前輪突破抓地極限後,就容易出現「轉向不足」的情況,會感覺車頭往外推 拉不回彎心,也就是俗稱的「推頭」 (踩油門時,重心會往後輪跑,此時前輪略輕,前輪與地面的接地面積減少,不利於轉向),不過前驅車失控之後也相對容易救回,只需收油門就可回到原有的軌跡上 (重心往前輪跑),在車室空間上大部分相對寬敞也靈活使用,因為使用較為緊湊的變速箱&主減速器且不需要中間的傳動軸&後差速器 (可透過後座中間地板有無隆起來做簡易判別),從機械上來看,前驅車的傳動組件較少 且輕,相對才能壓低成本反應在便宜的售價上,但也因為緊湊的前軸空間,無法再塞入更大尺寸的引擎,且更大的馬力的只會造成更多的「轉向不足」也因此即便車廠靠著新的懸吊設計有效減輕了缺點,創造出像是本田 Type R 或是 Ford Focus ST 這類性能與操控都相當優秀的前驅車款,但前驅車款仍然有其動力極限,因此不會是重度操控性的最佳的傳動方式。
後輪驅動 (Rear Wheel Drive):後輪產生動力來驅動汽車前進,是需要通過傳動軸連接發動機和後輪的,也因此勢必會犧牲一些車室空間降低了日常實用性,此外,由於前置後驅車款的驅動輪沒有較大的負重將車輪壓在路面上,因此後輪的循跡性相對之下會比較差,但中置引擎以及後置引擎的後輪驅動車款則比較沒有這種問題,一般來說市面上高端車種大部分為後輪驅動 - 可容納較大排氣量引擎,但車身尺碼也會較大,擁有較好的車身配重50 : 50,至於為何後輪驅動被視為駕駛樂趣的象徵呢?首先,後輪驅動讓前輪只需單純的負責轉向,因此可擁有更靈敏的轉向反應,後輪只需專心的輸出較大的動力,而不會對車輛的操控產生負面影響,而如果是前置後驅的配置,由於引擎在車頭,後輪承受的重量更輕,因此一但突破抓地力極限,就會造成「轉向過度」也就是俗稱的「甩尾」這時就需要反打方向盤讓車輛回正,這時又會產生俗稱「漂移」的動態駕駛技巧,車子的動態極限也相對更高,光是看到這裡是不是也跟著熱血起來了!當然,要當帥哥是要付出代價的,更大的駕駛樂趣也伴隨著更大的風險,後驅車一但失控要救回也較為困難,需要更成熟的駕駛技術。
四輪驅動 (All Wheel Drive / 4 Wheel Drive):在汽車動力的發展歷史上,四輪驅動最早可追溯至西元 1903 年,一開始多半應用在卡車上,後來擴展到越野車與一般車,但真正發揚光大則是 Audi 在 WRC 越野拉力賽場上,使用的 Quattro 四輪傳動系統取得優異戰果而聞名。回過頭來看前驅與後驅雖然各有優缺點,但以動態穩定性和輪胎抓地力,兩者都不盡理想,因此四輪驅動似乎是一種更好的解套方式,四輪驅動主要又分為 AWD 與 4WD 兩個種類,簡單來說,兩者的差異是 AWD 通常用在一般道路以及輕度越野的車款上,車載電腦能夠依照路況自行調整四輪的動力分配或者自動切換在四輪傳動與二輪傳動 ( FWD 或者 RWD ),以達到維持最佳的輪胎抓地力;而 4WD 通常結構較為簡單,四輪傳動與二輪傳動 (通常為 RWD ) 模式也通常是以手動切換,這種四輪傳動系統常見於重度越野車款或者貨卡車型上,在操控性上通常較為中性或者略偏轉向不足,因此近年來車廠在開發四輪驅動時都會刻意將後輪動力輸出比例調高一些,來營造出偏向後輪驅動的動態特性,同時又有四輪驅動的穩定性與安全性,但這種驅動方式也不是完全沒有缺點,通常在前後軸都會各有一支差速器,而越野需求更大的車輛甚至會有兩支傳動軸,這增加了傳動系統上結構的複雜度與重量,同時也反應在成本售價上 ; 在動力傳輸方面,引擎得輸出動力到四顆輪胎上,而四輪接地面積較二輪驅動的車款多出了一倍,這就是造成全時四輪傳動車輛油耗較大的不變宿命。
#前驅 #後驅 #四驅 #AudiQuattro #4WD #選擇適合你的驅動方式 #TypeR #FocusST
賽驅樂減速機 在 TCar 試車頻道 Facebook 的最佳解答
【試車報告】2018 Ford Mustang Ecoboost Premium 傳經典、去刻板
【4K UHD | https://youtu.be/GP4oS2nF_fE】
“美國跑車”這四字,總令人充滿遐想,他們粗獷、吵雜、不拘細節,愛車男總曾幻想自己變身電影主角,帥氣地徜徉在海濱與洲際公路,是阿,好一個美夢,可不是嗎?
而且,自從Ford將Mustang導入販售之後,這美夢終於有了圓滿的機會,只是唯有個新的煩惱,”沒5.0L V8的野馬不夠看”,許多人是這麼說的!
然而,真是如此嗎?
【完美經典】
自經典馬蹄跨入2018,雖然LED頭燈造型經過修改,神韻就像皺著眉且略帶鄙視地望著前方,且就連氣壩,也像是跟Shelby借來毒蛇尖牙一般。
“它好像跟我們印象中的野馬形象不太一樣”
不過看到較長型的頭燈組,相信你仍不難認出這是輛傳唱至第六世代的Ford Mustang,此外,論及傳承經典元素這檔事,要知道,縱觀野馬歷史,並回憶六世代的車輛設計變化,你說今日野馬多是致敬整體歷史,還是初代車款?
看看那彷彿鯊魚鼻頭的倒勾線條、經典的長車頭與Fastback斜背設計、引擎蓋上新增的散熱飾蓋,以及那三條列式的尾燈,這些元素,都能在1968年Steve McQueen主演電影中的Mustang Bullitt上見到,我想答案也已明瞭…
剩下的新升級,我想就是熱愛改裝的野馬迷會相當喜歡的了,像是原廠在新年式車款上標配的尾翼,還有在Ecoboost Premium車款上標配的19吋多輻緞黑輪圈,雖未如5.0L的GT車款採前窄後寬配置,但筆者私心認為造形更勝GT的五輻版本! 再說到它與前期5.0L車型相同採用雙出尾管…
嗯… 真的很難讓人可找到挑剔之處呀,不是嗎?
【舒適科技】
而若要看到內裝,首先得將碩大的車門開啟…
後座部份,你只需瞄一眼就夠,因為縱使座椅設計深陷,可讓成人充滿包覆性地坐著,但實際不論腿部空間,和肯定會讓人頂頭玻璃的高度表現,咱們還是務實些回到前座吧!
進入2018年,不得不說,野馬也加入科技感了,像是眼前的12.3吋數位儀錶,裡頭雖然同樣保有經典的雙環介面,但還有條狀的引擎轉速顯示方式,甚至還可同時自定義多種儀錶顏色搭配呢! 而在經典的內凹方向盤上,也多了個野馬造型的Pony快捷按鍵,關於你想在儀錶上見到的各項設定,以及G值顯示器、加速/煞車計時器、多種車輛狀態監測錶,也都能夠藉由本鍵快速切換。
而在中控介面,8吋觸控螢幕內的SYNC 3系統介面固然簡單樸實,但不論是導航、藍芽,甚至是Apple CarPlay、Android Auto多品牌手機連結功能也未缺少! 再向下看,則是由戰鬥機艙概念源起的快撥桿,便能讓人快速調整方向盤輔助力道,以及車輛模式選擇,經典帶勁的操作感,是讓人迷戀的! 只是不得不提,既然內有多種設定可調,卻只能向上扳動、未能向下回復的設計,卻偶爾真有些惱人…
至於對曾研究過規配表的朋友來說,Mustang Ecoboost Premium車型或許有個略帶可惜的地方,那便是這輛車並未如同5.0L的GT版配有Recaro跑車座椅,這是不爭的事實,然而,也因為Recaro跑車椅的競技化設定,不只少了可調頭枕,就連座椅角度也全需手動調整,反觀,本車座椅在未過份犧牲包覆性的前提下,不只擁有電調功能,還有著座椅冷熱通風的設計,於寒冷的天氣下搭配方向盤加熱功能,一向強調不拘細節的美國跑車,今日卻能給你超越許多暢銷房車的便捷娛樂、駕乘舒適配備,這你在多年前能想像的到嗎?
【超越想像】
“美國跑車不僅帥氣,還象徵了不羈的靈魂”
聽到此話,熱愛挑戰與駕馭的朋友是欣喜的,但對於初試的朋友來說,似乎就略帶警告了! 但你其實不必過分恐懼,為何?
自上路開始,2018年的Mustang便提供了極為周全的主被動安全防護,舉凡涵蓋正副駕駛的8具安全氣囊、斜坡起步輔助功能、煞車力道輔助與分配、循跡防滑、動態穩定系統皆有配備,此外,不只停車時還可靠車尾野馬徽上方的鏡頭看清後方,當在海濱公路上徜徉時,還有車道偏移警示與輔助的功能,來協助聊天樂過頭的駕駛回到行駛車道,最棒的是,當熱愛奔馳的野馬來到地狹人稠的台灣,在偶爾走走停停的高速公路上,還有著駕駛疲勞警示系統,以及堪稱輕鬆巡航必備神器的ACC主動式定速功能,雖然該系統的啟動鈕距離左手拇指有些距離,顯得不算就手,總需低頭並移開左手9點位置才得以操作,但不得不說,全然放鬆地享受巡航,甚至還有行人與車輛碰撞預警,和自動輔助煞停的功能,這概念真和以往美國跑車有著大不同哪!
況且,多了安全,我想絕對不會有人說這不好的,畢竟到頭來,開跑車是為了享樂,而非自尋煩惱。
【狂野本性】
“沒有任何一項表現比動力和威武重要”
這個慣例幾乎適用所有美國跑車! Mustang也不例外!
然而在六代野馬推出後,兩款設定截然不同的野馬出現了,尤其是連海外3.7L V6版本也取消之後,一是有著雄厚、標誌V8引擎的5.0L車型,另一者,便是本次我們試駕的2.3L Ecoboost車型。
接著,我想就直接撇開大家肯定知道,在台灣較為省稅,和規配表就能查到的平均10.6km/L油耗表現。好好一探究竟“2.3L引擎、直列四缸、渦輪”這樣聽起來一點都不美式的動力夠不夠性能迷大飽口福這點來回答。
一上車,按下引擎啟動鍵,一陣雄厚的聲浪就瞬間從前方傳來!
這跟我們以往試駕的四缸車大有不同! 在原廠特意的調教下,這輛2.3L的 Mustang它有著相當美式的轟隆震撼聲浪,且至少在車內是如此!
而當驅車上路時,心裡雖不免擔憂著因受歐盟環保法規影響,調降最大馬力至290匹的Mustang會不會喪失個性,但當踏下油門後,原有的懷疑隨即一掃而盡! 增大至45kgm的扭力不僅讓起步極為輕快,配上了新導入的SelectShift 10速手自排變速箱,這輛車的動力表現不僅相當符合我們對於入門Mustang的預期,便是可給人過癮的加速力道,但不至於讓人驚恐與慌亂手腳,此外,在較硬派的行車模式設定下,這具變速箱甚至會模擬較為粗暴的換檔方式,拉起轉速並手動按下換檔撥片後,陣陣換檔踹擊感便會隨之傳來!
接著再玩到Mustang內建的Line Lock暖胎前輪鎖,透過方向盤上的Pony鍵進入模式後,前輪便會自行鎖死,只需踏下油門,後輪便毫不遲疑地原地大肆空轉,並冒出陣陣白煙… 是阿! 這不太環保,但說到個性,我們很高興看到野馬還是狂野的!
【野性馬蹄】
“不甚著重車輛操控” 這是許多人普遍對美國跑車的刻板印象
可要知道,野馬現已擁有前麥花臣、後多連桿懸吊,在入門車型上,雖並未配備主動式的可變電磁阻尼,但Mustang Ecoboost Premium車型的懸吊阻尼已屬硬派,在彎道中,充足的支撐性要挺起近1.7噸的車體可沒問題,再配上試駕車的Pirelli P-Zero跑胎,殺入多彎的山道,Mustang固然是略偏沉重、並稱不上靈巧的,但只要依循入彎前適當減速的基礎方針,要帶來駕馭樂趣,Mustang也是沒問題的!
此外,雖然Mustang的長車頭須讓人在初駕駛時花些時間適應,但彎中還有著EPAS電子可調轉向系統,除了有適合女友/老婆的舒適輔助模式、適合多數時間使用的一般模式,山道中,當然是撥至Sport運動模式,扎實的手感,也讓人能對操控這輛野馬更具信心!
然而,新Mustang在山道中較讓人感到惋惜的,卻是在正要入彎與出彎的時期,縱使它改採四缸引擎讓較入門的煞車系統便可負擔,且減低了推頭發生的機率,就連出彎也有後軸限滑差速器能夠將車輛快速送出彎道,但10速變速箱的保護機制卻略為多餘,未能讓人在入彎前手動降至理想檔位,接著,出彎初期時,也讓極限駕馭著重的含油門需多些技巧,否則車輛可能以較預期更大的推力衝出,若再收油,便無疑破壞了預設的重心移轉過程,再者,於某些中高速連續彎道,偶爾採用提前換檔的技巧時,稍慢了半拍的進檔,有時亦讓換檔震動傳來的不是時候,又不免再次些微影響了車身動態…
只是,“汽車,有時很難用好壞定奪,有時只需要找到喜愛與適合駕馭她的人。”
【TCar短評】
2018 Mustang Ecoboost Premium帥氣、個性的造形不僅獨樹一格,讓人難以在台灣市場找到直接對手與威脅,美系的特殊魅力,還包含車主穿西裝便顯得威風、穿T-Shirt短褲便顯得隨性自在的多樣姿色,而它內裝和安全配備帶給人的體驗,更是200萬內級距跑車難尋的!
而說到動力,它無疑是想一探美系魅力的最佳入門,至於提到能帶給人的樂子與笑容,正如同問我短暫與2018 Mustang相處的時光有何感想,它不完美,但能帶來的滿足感與享受,卻是再真實不過了!
正所謂 “最強的,不一定是最好的”
【2018 Ford Mustang Ecoboost Premium】
引擎形式: 2261c.c. L4 DOHC 16V + Turbo
最大馬力: 290ps/5400rpm
最大扭力: 45.0kgm/3000rpm
變速系統: 十速手自排
驅動模式: FR
長x寬x高: 4794x1916x1378mm
軸距: 2720mm
車重: 1660kg
懸吊結構: 前麥花臣 後多連桿
煞車結構: 四輪碟煞
輪胎規格: 前後255/40 R19
台灣售價: 196.9萬
【主要配備】
LED頭燈、三斜列式前識別燈、三道格柵式尾燈、霧燈
引擎上蓋飾孔
蜂巢上水箱護罩
長車頭短車尾經典車身比例
經典Fastback斜背設計
跑車雙門無窗框設計
競速型後擾流尾翼
車尾經典野馬廠徽
19吋EcoBoost款多輻輪圈
四活塞卡鉗配 352 x 32(mm)加大通風碟
運動型雙邊單出尾管
野馬投射迎賓燈
Mustang專屬迎賓踏板
電動六向調整雙前座椅(含加熱及通風功能)
經典三幅式多功能方向盤(含換檔撥片、Pony Button野馬快捷鍵、加熱功能)
12.3吋全液晶多功能顯示儀錶螢幕
My Gauge測量表(空氣/燃料比、汽缸頭溫度、油壓、進氣溫度、變速箱油溫、真空、電壓)
Track Apps賽道程式(G力值/加速計時器/煞車性能/單圈計時器)
Line Lock暖胎前輪鎖
跑車金屬踏板
皮質包覆排檔頭/手煞車
5/5分離可傾倒後座椅背
MyColor多彩氣氛燈
SYNC 3娛樂通訊整合系統、8吋LCD彩色觸控螢幕(整合衛星導航、藍牙、USB、智慧型手機連結)
環艙臨場感9揚聲器組合
左右獨立雙域恆溫空調系統
雙展翼前面板對稱座艙
深色鋁質亮面刷紋飾板
雙門皮質斜紋縫線飾板
動態行車模式切換系統
3.55後軸限滑差速器齒比
競技式電子輔助系統調校(EPAS, ABS, AdvanceTrac)
電子可調式動力輔助轉向系統(EPAS)
光感應自動啟閉頭燈
雨滴感應式自動雨刷
駕駛疲勞警示系統
倒車顯影輔助系統
Pre-Collision Assist 前向碰撞預警輔助煞停系統(含行人及車輛偵測)
LDW車道偏移警示系統
LKA車道偏移輔助系統
ACC主動式定速巡航系統
HSA斜坡起步輔助系統
EBA煞車力道輔助系統
EBD電子煞車力道分配系統
TCS循跡防滑控制系統
AdvanceTrac先進式電子車身動態穩定系統
雙前座氣囊、側氣囊、膝部氣囊、側邊簾幕式SRS輔助氣囊
緊急救援通訊系統 (SYNC連接服務)
Ford Taiwan
#ford #mustang #ecoboost #premium #tcar #跑車試駕
賽驅樂減速機 在 TCar Test Drive Youtube 的精選貼文
TCAR試車頻道黃金試車手 - 葉明德 http://www.tcar.tv
4K UHD 2016 Porsche World Road Show
純粹樂趣 991 MK2
陽光,閃耀著來自Stuttgart的盾牌,Porsche全車系在大鵬灣賽道排開!讓人期待的Road Show即將展開…除了的991 MK2的賽道體驗,還有911 Turbo S的彈射及煞車訓練,更有Cayenne車系的Off Road教學,除了學習賽道駕馭技巧,更能享受Porsche跑車的駕馭樂趣。Porsche World Road Show,熱力開催!
911操控訓練
這次Road show的Handling操控訓練共分為兩個階段,除了體驗991 MK2跑車下場體驗之外,還有Panamera、Macan等車款同場競速。由於試駕車款眾多,這次Road Show,我們介紹主軸將放在991 MK2 Carrera S的賽道體驗。
4/29試車當天,我們先以直撥的方式,讓關注TCar的朋友們跟著我們一同下賽道感受New 911靈活刁鑽的操控反應。試車前,原本認為換上Twinturbo引擎後,拉高轉速的音色可能不若之前來得純淨,不過發動引擎、入檔、加速,隨著跑車排氣尾管擴散的嘶啞聲浪擴散天際,我知道先前的顧慮多餘了!渾厚的聲浪不僅絕美,且輸出反應線性,豐沛的扭力給人一種蓄勢待發的感覺,尤其出彎再加速的反應,給予駕駛者一種暢快感。
3.0升水平對臥六缸雙渦輪引擎的輸出反應比預期中順暢,線性確有具備豐沛扭力的特性,出彎再加速顯得敏捷,可惜教練們基於安全理由,無法關閉循跡或將行車模式切至Sport Plus,然而在Sport模式下,420hp/50.9kgm的動力輸出,加速反應已經夠快,如果可以直接與教練駕駛的GT3 RS競速應該事件很過癮的事!
就操控特質方面,試駕車款的懸吊結構依然採用前麥花臣、後多連桿配置,由於採RR配置,車體配重同樣為前40%、後60%,然而重心集中在後軸,彎道極限相對更高,如此的設計,讓911成為優異的賽道機器,劇烈操駕也保有出色的轉向性,對於極限講究更高的朋友,甚至可以選配主動後軸轉向裝置,時速80km/h以後,最大轉向角度可達1.5度。
大鵬灣賽道雖然為G2等級,但彎道分布均勻,涵蓋S彎、U型彎及髮夾彎,駕著991 MK2 Carrera S,都能輕鬆愜意地奔馳著,不僅在連續S彎可以靈活地享受持續加速的樂趣,沒有推頭的狀態,在讓人放心地加重油門下踩深度,提前加速出彎。
除了991 MK2短暫賽道體驗外,這次試駕活動身價最高的,莫過於進行煞車訓練用車—991 MK2 Turbo S!
New 991 Turbo S不僅造型帥氣,特殊的藍色塗裝在陽光下顯得極為亮眼,在煞停訓練之前,可以體驗Launch Control爆發威力,在標示的白線前,將行車模式切至Sport Plus而這也是本次Road Show中,唯一可以使用Sport Plus的時候,接著入檔,踩住煞車、右腳同時採住油門,引擎轉速瞬間拉升至6000rpm,接著放煞車,全油門加速,3.8L水平對臥雙渦輪引擎榨出的580hp/76.5kgm的動力瞬間爆發,透過四輪驅動系統敏捷地化為速度,身體緊貼椅背,瞬間飛躍而出,戰鬥機自航空母艦甲板彈射飛行,大概也是接近這樣的感覺吧!
當時速破百,逼近煞車指示椎桶時,教練會大喊煞車,同時進行轉向切換,這輛性能猛獸憑藉著前六、後四對向活塞卡鉗,搭配碳纖維陶瓷碟盤,瞬間進行減速,同時又能讓優異的底盤發揮轉向功能,俐落地完成煞停訓練。
Tcar短評
參加保時捷Road Show之後,我又悵然了好幾天!渴望擁有Porsche跑車的念頭,又在心裡滋長著…
參加Road最大的好處,不僅是駕駛技巧提升,還能同時體驗多款保時捷車款,即便Macan或者Panamera,都能在賽道奔馳的過程中,發現跑車的DNA。當然,如果能駕著教練的911 GT3 RS及GT4同場體驗,那麼一切就太完美了!
賽驅樂減速機 在 中國變速工程股份有限公司ptt – 腳踏車變速技巧 - Sambamu 的推薦與評價
賽驅樂減速機 Cycloidal Drive-中國變速工程股份有限公司-2021 臺… 中國變速VARITRON®賽驅樂減速機設計超越市場上同軸減速機。中國變速工程獨特擺線齒輪有卓越圓弧齒型設計 ... ... <看更多>
賽驅樂減速機 在 賽驅樂減速機 - Pinterest 的推薦與評價
Jan 4, 2020 - 中國變速工程創立於1971年,專門生產製造各式傳動科技產品無段變速機、齒輪減速機、蝸輪減速機、賽驅樂減速機、賽克樂減速機、中空減速機、皮帶式無段 ... ... <看更多>