【立場轉載】【2020 諾貝爾物理學獎】廣義相對論與宇宙最黑暗秘密
打風落雨留在家,為何不試試學習黑洞的理論呢?😹😹😹
//諾貝爾獎有三個科學奬項,我們在學校也習慣以「物理、化學、生物」等不同科目去區分不同科學領域。這種分界當然能夠方便我們以不同角度去理解各種自然現象,但大自然其實是不分科目的。科學最有趣的是各種自然現象環環相扣,我們不可能只改變大自然的某一個現象而不影響其他。就好像蝴蝶效應,牽一髮而動全身。
廣義相對論間接推論暗物質存在的必要
廣義相對論是目前最先進的重力理論,它能夠解釋迄今為止所有實驗和觀測數據。然而,天文學家發現銀河系的轉速和可觀測宇宙的物質分佈,都顯示需要比觀測到的物質更加多的質量。這是物理學的其中一個未解之謎,有時會被稱為「消失的質量」問題。那些「應該在而卻看不到」的物質,就叫做暗物質 (dark matter) 。
有些物理學家猜測,會否根本沒有暗物質,而是廣義相對論需要被修改呢?他們研究「修正重力 (modified gravity) 」理論,希望藉由修正廣義相對論去解釋這些觀察結果,無需引入暗物質這個額外假設。可是從來沒有修正重力理論能媲美廣義相對論,完美地描述宇宙一切大尺度現象。
天文學研究向來難以得到諾貝爾獎,因為天文發現往往缺乏短期實際應用。然而過去十年之間,有關天文發現的研究卻得到了五個諾貝爾物理學獎。換言之,過去幾十年間改變人類對宇宙的基本認知的,有一半是來自於天文現象。其中有關廣義相對論的包括 2017 年的重力波觀測、 2019 年的宇宙學研究,以及 2020 年的黑洞研究。
不過很少人提及這三個關於廣義相對論的發現其實同時令暗物質的存在更加可信。因為這些發現測量得越精確,就代表廣義相對論的錯誤空間更小。換句話說,物理學家越來越難以靠修正重力去解釋「消失的質量」問題,所以暗物質的存在就越來越有其必要了。
換句話說,如果證明黑洞存在,其對科學的影響並不單止是為愛因斯坦的功績錦上添花,而是能夠加深人類對構成宇宙的物質的理解。
描述四維時空的圖
談黑洞之前,我們首先要理解一下,物理學家是如何研究時空的。研究時空的一種方法,就是利用所謂的時空圖 (spacetime diagram) 。一般描述幾何空間的圖,在直軸和橫軸分別表示長和闊,形成一個二維平面。有時更可按需要加多一條垂直於平面的軸,代表高度。長、闊、高,構成三維空間。但如果要再加上時間呢?那麼就再在垂直於長、闊、高的第四個方向畫一條軸吧。咦?
怎麼了,找不到第四個方向嗎?這是當然的,因為我們都是被囚禁在三維空間之中的生物。如果有生活在四維空間裡的生物,牠們會覺得我們很愚蠢,問我們:「為什麼不『抬頭』?第四個方向不就在這邊嗎?」就像我們看著平面國的居民一樣,在二維生物眼中,牠們的世界只有前後左右,沒有上下。到訪平面國的我們也會問:「為什麼不『抬頭』?第三個方向不就在這邊嗎?」但牠們無論如何也做不到。
宇宙是三維空間,另外加上時間。如果要加上時間軸這個「第四維」的話,我們就必須犧牲空間維度。物理學家使用的時空圖就是個三維空間,直軸代表時間(時間軸)、兩條水平的橫軸代表空間(空間軸)。當然,把本來的三維空間放在二維的平面上,我們需要一些想像力。在時空圖上,每個點都代表在某時某地發生的一件事件 (event) ,因此我們可以利用時空圖看出事件之間因果關係。一個人在時空中活動的軌跡,在時空圖上稱為世界線 (world line) 。
由於時間軸是垂直的,並且從時空圖的「下」向「上」流動。一個站在原地位置不變的人的世界線會是平行時間軸的直線。由於光線永遠以光速前進,光線的世界線會是一條斜線。而只要適當地選擇時間軸和空間軸的單位,光線的世界線就會是 45 度的斜線。因為沒有東西能跑得比光快,一個人未來可以發生的事件永遠被限制在「上」的那個由無數條 45 度的斜線構成的圓錐體之間,而從前發生可以影響現在的所有事件則永遠在「下」的圓錐體之間。這兩個「上」和「下」的圓錐體內的區域稱為那個人當刻的光錐 (light cone) ,而物理學家則習慣以「未來光錐 (future light cone) 」和「過去光錐 (past light cone) 」分別表示之。
所有東西的世界線都必定被位於未來和過去光錐之內。在沒有加速度的情況下,所有世界線都會是直線。如果涉及加速,世界線就會是曲線。而廣義相對論的核心概念,就是重力與加速度相等,兩者是同一種東西。因此我們就知道如果在時空圖上放一個質量很大的東西,例如黑洞,那麼附近的世界線就會被扭曲。不單是物質所經歷的事件,連時空也會被重力場扭曲,因此時空圖上的格網線和光錐都會被扭曲往黑洞的方向。換句話說,越接近黑洞,你的越大部分光錐就會指向黑洞內部。因為你的世界線必須在光錐之內,你會剩下越來越小的可能逃離黑洞的吸引。
2020 年的諾貝爾物理學獎一半頒給了彭羅斯 (Roger Penrose) ,以表揚他「發現黑洞形成是廣義相對論的嚴謹預測」。在彭羅斯之前的研究,大都對黑洞的特性作出了一些假設,例如球狀對稱。這是因為以往未有電腦能讓物理學家模擬黑洞,只能用人手推導方程。但廣義相對論是非線性偏微分方程,就算不是完全沒有可能也是極端難解開的,所以物理學家只能靠引入對稱和其他假設去簡化方程。因此許多廣義相對論的解都是帶有對稱假設的。這就使包括愛因斯坦在內的許多物理學家就疑惑,會不會是因為額外加入的對稱假設才使黑洞出現?在現實中並沒有完美的對稱,會不會就防止了黑洞的出現?
黑洞只是數學上的副產品嗎?
彭羅斯發現普通的高等數學並不足以解開廣義相對論的方程,因此他就轉向拓撲學 (topology) ,而且必須自己發明新的數學方法。拓撲學是數學其中一個比較抽象的分支,簡單來說就是研究各種形狀的特性的學問。 1963 年,他利用一種叫做共形變換或保角變換 (conformal transformation) 的技巧,把原本無限大的時空圖(因為空間和時間都是無限延伸的)化約成一幅有限大小的時空圖,稱為彭羅斯圖 (Penrose diagram) 。
彭羅斯圖的好處除了是把無限縮為有限,還有另一個更重要的原因:故名思義,經過保角變換後的角度都不會改變。其實在日常生活中,我們經常都會把圖變換為另一種表達方式,例如世界地圖。由於地球表面是彎曲的,如果要把地圖畫在平面的紙上,就必須利用類似的數學變換。例如我們常見的長方形或橢圓形世界地圖,就是利用不同的變換從球面變換成平面。有些變換並不會保持角度不變,例如在飛機裡看到的那種世界地圖,在球面上的「直線」會變成了平面上的「曲線」。
扯遠了。回來談彭羅斯圖,為什麼他想要保持角度不變?因為這樣的話,光錐的方向就會永遠不變,我們可以直接看出被重力影響的事件的過去與未來。彭羅斯也用數學證明,即使缺乏對稱性,黑洞也的確會形成。他更發現在黑洞裡,一個有著無限密度的點——奇點 (singularity) ——必然會形成。這其實就是彭羅斯-霍金奇點定理 (Penrose-Hawking singularity theorem) ,如果霍金仍然在世,他亦應該會共同獲得 2020 年諾貝爾物理學獎。
在奇點處,所有已知物理學定律都會崩潰。因此,很多物理學家都認為奇點是不可能存在宇宙中的,但彭羅斯的計算卻表明奇點不但可以存在,而且還必定存在,只是在黑洞的內部罷了。如果黑洞會旋轉的話(絕大部分都會),裡面存在的更不會是奇點,而是一個圈——奇異圈 (singularity ring) 。
黑洞的表面拯救了懼怕奇點的物理學家。黑洞的表面稱為事件視界 (event horizon) ,在事件視界之內,你必須跑得比光線更快才能回到事件視界之外。因此沒有任何物質能夠回到黑洞外面,所以黑洞裡面發生什麼事,我們都無從得知。就是這個原因給予了科幻電影如《星際啟示錄 (Interstellar) 》創作的空間——在黑洞裡面,編劇、導演和演員都可以天馬行空。只要奇點永遠被事件視界包圍,大部分科學家就無需費心去擔心物理學可能會分崩離析了。甚至有些科學家主張,研究黑洞的內部並不是科學。
雖然如此,卻沒有阻礙彭羅斯、霍金等當代理論天體物理學家,利用與當年愛因斯坦所用一樣的工具——紙和筆——去研究黑裡面發生的事情。雖然或許我們永遠無法證實,但他們的研究結果絕非無中生有,而是根據當代已知物理定律的猜測,即英文中所謂 educated guess 。利用彭羅斯圖,我們發現不單奇點必定存在,而且在黑洞裡面,時間和空間會互相角色。
但這是什麼意思?數學上,時間和空間好像沒有分別,但在物理上兩者分別明顯:在空間中我們可以自由穿梭,但在時間裡我們卻只能順流前進。彭羅斯發現,帶領掉入黑洞的可憐蟲撞上奇點的並非空間,而是時間,因此我們也說奇點是時間的終點。亦因為在黑洞裡面掉落的方向是時間,向後回頭是不可能的,所以一旦落入黑洞,就只能走向時空的終結。
看見黑洞旁的恆星亂舞
另一半諾貝爾獎由 Reinhard Genzel 和 Andreas Ghez 平分,以表揚他們「發現銀河系中心的超大質量緻密天體」。銀河系中心的確有一個超大質量的物體,而且每個星系中心都有一個。這些質量極大的物體,就是所謂的超大質量黑洞 (supermassive blackholes) 。
上世紀 50 年代開始,天文學家陸續發現了許多會釋放出無線電輻射的天體,稱為類星體 (quasars) 。之後其中一個類星體 3C273 被觀測確認是銀河系外的星系中心。根據計算, 3C273 釋放出的無線電能量是銀河系中所有恆星的 100 倍。起初,天文學家認為這些能夠釋放巨大能量的類星體,必然是些比太陽重百萬倍的恆星。但是理論計算結果卻表明,這麼重的恆星會是極不穩定的,而且壽命會非常短,因此類星體不可能是恆星。
為什麼這些類星體不可能是恆星?因為恆星的發光度是有極限的,而且正比於恆星的質量。這個極限稱為愛丁頓極限 (Eddington limit) 。如果恆星的發光度超出愛丁頓極限,光壓(radiation pressure ,即光子對物質所施的壓力)就會超過恆星自身的重力,恆星就會變得不穩定。因此,天文學家逐漸改而相信類星體是位於星系中心的超大質量黑洞。這也令類星體多了一個名字:活躍星系核(active galactic nucleus)。
每個黑洞旁邊都有一個最內穩定圓形軌道 (innermost stable circular orbit) ,依據黑洞會否旋轉而定,大概是黑洞半徑的 3–4.5 倍。比最內穩定圓形軌道更接近黑洞的範圍,環繞黑洞運行的物質都會因不穩定的軌道而墜落黑洞之中,並在墜落的過程中釋放出 6–42% 的能量,因此可以解釋活躍星系核的強大發光度。
另一方面,彭羅斯在 1969 年亦發現一個旋轉的黑洞能夠把能量轉給物質,並且把物質拋出去,這個過程稱為彭羅斯過程 (Penrose process) 。換言之,從黑洞「偷取」能量是有可能的。科學家估計,科技非常先進的外星文明有可能居住於黑洞附近,並利用彭羅斯過程從黑洞提取免費的能源。這個過程亦進一步支持超大質量黑洞能夠釋放巨大能量的理論。
由於 E=mc2 ,能量即是質量,因此被偷取能量的黑洞的質量就會減少。霍金在 1972 年發現一個不會旋轉的黑洞的表面積不可能減少。黑洞質量越大,其表面積就越大,因此不會旋轉的黑洞不會有彭羅斯過程。他亦發現,如果是個會旋轉的黑洞,其表面積是有可能減少的。因此霍金的結論支持了彭羅斯的理論。
Genzel 和 Ghez 兩人的研究團隊已經分別利用位於智利的歐洲南方天文台 (European Southern Observatory) 的望遠鏡和位於夏威夷的凱克望遠鏡 (Keck Telescope) 監察了距離地球約 25,000 光年的銀河系中心區域將近 30 年之久。他們發現有很多移動速度非常快的恆星,正在環繞一個不發光的物體轉動。這個不發光的物體被稱為人馬座 A* (Sagittarius A*, 縮寫為 Sgr A*) 。 Sgr A* 會放出強大的無線電波,這點與活躍星系核的情況相似。
他們不單確認了這些恆星的公轉速率與 Sgr A* 的距離的開方成反比, Genzel 的團隊更成功追蹤了一顆記號為 S2 的恆星的完整軌跡。這兩個結果都表明, Sgr A* 必然是一個非常細小但質量達 400 萬倍太陽質量的緻密天體。這樣極端的天體只有一種可能性:超大質量黑洞。
霍金輻射 黑洞的未解之謎
諾貝爾物理學委員會在解釋科學背景的文件中亦特別提及霍金的黑洞蒸發理論以及霍金輻射 (Hawking radiation) 。現時仍然未能探測到霍金輻射的存在,未來若成功的話除了將再一次驗證廣義相對論以外,更會對建立量子重力理論 (quantum gravity theory) 大有幫助。就讓我們拭目以待吧!
重力波研究、宇宙學研究、黑洞研究,都是直接檢驗廣義相對論預言的方法。加上 2019 年 4 月 10 日公布的黑洞照片,大自然每一次都偏心愛因斯坦。相信愛因斯坦在天上又會伸出舌頭,調皮地說:「我早就知道了!」//
超大質量黑洞形成原因 在 大詩人的寂寞投資筆記 Facebook 的最佳貼文
「首先,EHT這個望遠鏡聯合組織,是一直把銀河系中心黑洞和M87星系中心黑洞,當作重點觀測對象的。而最終公佈的照片只是M87星系中心黑洞的樣子,銀河系中心的那個黑洞沒有,為什麼?
那是因為銀河系中心黑洞的那張照片並不顯著,而且團隊內部還有分歧,所以就沒有公佈。
也就是說,很可能像今天公佈的這樣,正在「大吃特吃」的黑洞在宇宙中佔比不是很高。而我們目前,也只能通過多拍攝這類少數派獲取關於黑洞的更多信息。那種黑洞周圍平平靜靜的情況,即便我們對準了角度,拍出的全黑的照片也是很難用在研究中的。
這一點,有點像我們用引力波探測器「聽」黑洞那樣,它現在也有一個局限——我們只能聽到黑洞或中子星互相環繞著轉,然後突然對對碰產生的大爆炸。哎,只能聽到這一類事件,而不能聽到一個安安靜靜的黑洞獨處的情況。
那為什麼M87星系中心黑洞這麼顯著呢?這主要是因為我們運氣好。這個巨大黑洞周圍很巧,有著大量可供吞噬的物質。
照片里哪些是可供吞噬的物質呢?你可以看看照片,就是那些特別扎眼的黃色、紅色區域。那裡就是正在被黑洞吞噬的物質。
那這些物質為什麼會這麼耀眼呢?因為本來它們可能只是稀薄、低溫的氣體或者塵埃,但很幸運的被黑洞聚攏在一起,並且開始高速旋轉著靠近黑洞了。這就相當於把塵埃顆粒加到極高的速度,在加速過程中就會有摩擦和碰撞,於是就導致溫度升高,以至於當它們接近黑洞時,已經發出了非常耀眼的電磁波。
當然,這個電磁波是我們人眼看不到的。它的波長大約為幾毫米,而人眼只能看到0.5微米左右的電磁波。
其次,這張照片中標注了日期,有4月5日、6日、10日、11日這四天。也就是說,理論上每年最多只有10天的觀測窗口期,在2017年只有4天拍出了這顆黑洞比較完美的照片。
再次,這張照片下半部分特別亮,上半部分比較暗,這又是怎麼回事呢?
其實這並不意味著黑洞的不均勻,而是因為一種叫做「多普勒效應」的因素導致的。這個效應會讓朝著電磁波傳播方向運動的觀測者測到更高的頻率,而遠離電磁波傳播方向的觀測者測到更低的頻率。最通俗的說法就是,火車拉著汽笛經過你身邊是聲音是「嗯~嗯~~~」那樣的。這就是多普勒效應。
所以從圖中來看,明亮部分的物質其實正在圍繞黑洞旋轉,而正好轉向了我們的那一部分;而上半部分比較暗的那些呢,那裡的物質正好在旋轉過程中遠離了我們。
所以,從這張照片中明暗的變化,不但可以讓科學家推測出黑洞的自旋情況,另外還可以估算出吸積盤的尺寸。要知道,吸積理論也是宇宙學的一個分支。
2
單一照片上的細節,咱們就簡單說這麼多,然後呢,我們再看下面一張對比的圖片。
這張對比圖左邊是在這次公佈照片前,利用現有的宇宙學知識,用計算機模擬出來的黑洞周圍物質和黑洞本身的樣子,右邊是這次真實拍到的。
你可以發現,這二者非常接近。這也是為什麼這次公佈照片如此高調的原因,因為它是一次理論的勝利。在始終只有數學工具,而沒有任何直接觀測的基礎上,科學家僅僅通過計算就能預測黑洞大致是什麼樣,這是人類智慧的驕傲。
那理論勝利具體體現在哪兒呢?它體現在一個從未有人涉足過的領域里,又一次驗證了愛因斯坦的廣義相對論。
廣義相對論的最初幾個驗證是怎麼得到的?這些內容在《卓老闆聊科技》2017年4月14日-5月5日的黑洞系列文章里,我們詳細說過,這裡不再重述。如果你感興趣,可以往回翻一翻。
2017年4月14日《黑洞與恆星的命運》
2017年4月18日《受了50年委屈的科學家》
2017年4月21日《瞭解黑洞必備的幾個知識點》
2017年4月25日《四種黑洞與年輕的霍金》
2017年4月28日《時間的終點與霍金的黑洞》
2017年5月2日《宇宙大爆炸的來龍去脈》
2017年5月5日《蟲洞的來龍去脈》
總的來說,那些驗證的實驗,都是在引力強度和地球相仿的那些環境下得到驗證的。
而黑洞邊界附近的引力場,已經遠遠強過地球附近,在引力強度增大了十幾個數量級後,廣義相對論還正確嗎?之前是沒人知道的。而今天這個照片就給了初步的證據——廣義相對論還是有效的。
這個正確了,那就有其他理論要倒霉了。以至於這幾十年來,關於引力的其他一些假設,可能就要受到挑戰了,也可能就此遭到淘汰。
同樣得到驗證的,還有霍金關於黑洞性質的計算。比如不論通過怎樣的過程,只要最終形成了黑洞,那麼這個黑洞最多就只有3個物理量是可測的,分別是質量、自旋和帶電量。
而在這幅照片中,只有中心處黑洞的陰影是近乎圓形的時候,才能說明愛因斯坦和霍金對黑洞的計算是對的。而實際上呢,這個陰影真的是個圓。
假如今天公佈的照片里,陰影是個桃心的樣子或者是個橢球的樣子,那可能會引起物理界更大的轟動——因為現代物理學的大廈,可能就不得不重新打地基了。
3
最後,我們來說說這次觀測的意義。
它首先是一個極為基礎性的研究,幸運的是,黑洞這個概念通過電影和小說實在是太深入人心,太容易激發大家的關注了,所以才會造成4月10日晚上朋友圈刷屏的效果。
而實際上,其他物理學或者天文學上同等級別的基礎研究,是沒機會映入大家眼簾的。能激發起全球上億人對宇宙的好奇和情懷,這是一次優秀的科學傳播事件。
其次,如果你是一個有文化的人,那麼「我們從哪兒來」這個問題對你一定有吸引力。這個答案從何而來呢?你免不了要學習自己的祖先和民族的歷史,甚至還可以更遠,從考古發掘中瞭解智人的歷史,甚至完全超越民族的界限,學習人類走出非洲的歷史。但其實,還有更遠的歷史可以追溯,那就是地球的形成。
其實在太陽系剛剛形成之初,地球就已經形成了。據說,全部太陽系都是由曾經處於現在太陽系位置附近的一顆超新星,爆炸留下的殘骸形成的。也就是說,當那次爆炸後,無數物質被噴灑到各處,殘存的物質又在「旋轉成核」的作用下慢慢凝聚起來,形成了今天的太陽和系內的其他星體。
而這就是我們追根溯源的最初嗎?也不是。因為昨天的預告中我們說過,每一個星系的中心都存在一顆質量巨大的黑洞,比如我們銀河系的中心那顆黑洞是太陽質量的400萬倍,而今天照片里的黑洞是太陽質量的60億倍。
如果星系中心沒有超大質量的黑洞,可以說整個星系永遠也不會平靜下來,永遠也不會聚合起來。能建立起一個有序的星系,才有可能形成行星軌道的可持續棲息帶。有了可持續棲息帶,才能輪到生命登場。
生命現象在一個行星上維持的時間久了,才有可能出現高智能生命。對銀河系來說,就是我們人類終於出現了。
所以給黑洞拍照,實際上也是科學家們對「我們從哪兒來」這個終極問題的一部分回答。
雖然我們已經付出了這麼多努力,今天還是只能看到這樣一張模模糊糊的圖片,但它已經給科學界很強的信心了。它讓我們相信,之前得到的結果很可能是對的。更讓我們相信,人類從古希臘時期就探索到的那種關於如何獲取真知灼見的方法論,也是可靠的。
我想,這張照片的意義就在於此。」
超大質量黑洞形成原因 在 文茜的世界周報 Sisy's World News Facebook 的最讚貼文
這是人類第一次「看見」黑洞。
新聞發佈會上,參與事件視界望遠鏡合作的研究員對研究成果進行簡要介紹。
這次發佈的照片屬於距離地球5500萬光年的室女座橢圓星系M87中的一個超大質量黑洞M87*,它的質量大約相當於太陽質量的65億倍。
黑洞的圖像呈環狀結構,接近圓形,這是由強引力透鏡效應引起的。同時圖像呈現出南北不對稱性,也符合多普勒增量效應的規律。
目前,天體物理學家認為根據質量可以將黑洞分成三類:恆星級質量的黑洞、中等質量黑洞和超大質量黑洞,質量分別從數十萬倍於太陽質量到上百億倍太陽質量不等。
這樣巨大的質量大部分集中在黑洞的中心,即奇點,而奇點在其附近形成強大的引力場,在一定範圍內光都不能逃逸。光線逃逸的臨界半徑就被成為視界面(Horizon)。
黑洞可說是宇宙當中極為特殊的天體,科學家們孜孜以求探索了上百年終於一窺其真容,黑洞究竟特殊在那兒?
黑洞是一種被極度壓縮的宇宙天體,在一個很小的區域內包含著令人難以置信的質量。
它具有超強引力,即便光也無法逃脫它的勢力范圍-\-\這種天體的存在以極端的方式影響著周圍的環境,讓時空彎曲,並將周圍的氣體吸進來。在此過程中,氣體的引力能轉化成熱能,氣體的溫度變得很高,會發出強烈的輻射。
此次拍到首張黑洞照片的事件視界望遠鏡實際上並非是某台特定的望遠鏡,而是一個虛擬的射電望遠鏡網路,分布智利、美國、西班牙、墨西哥、格陵蘭和南極等8台射電望遠鏡組成。這些射電望遠鏡集合同時工作,相當於天體物理學家擁有一台口徑與地球直徑相當的望遠鏡,EHT的分辨率才能達到拍攝目標黑洞的要求。
2017年4月5日至4月14日,ETH進行了為期10天的觀測。
觀測有兩個目標,除了這次發佈照片的黑洞M87*外,另一個觀測目標是位於銀河系中心的超大質量黑洞Sgr A*,它的質量估計約為太陽質量的400萬倍。
ETH團隊會在隨後,才發佈Sgr A*的照片。
事件視界望遠鏡團隊在2017年就完成了觀測工作而在兩年後才發佈照片。主要原因是觀測獲得的數據量太龐大,以至於無法通過網路進行傳輸。觀測每天產生的數據量相當於歐洲核子研究中心(CERN)一年產生的數據量。
因此,觀測獲得的數據,需要先使用硬盤進行存儲,然後被送往位於美國麻省理工學院和德國馬克思普朗克天體物理研究所的數據中心。在那裡,研究人員使用超級電腦,大數據進行處理和分析,好似一種特殊的「沖洗」照片模式,然後才能把首張黑洞照片展示在我們面前。
事件視界望遠鏡拍攝第一張黑洞照片,對於天體物理學家來說具有非常重大的意義。
首先,顯而易見的是,他們第一次瞭解到黑洞的真實樣貌。
其次,天體物理學家可以檢驗在黑洞周圍廣義相對論是否成立。根據目前的數據分析,廣義相對論再次經過考驗。
其次,可以瞭解在銀河系的黑洞周圍是否存在脈衝星。此外,黑洞M87*產生的由帶電亞原子粒子形成的快速、明亮的噴流在星際空間中可以延伸達到5000光年,研究人員一直不清楚這些能量從何而來,而黑洞照片將對回答噴流如何產生這一問題至關重要。
回顧歷史,1784年英國人約翰·米切爾(John Michell)首次提出可能存在密度大到連光都無法逃逸的天體。
1915年,愛因斯坦提出廣義相對論,為黑洞的存在提供了堅實的理論基礎。
1967年,美國物理學家約翰·惠勒(John Wheeler)創造了「黑洞」(Black Hole)這個名詞描述這種致密天體並沿用至今。
2015年,LIGO探測到黑洞合併產生的引力波,又使我們對黑洞的存在更加深信不疑。
這次發佈的黑洞照片,不僅讓我們看到黑洞,同時時隔一個世紀,對廣義相對論的再次檢驗。
https://m.youtube.com/watch?v=e-P5IFTqB98&t=12s