神經網路完成晶片設計僅需幾小時
新浪財經APP
來源:科技日報
科技日報北京6月9日電 (記者張夢然)英國《自然》雜誌9日發表一項人工智慧突破性成就,美國科學家團隊報告機器學習工具已可以極大地加速電腦晶片設計。研究顯示,該方法能給出可行的晶片設計,且晶片性能不亞于人類工程師的設計,而整個設計過程只要幾個小時,而不是幾個月,這為今後的每一代電腦晶片設計節省數千小時的人力。這種方法已經被穀歌用來設計下一代人工智慧電腦系統。
不同元件在電腦晶片上的佈局,是決定晶片整體性能的關鍵。設計電腦晶片的物理佈局既複雜又耗時,難度非常大,需要專業人類設計工程師付出大量工作。而儘管已為此進行多年的嘗試,晶片佈局規劃一直都無法實現自動化,需要設計工程師們花費數月的努力才能生產可供規模製造的佈局。
在位於美國加州的穀歌研究院內,人工智慧專家阿澤利亞•米爾侯賽尼、安娜•戈迪耶及其同事最新的研究表明,機器學習工具已經可以用來加速這一名為“佈局規劃”的流程。
研究團隊將晶片佈局規劃設計成一個強化學習問題,並開發了一種能給出可行晶片設計的神經網路。他們訓練了一個強化學習智慧體,讓這個智慧體把佈局規劃看作一種棋盤遊戲:元件是“棋子”,放置元件的畫布是“棋盤”,“獲勝結果”則是根據一系列評估指標評出的最優性能(評估基於一個包含1萬例晶片佈局的參考資料集)。
研究人員指出,這種方法能在6小時內設計出與人類專家不相上下或是更好的可行晶片佈局,有望為今後的每一代電腦晶片設計節省數千小時的人力。
美國加州大學聖達戈分校科學家安德魯•康在一篇同時發表的新聞與觀點文章中寫道,“開發出比當前方法更好、更快、更省錢的自動化晶片設計方法,有助於延續晶片技術的‘摩爾定律’”。這裡的摩爾定律,是指每塊晶片的元件數量大約每兩年會翻一番。
安德魯•康同時表示,在這一研究中,團隊展示的佈局規劃方案已經被用來設計穀歌的下一代AI處理器,這也顯示出其設計品質可用於大規模生產。
總編輯圈點
在不到6小時的時間裡,一個深度學習強化方法,可以自動生成晶片設計的所有關鍵指標,包括功耗、性能和晶片面積,且給出的佈局圖都優於或可與人類設計的晶片佈局圖相比肩。這無疑是人工智慧助力人類實現更好、更快、更強目標的範例。有意思的是,這個人工智慧現在又被拿去設計下一代人工智慧,這讓我們看到一種共生關係——更強大的人工智慧設計硬體,正在推動人工智慧的進步。
資料來源:https://finance.sina.com.cn/tech/2021-06-10/doc-ikqciyzi8735268.shtml?cre=tianyi&mod=pcpager_tech&loc=12&r=0&rfunc=42&tj=cxvertical_pc_pager_spt&tr=145
「類神經網路範例」的推薦目錄:
類神經網路範例 在 軟體開發學習資訊分享 Facebook 的最佳解答
--課程已於 2020 年 11 月更新--
--課程已於 2020 年 11 月更新--
課程說明
本課程將讓你開始使用深度學習技術構建你的第一個人工類神經網路( artifical neural network )。按照我以前的邏輯回歸(logistic regression)課程,我們採用這個基本的構建塊(builing block),並使用Python和Numpy 構建全開的非線性類神經網路。本課程的所有教材都是免費的
我們使用softmax函數將以前的二進制分類模型擴展為多個分類,並且我們使用第一原理導出非常重要的訓練方法稱之為“反向傳播 (backpropagation)”。我會向你說明如何在Numpy中反向傳播代碼,首先是“緩慢的方式”,然後是“快速的方式”使用Numpy功能。
接下來,我們使用 Google 的新 TensorFlow 程式庫實現一個類神經網路。
如果你有興趣開始朝向成為深度學習專業人士這個目標,或者如果你對機器學習和資料科學感興趣,那麼你應該參加這門課程。我們超越了基本模型,例如邏輯回歸和線性回歸,我向你展示一些自動學習特徵的東西。
本課程為你提供了許多實用範例,以便你可以真正了解如何使用深度學習。在整個課程中,我們將實作一個課程專案,該專案將向你展示如何預測使用者在網站上的操作,這些使用者數據包括使用者是否在移動設備上,他/她們查看的產品數量,他/她們在你的網站上停留多長時間,他/她們是否是回訪使用者,以及他/她們訪問的時間。
課程結束時的另一個專案向你展示如何使用深度學習來進行臉部表情識別。想像一下,能夠預測某人的情緒只是基於一張圖片!
在讓你動手做後有了基礎,我提供了一些最新的類神經網路發展的簡要概述-稍微修改的架構和它們用來做什麼。
https://softnshare.com/data-science-deep-learning-in-python/
類神經網路範例 在 軟體開發學習資訊分享 Facebook 的最佳解答
本課程將讓你開始使用深度學習技術建構你的第一個人工類神經網路。
本課程為你提供了許多實用範例,以便你可以真正了解如何使用深度學習。
在整個課程中將實作一個課程專案,該專案將向你展示如何預測使用者在網站上的操作,這些使用者數據包括使用者是否在行動裝置上,他/她們查看的產品數量,他/她們在你的網站上停留多長時間,他/她們是否是回訪使用者,以及他/她們訪問的時間。
課程結束時的另一個專案向你展示如何使用深度學習來進行臉部表情識別。想像一下,能夠預測某人的情緒只是基於一張圖片!
https://softnshare.com/data-science-deep-learning-in-python/
類神經網路範例 在 類神經網路入門-PTT/DCARD討論與高評價網拍商品-2021年11月 的推薦與評價
類神經網路 入門在-PTT/DCARD討論與高評價商品,提供應用類神經網路、類神經網路導論、機器學習類神經網路在露天、蝦皮優惠價格,找類神經網路入門相關商品就來飛比. ... <看更多>
類神經網路範例 在 人工神經網路(Artificial Neural Network) (作者:Bridan) 的推薦與評價
類神經網路 有很多解決方案,這裡使用BP 方法。首先認識神經元的數學模型,. MP (MultiLayer Perceptron) 模型 ... 本文範例採取的修正算式δi = Yi‧(1 - Yi)‧(Ti – Yi) ... ... <看更多>
類神經網路範例 在 類神經網路入門-PTT/DCARD討論與高評價網拍商品-2021年11月 的推薦與評價
類神經網路 入門在-PTT/DCARD討論與高評價商品,提供應用類神經網路、類神經網路導論、機器學習類神經網路在露天、蝦皮優惠價格,找類神經網路入門相關商品就來飛比. ... <看更多>