📜 [專欄新文章] Uniswap v3 Features Explained in Depth
✍️ 田少谷 Shao
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Once again the game-changing DEX 🦄 👑
Image source: https://uniswap.org/blog/uniswap-v3/
Outline
0. Intro1. Uniswap & AMM recap2. Ticks 3. Concentrated liquidity4. Range orders: reversible limit orders5. Impacts of v36. Conclusion
0. Intro
The announcement of Uniswap v3 is no doubt one of the most exciting news in the DeFi place recently 🔥🔥🔥
While most have talked about the impact v3 can potentially bring on the market, seldom explain the delicate implementation techniques to realize all those amazing features, such as concentrated liquidity, limit-order-like range orders, etc.
Since I’ve covered Uniswap v1 & v2 (if you happen to know Mandarin, here are v1 & v2), there’s no reason for me to not cover v3 as well ✅
Thus, this article aims to guide readers through Uniswap v3, based on their official whitepaper and examples made on the announcement page. However, one needs not to be an engineer, as not many codes are involved, nor a math major, as the math involved is definitely taught in your high school, to fully understand the following content 😊😊😊
If you really make it through but still don’t get shxt, feedbacks are welcomed! 🙏
There should be another article focusing on the codebase, so stay tuned and let’s get started with some background noise!
1. Uniswap & AMM recap
Before diving in, we have to first recap the uniqueness of Uniswap and compare it to traditional order book exchanges.
Uniswap v1 & v2 are a kind of AMMs (automated market marker) that follow the constant product equation x * y = k, with x & y stand for the amount of two tokens X and Y in a pool and k as a constant.
Comparing to order book exchanges, AMMs, such as the previous versions of Uniswap, offer quite a distinct user experience:
AMMs have pricing functions that offer the price for the two tokens, which make their users always price takers, while users of order book exchanges can be both makers or takers.
Uniswap as well as most AMMs have infinite liquidity¹, while order book exchanges don’t. The liquidity of Uniswap v1 & v2 is provided throughout the price range [0,∞]².
Uniswap as well as most AMMs have price slippage³ and it’s due to the pricing function, while there isn’t always price slippage on order book exchanges as long as an order is fulfilled within one tick.
In an order book, each price (whether in green or red) is a tick. Image source: https://ftx.com/trade/BTC-PERP
¹ though the price gets worse over time; AMM of constant sum such as mStable does not have infinite liquidity
² the range is in fact [-∞,∞], while a price in most cases won’t be negative
³ AMM of constant sum does not have price slippage
2. Tick
The whole innovation of Uniswap v3 starts from ticks.
For those unfamiliar with what is a tick:
Source: https://www.investopedia.com/terms/t/tick.asp
By slicing the price range [0,∞] into numerous granular ticks, trading on v3 is highly similar to trading on order book exchanges, with only three differences:
The price range of each tick is predefined by the system instead of being proposed by users.
Trades that happen within a tick still follows the pricing function of the AMM, while the equation has to be updated once the price crosses the tick.
Orders can be executed with any price within the price range, instead of being fulfilled at the same one price on order book exchanges.
With the tick design, Uniswap v3 possesses most of the merits of both AMM and an order book exchange! 💯💯💯
So, how is the price range of a tick decided?
This question is actually somewhat related to the tick explanation above: the minimum tick size for stocks trading above 1$ is one cent.
The underlying meaning of a tick size traditionally being one cent is that one cent (1% of 1$) is the basis point of price changes between ticks, ex: 1.02 — 1.01 = 0.1.
Uniswap v3 employs a similar idea: compared to the previous/next price, the price change should always be 0.01% = 1 basis point.
However, notice the difference is that in the traditional basis point, the price change is defined with subtraction, while here in Uniswap it’s division.
This is how price ranges of ticks are decided⁴:
Image source: https://uniswap.org/whitepaper-v3.pdf
With the above equation, the tick/price range can be recorded in the index form [i, i+1], instead of some crazy numbers such as 1.0001¹⁰⁰ = 1.0100496621.
As each price is the multiplication of 1.0001 of the previous price, the price change is always 1.0001 — 1 = 0.0001 = 0.01%.
For example, when i=1, p(1) = 1.0001; when i=2, p(2) = 1.00020001.
p(2) / p(1) = 1.00020001 / 1.0001 = 1.0001
See the connection between the traditional basis point 1 cent (=1% of 1$) and Uniswap v3’s basis point 0.01%?
Image source: https://tenor.com/view/coin-master-cool-gif-19748052
But sir, are prices really granular enough? There are many shitcoins with prices less than 0.000001$. Will such prices be covered as well?
Price range: max & min
To know if an extremely small price is covered or not, we have to figure out the max & min price range of v3 by looking into the spec: there is a int24 tick state variable in UniswapV3Pool.sol.
Image source: https://uniswap.org/whitepaper-v3.pdf
The reason for a signed integer int instead of an uint is that negative power represents prices less than 1 but greater than 0.
24 bits can cover the range between 1.0001 ^ (2²³ — 1) and 1.0001 ^ -(2)²³. Even Google cannot calculate such numbers, so allow me to offer smaller values to have a rough idea of the whole price range:
1.0001 ^ (2¹⁸) = 242,214,459,604.341
1.0001 ^ -(2¹⁷) = 0.000002031888943
I think it’s safe to say that with a int24 the range can cover > 99.99% of the prices of all assets in the universe 👌
⁴ For implementation concern, however, a square root is added to both sides of the equation.
How about finding out which tick does a price belong to?
Tick index from price
The answer to this question is rather easy, as we know that p(i) = 1.0001^i, simply takes a log with base 1.0001 on both sides of the equation⁴:
Image source: https://www.codecogs.com/latex/eqneditor.php
Let’s try this out, say we wanna find out the tick index of 1000000.
Image source: https://ncalculators.com/number-conversion/log-logarithm-calculator.htm
Now, 1.0001¹³⁸¹⁶² = 999,998.678087146. Voila!
⁵ This formula is also slightly modified to fit the real implementation usage.
3. Concentrated liquidity
Now that we know how ticks and price ranges are decided, let’s talk about how orders are executed in a tick, what is concentrated liquidity and how it enables v3 to compete with stablecoin-specialized DEXs (decentralized exchange), such as Curve, by improving the capital efficiency.
Concentrated liquidity means LPs (liquidity providers) can provide liquidity to any price range/tick at their wish, which causes the liquidity to be imbalanced in ticks.
As each tick has a different liquidity depth, the corresponding pricing function x * y = k also won’t be the same!
Each tick has its own liquidity depth. Image source: https://uniswap.org/blog/uniswap-v3/
Mmm… examples are always helpful for abstract descriptions 😂
Say the original pricing function is 100(x) * 1000(y) = 100000(k), with the price of X token 1000 / 100 = 10 and we’re now in the price range [9.08, 11.08].
If the liquidity of the price range [11.08, 13.08] is the same as [9.08, 11.08], we don’t have to modify the pricing function if the price goes from 10 to 11.08, which is the boundary between two ticks.
The price of X is 1052.63 / 95 = 11.08 when the equation is 1052.63 * 95 = 100000.
However, if the liquidity of the price range [11.08, 13.08] is two times that of the current range [9.08, 11.08], balances of x and y should be doubled, which makes the equation become 2105.26 * 220 = 400000, which is (1052.63 * 2) * (110 * 2) = (100000 * 2 * 2).
We can observe the following two points from the above example:
Trades always follow the pricing function x * y = k, while once the price crosses the current price range/tick, the liquidity/equation has to be updated.
√(x * y) = √k = L is how we represent the liquidity, as I say the liquidity of x * y = 400000 is two times the liquidity of x * y = 100000, as √(400000 / 100000) = 2.
What’s more, compared to liquidity on v1 & v2 is always spread across [0,∞], liquidity on v3 can be concentrated within certain price ranges and thus results in higher capital efficiency from traders’ swapping fees!
Let’s say if I provide liquidity in the range [1200, 2800], the capital efficiency will then be 4.24x higher than v2 with the range [0,∞] 😮😮😮 There’s a capital efficiency comparison calculator, make sure to try it out!
Image source: https://uniswap.org/blog/uniswap-v3/
It’s worth noticing that the concept of concentrated liquidity was proposed and already implemented by Kyper, prior to Uniswap, which is called Automated Price Reserve in their case.⁵
⁶ Thanks to Yenwen Feng for the information.
4. Range orders: reversible limit orders
As explained in the above section, LPs of v3 can provide liquidity to any price range/tick at their wish. Depending on the current price and the targeted price range, there are three scenarios:
current price < the targeted price range
current price > the targeted price range
current price belongs to the targeted price range
The first two scenarios are called range orders. They have unique characteristics and are essentially fee-earning reversible limit orders, which will be explained later.
The last case is the exact same liquidity providing mechanism as the previous versions: LPs provide liquidity in both tokens of the same value (= amount * price).
There’s also an identical product to the case: grid trading, a very powerful investment tool for a time of consolidation. Dunno what’s grid trading? Check out Binance’s explanation on this, as this topic won’t be covered!
In fact, LPs of Uniswap v1 & v2 are grid trading with a range of [0,∞] and the entry price as the baseline.
Range orders
To understand range orders, we’d have to first revisit how price is discovered on Uniswap with the equation x * y = k, for x & y stand for the amount of two tokens X and Y and k as a constant.
The price of X compared to Y is y / x, which means how many Y one can get for 1 unit of X, and vice versa the price of Y compared to X is x / y.
For the price of X to go up, y has to increase and x decrease.
With this pricing mechanism in mind, it’s example time!
Say an LP plans to place liquidity in the price range [15.625, 17.313], higher than the current price of X 10, when 100(x) * 1000(y) = 100000(k).
The price of X is 1250 / 80 = 15.625 when the equation is 80 * 1250 = 100000.
The price of X is 1315.789 / 76 = 17.313 when the equation is 76 * 1315.789 = 100000.
If now the price of X reaches 15.625, the only way for the price of X to go even higher is to further increase y and decrease x, which means exchanging a certain amount of X for Y.
Thus, to provide liquidity in the range [15.625, 17.313], an LP needs only to prepare 80 — 76 = 4 of X. If the price exceeds 17.313, all 4 X of the LP is swapped into 1315.789 — 1250 = 65.798 Y, and then the LP has nothing more to do with the pool, as his/her liquidity is drained.
What if the price stays in the range? It’s exactly what LPs would love to see, as they can earn swapping fees for all transactions in the range! Also, the balance of X will swing between [76, 80] and the balance of Y between [1250, 1315.789].
This might not be obvious, but the example above shows an interesting insight: if the liquidity of one token is provided, only when the token becomes more valuable will it be exchanged for the less valuable one.
…wut? 🤔
Remember that if 4 X is provided within [15.625, 17.313], only when the price of X goes up from 15.625 to 17.313 is 4 X gradually swapped into Y, the less valuable one!
What if the price of X drops back immediately after reaching 17.313? As X becomes less valuable, others are going to exchange Y for X.
The below image illustrates the scenario of DAI/USDC pair with a price range of [1.001, 1.002] well: the pool is always composed entirely of one token on both sides of the tick, while in the middle 1.001499⁶ is of both tokens.
Image source: https://uniswap.org/blog/uniswap-v3/
Similarly, to provide liquidity in a price range < current price, an LP has to prepare a certain amount of Y for others to exchange Y for X within the range.
To wrap up such an interesting feature, we know that:
Only one token is required for range orders.
Only when the current price is within the range of the range order can LP earn trading fees. This is the main reason why most people believe LPs of v3 have to monitor the price more actively to maximize their income, which also means that LPs of v3 have become arbitrageurs 🤯
I will be discussing more the impacts of v3 in 5. Impacts of v3.
⁷ 1.001499988 = √(1.0001 * 1.0002) is the geometric mean of 1.0001 and 1.0002. The implication is that the geometric mean of two prices is the average execution price within the range of the two prices.
Reversible limit orders
As the example in the last section demonstrates, if there is 4 X in range [15.625, 17.313], the 4 X will be completely converted into 65.798 Y when the price goes over 17.313.
We all know that a price can stay in a wide range such as [10, 11] for quite some time, while it’s unlikely so in a narrow range such as [15.625, 15.626].
Thus, if an LP provides liquidity in [15.625, 15.626], we can expect that once the price of X goes over 15.625 and immediately also 15.626, and does not drop back, all X are then forever converted into Y.
The concept of having a targeted price and the order will be executed after the price is crossed is exactly the concept of limit orders! The only difference is that if the range of a range order is not narrow enough, it’s highly possible that the conversion of tokens will be reverted once the price falls back to the range.
As price ranges follow the equation p(i) = 1.0001 ^ i, the range can be quite narrow and a range order can thus effectively serve as a limit order:
When i = 27490, 1.0001²⁷⁴⁹⁰ = 15.6248.⁸
When i = 27491, 1.0001²⁷⁴⁹¹ = 15.6264.⁸
A range of 0.0016 is not THAT narrow but can certainly satisfy most limit order use cases!
⁸ As mentioned previously in note #4, there is a square root in the equation of the price and index, thus the numbers here are for explantion only.
5. Impacts of v3
Higher capital efficiency, LPs become arbitrageurs… as v3 has made tons of radical changes, I’d like to summarize my personal takes of the impacts of v3:
Higher capital efficiency makes one of the most frequently considered indices in DeFi: TVL, total value locked, becomes less meaningful, as 1$ on Uniswap v3 might have the same effect as 100$ or even 2000$ on v2.
The ease of spot exchanging between spot exchanges used to be a huge advantage of spot markets over derivative markets. As LPs will take up the role of arbitrageurs and arbitraging is more likely to happen on v3 itself other than between DEXs, this gap is narrowed … to what extent? No idea though.
LP strategies and the aggregation of NFT of Uniswap v3 liquidity token are becoming the blue ocean for new DeFi startups: see Visor and Lixir. In fact, this might be the turning point for both DeFi and NFT: the two main reasons of blockchain going mainstream now come to the alignment of interest: solving the $$ problem 😏😏😏
In the right venue, which means a place where transaction fees are low enough, such as Optimism, we might see Algo trading firms coming in to share the market of designing LP strategies on Uniswap v3, as I believe Algo trading is way stronger than on-chain strategies or DAO voting to add liquidity that sort of thing.
After reading this article by Parsec.finance: The Dex to Rule Them All, I cannot help but wonder: maybe there is going to be centralized crypto exchanges adopting v3’s approach. The reason is that since orders of LPs in the same tick are executed pro-rata, the endless front-running speeding-competition issue in the Algo trading world, to some degree, is… solved? 🤔
Anyway, personal opinions can be biased and seriously wrong 🙈 I’m merely throwing out a sprat to catch a whale. Having a different voice? Leave your comment down below!
6. Conclusion
That was kinda tough, isn’t it? Glad you make it through here 🥂🥂🥂
There are actually many more details and also a huge section of Oracle yet to be covered. However, since this article is more about features and targeting normal DeFi users, I’ll leave those to the next one; hope there is one 😅
If you have any doubt or find any mistake, please feel free to reach out to me and I’d try to reply AFAP!
Stay tuned and in the meantime let’s wait and see how Uniswap v3 is again pioneering the innovation of DeFi 🌟
Uniswap v3 Features Explained in Depth was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
同時也有3部Youtube影片,追蹤數超過1萬的網紅translation,也在其Youtube影片中提到,#ビデオシステムが稼働させた、AC用F-1レース作('91年)からのSFC移植版。 FOCAの公認を得て実名のチーム・ドライバーが登場、トップビューで自車を中心にハンドルを切ると画面が回転するシステム。 主な変更点としては、予備予選モードの追加、グラフィックのデザイン変更等。 BGMはソニックウ...
「grid system design」的推薦目錄:
- 關於grid system design 在 Taipei Ethereum Meetup Facebook 的精選貼文
- 關於grid system design 在 聶永真 Aaron Nieh Facebook 的最佳貼文
- 關於grid system design 在 Eat with Eva Facebook 的最佳解答
- 關於grid system design 在 translation Youtube 的最佳貼文
- 關於grid system design 在 Ghost Island Media 鬼島之音 Youtube 的最佳解答
- 關於grid system design 在 CarDebuts Youtube 的最佳解答
grid system design 在 聶永真 Aaron Nieh Facebook 的最佳貼文
視覺識別 —— 圖型輔助系統
https://www.youtube.com/watch?v=aEUaBdktADY
此提案為建立在安特衛普皇家藝術學院與安特衛普皇家音樂學院既有的共同視覺識別系統上,加入輔助式圖型設計(Patterns)作為識別延伸的可能性。「重複 (duplication)」與「塗寫 (scribbles)」是在這支影片中分別提出的兩套視覺演繹方法。
前者適於校方在各類活動宣傳中,如遇素材取得有限或素材品質不穩定的情況下,透過「圖形一再重複」的方法削減「弱素材」本身的單調性或缺陷,藉圖形反覆的基本造形原理陳列出新的視覺語言。後者適於在任何可能的情況或適合的主題下,為原素材穿上即興與詩意,強化整體視覺氛圍。
既有視覺識別系統 By Vrints-Kolsteren (比利時)
_____________________
This video, proposal for the Royal Academy of Fine Arts Antwerp and the Royal Conservatoire Antwerp, displays the application with an additional pattern design to supplement the existing visual identity system. To achieve this, I introduced highly intuitive visual methods that follow the basic guidelines of visual identity: duplication and scribbles, with the former providing solutions to the image materials with aesthetically unstable qualities, and the latter enriching the atmosphere of images for any possible need.
Original VI grid system By Vrints-Kolsteren, Belgium
grid system design 在 Eat with Eva Facebook 的最佳解答
Slow brew for the rainy weekend. ☕️
—
Origin decanter designed by Trinity Coffee Co. - the sequence grid seal system allows you to customize the flow rate and flow channeling through the coffee and filter module. Minimalist design with maximum flexibility.
#specialtycoffee
grid system design 在 translation Youtube 的最佳貼文
#ビデオシステムが稼働させた、AC用F-1レース作('91年)からのSFC移植版。
FOCAの公認を得て実名のチーム・ドライバーが登場、トップビューで自車を中心にハンドルを切ると画面が回転するシステム。
主な変更点としては、予備予選モードの追加、グラフィックのデザイン変更等。
BGMはソニックウィングス(AC,SFC/'92年)や、スパイナルブレイカーズ(AC/'90年)等の板村氏が、AC版から引き続き作・編曲、AC版同様にTRUTHも編曲され使用されている。
ドライバ作成:八尾吉一氏
サウンドデザイン:ありかわまさと氏
編曲:板村直樹氏
manufacturer: 1992.04.28 Video System
Hardware: spc700
computer: super famicom / snes
Sound Design: Masato Arikawa
Music driver programmer: Yoshikazu Yao
Composer: Naoki Itamura
------------------------------------------------------------
00:00 01.Boom
00:06 02.Truth (T-SQUARE)
01:09 03.Menu
02:04 04.Qualify
02:44 05.Grid
03:12 06.Street Course
04:06 07.Technical Course
05:11 08.High Speed Course
06:17 09.Result
06:51 10.Podium
08:06 11.Staff Roll
10:34 12.Ending
11:53 13.Course Selected
11:58 14.Goal (Free Run)
12:03 15.Retire (Final)
12:03 16.Retire (Qualify)
------------------------------------------------------------
![post-title](https://i.ytimg.com/vi/2rSnkpEIhqY/hqdefault.jpg)
grid system design 在 Ghost Island Media 鬼島之音 Youtube 的最佳解答
In part 2 of our series on electric vehicles, we focus on light EV and its battery infrastructure. We continue our conversation with Daniel Vickery, head of engineering of batteries and energy systems at Gogoro, the electric scooter company. We nerd out on batteries and how to design better cities, and we go behind the scenes with Daniel and find out how someone can engineer for good.
This is a podcast about how NOT to save the environment. Hosted by Nature N8 (Nate Maynard), an environmental researcher working on energy, ocean, and waste issues.
Have a question? Record your question and send it to us at:
ask@wastenotwhynot.com
View this episode's show notes:
https://docs.google.com/document/d/e/2PACX-1vQ87JDlDx2Gknj_k1mt-m-jQCfHSQ-Ru8kmzq7xBmQLhg5sgAHLu6ck2WoFAPuGdYtokLWgPFNRHdvP/pub
SUPPORT U$
https://www.patreon.com/wastenotwhynot
FOLLOW US
https://www.facebook.com/wastenotwhynot/
https://twitter.com/wastenotpod
SUBSCRIBE ON Apple Podcasts, Spotify, Google Podcasts, or find your player: https://ghostisland.media/#wnwn
SHOW CREDITS
Producer / Editing - Emily Y. Wu
Host - Nate Maynard
Brand Design - Thomas Lee
Theme Song - Chris Lo
This is a Ghost Island Media production.
![post-title](https://i.ytimg.com/vi/53-UzQIQgwg/hqdefault.jpg)
grid system design 在 CarDebuts Youtube 的最佳解答
Built Ford Tough: Ford answers the call from truck customers looking for an affordable, rugged, and maneuverable midsize pickup that’s Built Ford Tough; torture-tested alongside Ford F-150 trucks, Ranger quality starts with a rugged high-strength steel frame backbone, proven Ford-built 2.3-liter EcoBoost® engine and class-exclusive 10-speed automatic transmission
Ready for adventure with innovative technology: New features make driving easier and more fun, both on- and off-road; available FX4 Off-Road Package adds protective skid plates, upgraded tires, off-road-tuned shocks and suspension, while Terrain Management System™ and Trail Control™ help navigate challenging conditions; a suite of innovative technologies includes standard Automatic Emergency Braking to help avoid collisions
Strong new choice for midsize truck fans: Ranger brings American truck lovers an all-new choice; production begins late this year at Ford’s Michigan Assembly Plant as the U.S. industry sees continued growth in midsize pickups
DETROIT, Jan. 14, 2018 – Ford today reveals the all-new 2019 Ford Ranger for North America, bringing midsize truck fans a new choice from America’s truck sales leader – one that’s engineered Built Ford Tough and packed with driver-assist technologies to make driving easier whether on- or off-road.
Production begins late this year at Ford’s Michigan Assembly Plant as customer demand is growing for midsize trucks. U.S. sales are up 83 percent since 2014 as a new generation of midsize truck buyers seek more maneuverable, fuel-efficient pickups.
The 2019 Ford Ranger answers the call with an all-new midsize pickup featuring a new exterior design, chassis and powertrain developed specifically for North American truck customers. Powerful and strong, with a high-strength steel frame, Ranger is equipped with a proven 2.3-liter EcoBoost® engine mated to the only 10-speed automatic transmission in the segment.
“Ranger has always held a special place in the hearts of truck fans,” said Hau Thai-Tang, Ford executive vice president, Product Development and Purchasing. “The all-new Ranger is designed for today’s midsize truck buyer, delivering even more utility, capability and technology for those who blend city living with more off-the-grid adventures on weekends.”
Ranger comes in entry-level XL, mid-level XLT and high-level Lariat trim series with available Chrome and Sport appearance and FX Off-Road packages, and in SuperCab or SuperCrew cab configurations.
![post-title](https://i.ytimg.com/vi/T3QyPv516x8/hqdefault.jpg)