[Sharing]
HỌC DATA SCIENCE NHƯ THẾ NÀO?
#datascience
Helu mấy em, dạo này có rất nhiều bạn sinh viên hỏi chị về định hướng theo 1 ngành siêu hot là Data Science đấy! Vậy ngồi xuống đây đọc một bài viết hay về nghề Data Science nhé. Đây là ngành nghề được dự đoán sẽ có nhu cầu cao nhất trong tương lai đó. Bài viết này sẽ đưa ra các bước và nguồn cho các bạn muốn học Data Science đó, đọc xem và share cho các bạn còn loay hoay nha!
___________________________________
I. Học lập trình:
Một Data Scientist (DStist) không thể không biết lập trình, dù không cần thiết phải giỏi như một lập trình viên nhưng phải đủ khả năng viết được những chương trình cơ bản. Từ khi nhập học tới giờ, từ một đứa mà kiến thức lập trình là con số 0 tròn trình, mình đã học qua R, Java, Python, SQL (kì tới sẽ có cả NoSQL nữa). Học tới đâu là sử dụng luôn tới đấy nên thường mình phải tự học thêm rất nhiều để có thể hiểu được logic và cú pháp của ngôn ngữ lập trình đó. Ngôn ngữ quan trọng nhất, phổ biến nhất dành cho DStist là Python với thư viện khổng lồ. Xếp sau Python là R, rất mạnh về phân tích thống kê. Năm ngoái mình được Khoa Toán thuê viết một App (ShinyApp) tương tác dành cho một dự án nghiên cứu của Bang sử dụng ngôn ngữ này.
Vậy học lập trình ở đâu?
https://www.tutorialspoint.com/
Trang này thì gi gỉ gì gi cái gì cũng có, thích học gì có ngay cái đó. Còn nhớ năm ngoái mình cực kỳ đuối khi các thầy bắt học thêm Java, với lý do rằng DStist thường hay phải làm việc trực tiếp với lập trình viên, vậy thì phải học để có thể trò chuyện với nhau được. Mình đã phải đọc thêm sách, đi học thêm phụ đạo, rồi lại đọc mòn mỏi trên trang này để theo kịp các bạn trên lớp. Kết quả là cuối kì, mình tự viết được cả trò chơi và thậm chí còn lập trình được công thức toán thống kê cho thư viện Java đấy.
2. https://codingbat.com/
Đây là nơi mình luyện viết code, từ những ứng dụng đơn giản nhất chỉ vài ba dòng. Trình độ của mình đã lên rất nhanh sau khi hoàn thành phân nửa số bài tập trên này.
3. https://www.datacamp.com/
Mình chưa sử dụng trang này bao giờ, nhưng được quảng cáo khá nhiều. Trên này có các khóa học miễn phí R và Python thiết kế riêng cho DS. Thích hợp cho những ai mới bắt đầu.
4. https://www.udemy.com/.../development/programming-languages/
5. https://www.codecademy.com/catalog/subject/all
Đây là hai trang do bạn bè mình giới thiệu. Có mấy bạn không đi học phụ đạo Java được đã trả tiền theo học trên này. Vì thường xuyên có giảm giá sâu nên khóa học không quá đắt đỏ. Và điểm lợi thế là sẽ có chứng nhận cuối khóa, có thể củng cố thêm cho hồ sơ xin học hoặc xin việc của bạn.
II. Học thống kê:
Đã làm việc với dữ liệu là phải hiểu lý thuyết thống kê, chí ít cũng phải biết tới những khái niệm cơ bản như lấy mẫu (sampling), trung bình (mean), trung vị (median), độ lệch chuẩn (standard deviation), hồi quy tuyến tính (linear regression),... Nếu muốn trở thành DStist thì còn phải biết tới kiến thức thống kê nâng cao, liên quan tới machine learning. Một điều tuyệt vời là những cuốn sách thống kê hay ho nhất, tổng hợp nhất lại miễn phí, nhằm đáp ứng nhu cầu học tập về dữ liệu ngày càng cao. Hai cuốn sách mà tất cả các giáo sư Khoa Toán của mình đều sử dụng là:
The Elements of Statistical Learning (Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, 2001)
Cuốn này hơn 700 trang, chia làm 18 chương, sử dụng R trong phân tích thống kê. Bản thân mình thấy sách quá hay, minh họa đầy đủ, giải thích kĩ càng, đọc tới đâu có thể copy code đến đấy để tự thử nghiệm. Dĩ nhiên bạn không cần phải đọc hết sách. Đụng tới khái niệm thống kê nào thì tra cứu tương ứng trong sách cũng được.
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
2. An Introduction to Statistical Learning: With Applications in R ( Trevor Hastie, Robert Tibshirani, Daniela Witten, Gareth James, 2013)
Cuốn này cũng hay, hơn 400 trang, chia làm 10 chương, cũng dùng R. Ai ngại đọc cuốn trên thì có thể bắt đầu với cuốn này.
https://www-bcf.usc.edu/.../ISL/ISLR%20First%20Printing.pdf
III. Học Data Science - Nâng cao:
Sau khi có chút kiến thức cơ bản về lập trình và thống kê rồi thì bạn có thể sử dụng các trang sau để tìm hiểu thêm về các mảng chính của DS như artificial intelligence, computer vision, machine learning, Big Data Analytics, Business Intelligence...
https://towardsdatascience.com/
Đây là trang tổng hợp cực kì nhiều bài viết chất lượng từ các giáo sư và chuyên gia trong ngành. Có rất nhiều bài hướng dẫn chi tiết từng bước cho trình độ beginner. Mình thường đọc trên trang này về machine learning và artificial intelligence (AI). Không chỉ có những phân tích rất cặn kẽ về mặt lý thuyết, nhiều bài viết còn cung cấp ví dụ minh họa và đính kèm cả code để bạn đọc tự thử nghiệm. Ví dụ bài viết sau về Deep Learning là của một giáo sư ở Barcelona, toàn bộ Code có trong Notebook trên Google Colab. Vì chạy trên Cloud nên bạn không cần cài đặt gì mà có thể lập tức chạy chương trình ngay được, cực kì phù hợp cho những ai muốn xem qua trước và không muốn mất công cài đặt này nọ.
https://towardsdatascience.com/deep-learning-for...
2. https://www.datascienceweekly.org/
Một bạn người Na Uy trên Tandem giới thiệu cho mình về trang này, bảo rằng đang tự học machine learning ở đây. Thế là mình cũng đăng ký nhận Newsletter từ mấy hôm trước. Mỗi tuần, mình nhận được một email tổng hợp các bài viết nổi bật trong ngành. Như vậy để mình luôn nắm bắt được những xu hướng mới nhất và cập nhật những tiến bộ công nghệ mới.
3. https://www.kaggle.com/
Một đồng nghiệp người Ấn Độ chỉ cho mình trang này quá hay luôn. Đây là nơi bạn học hỏi bằng cách thực hành qua các dự án, các cuộc thi và thử thách quốc tế. Các công ty, tổ chức treo giải thưởng có khi lên tới cả 100,000$ cho đội nào chiến thắng. Chẳng hạn hiện giờ có 20 cuộc thi đấu song song, và đã có hàng ngàn đội đăng kí tham gia. Trên này cũng có các micro-courses hoàn toàn miễn phí từ Python cho tới Deep Learning dành cho beginner.
https://www.kaggle.com/learn/overview
4. https://www.coursera.org/browse/data-science
Và cuối cùng, dĩ nhiên là trên coursera cũng có khóa học miễn phí dành cho DS. Khi nào có thời gian, bạn thử đăng ký xem sao.
Trên đây là những hướng dẫn chung dành cho những ai muốn tìm hiểu về Data Science và học những kĩ năng cơ bản trước. Hi vọng giúp được các bạn đang quan tâm. Mình sẽ tiếp tục cập nhật thêm nhé.
Blog Mai Knows người chị thân thiết của Founder Hoa Dinh ở Đức
https://www.facebook.com/maiknowsnow/
Link tham khảo về lương của DStist:
https://www.burtchworks.com/.../2018-data-scientist.../
----
Join các kênh khác của HannahEd:
- Job Hunters & Career Builders - HannahEd
- Học bổng ngắn hạn, trao đổi, tình nguyện - HannahEd
- English Club HEC
- Scholarship Hunters
- Web/tiktok/insta: hannahed.co
- Youtube: HannahEd
🌍📚Những #Schofan quyết tâm và muốn chuẩn bị kĩ cho nhiều học bổng từ giờ thì mau mau đăng kí lớp tìm và apply học bổng #HannahEd đã có lịch các lớp tháng 11, 12 và chương trình Mentor, Review hồ sơ, Tập phỏng vấn.
Link này để nhận thêm thông tin hoặc email [email protected] nhé:
http://tiny.cc/HannahEdClassInfo
https://hannahed.co/lop-tim-va-nop-hoc-bong/
❤ Like và share nếu các em thấy thông tin có ích nhé ❤
#HannahEd #duhoc #hocbong #sanhocbong #scholarshipforVietnamesestudents
「java deep copy」的推薦目錄:
- 關於java deep copy 在 Scholarship for Vietnamese students Facebook 的最佳解答
- 關於java deep copy 在 Scholarship for Vietnamese students Facebook 的精選貼文
- 關於java deep copy 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的精選貼文
- 關於java deep copy 在 How do you make a deep copy of an object? - Stack Overflow 的評價
- 關於java deep copy 在 kostaskougios/cloning: deep clone java objects - GitHub 的評價
- 關於java deep copy 在 2464. Java Advanced - Shallow Copy vs Deep Copy Shallow ... 的評價
- 關於java deep copy 在 How to Make a Deep Copy of an Object in Java | Baeldung 的評價
- 關於java deep copy 在 3 Ways to Copy objects in JavaScript, Shallow vs. Deep Copy 的評價
java deep copy 在 Scholarship for Vietnamese students Facebook 的精選貼文
HỌC DATA SCIENCE NHƯ THẾ NÀO?
Helu mấy em, hôm nay có lẽ tất cả các bạn đã thi đại học xong xuôi rồi ha. Tuy nhiên, giờ lại tới một cửa ải cam go khác nữa - chọn ngành! Vậy ngồi xuống đây đọc một bài viết hay về nghề Data Science nhé. Đây là ngành nghề được dự đoán sẽ có nhu cầu cao nhất trong tương lai đó. Bài viết này sẽ đưa ra các bước và nguồn cho các bạn muốn học Data Science đó, đọc xem và share cho các bạn còn loay hoay nha!
___________________________________
I. Học lập trình:
Một Data Scientist (DStist) không thể không biết lập trình, dù không cần thiết phải giỏi như một lập trình viên nhưng phải đủ khả năng viết được những chương trình cơ bản. Từ khi nhập học tới giờ, từ một đứa mà kiến thức lập trình là con số 0 tròn trình, mình đã học qua R, Java, Python, SQL (kì tới sẽ có cả NoSQL nữa). Học tới đâu là sử dụng luôn tới đấy nên thường mình phải tự học thêm rất nhiều để có thể hiểu được logic và cú pháp của ngôn ngữ lập trình đó. Ngôn ngữ quan trọng nhất, phổ biến nhất dành cho DStist là Python với thư viện khổng lồ. Xếp sau Python là R, rất mạnh về phân tích thống kê. Năm ngoái mình được Khoa Toán thuê viết một App (ShinyApp) tương tác dành cho một dự án nghiên cứu của Bang sử dụng ngôn ngữ này.
Vậy học lập trình ở đâu?
https://www.tutorialspoint.com/
Trang này thì gi gỉ gì gi cái gì cũng có, thích học gì có ngay cái đó. Còn nhớ năm ngoái mình cực kỳ đuối khi các thầy bắt học thêm Java, với lý do rằng DStist thường hay phải làm việc trực tiếp với lập trình viên, vậy thì phải học để có thể trò chuyện với nhau được. Mình đã phải đọc thêm sách, đi học thêm phụ đạo, rồi lại đọc mòn mỏi trên trang này để theo kịp các bạn trên lớp. Kết quả là cuối kì, mình tự viết được cả trò chơi và thậm chí còn lập trình được công thức toán thống kê cho thư viện Java đấy.
2. https://codingbat.com/
Đây là nơi mình luyện viết code, từ những ứng dụng đơn giản nhất chỉ vài ba dòng. Trình độ của mình đã lên rất nhanh sau khi hoàn thành phân nửa số bài tập trên này.
3. https://www.datacamp.com/
Mình chưa sử dụng trang này bao giờ, nhưng được quảng cáo khá nhiều. Trên này có các khóa học miễn phí R và Python thiết kế riêng cho DS. Thích hợp cho những ai mới bắt đầu.
4. https://www.udemy.com/courses/development/programming-languages/
5. https://www.codecademy.com/catalog/subject/all
Đây là hai trang do bạn bè mình giới thiệu. Có mấy bạn không đi học phụ đạo Java được đã trả tiền theo học trên này. Vì thường xuyên có giảm giá sâu nên khóa học không quá đắt đỏ. Và điểm lợi thế là sẽ có chứng nhận cuối khóa, có thể củng cố thêm cho hồ sơ xin học hoặc xin việc của bạn.
II. Học thống kê:
Đã làm việc với dữ liệu là phải hiểu lý thuyết thống kê, chí ít cũng phải biết tới những khái niệm cơ bản như lấy mẫu (sampling), trung bình (mean), trung vị (median), độ lệch chuẩn (standard deviation), hồi quy tuyến tính (linear regression),... Nếu muốn trở thành DStist thì còn phải biết tới kiến thức thống kê nâng cao, liên quan tới machine learning. Một điều tuyệt vời là những cuốn sách thống kê hay ho nhất, tổng hợp nhất lại miễn phí, nhằm đáp ứng nhu cầu học tập về dữ liệu ngày càng cao. Hai cuốn sách mà tất cả các giáo sư Khoa Toán của mình đều sử dụng là:
The Elements of Statistical Learning (Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, 2001)
Cuốn này hơn 700 trang, chia làm 18 chương, sử dụng R trong phân tích thống kê. Bản thân mình thấy sách quá hay, minh họa đầy đủ, giải thích kĩ càng, đọc tới đâu có thể copy code đến đấy để tự thử nghiệm. Dĩ nhiên bạn không cần phải đọc hết sách. Đụng tới khái niệm thống kê nào thì tra cứu tương ứng trong sách cũng được.
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
2. An Introduction to Statistical Learning: With Applications in R ( Trevor Hastie, Robert Tibshirani, Daniela Witten, Gareth James, 2013)
Cuốn này cũng hay, hơn 400 trang, chia làm 10 chương, cũng dùng R. Ai ngại đọc cuốn trên thì có thể bắt đầu với cuốn này.
https://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf
III. Học Data Science - Nâng cao:
Sau khi có chút kiến thức cơ bản về lập trình và thống kê rồi thì bạn có thể sử dụng các trang sau để tìm hiểu thêm về các mảng chính của DS như artificial intelligence, computer vision, machine learning, Big Data Analytics, Business Intelligence...
https://towardsdatascience.com/
Đây là trang tổng hợp cực kì nhiều bài viết chất lượng từ các giáo sư và chuyên gia trong ngành. Có rất nhiều bài hướng dẫn chi tiết từng bước cho trình độ beginner. Mình thường đọc trên trang này về machine learning và artificial intelligence (AI). Không chỉ có những phân tích rất cặn kẽ về mặt lý thuyết, nhiều bài viết còn cung cấp ví dụ minh họa và đính kèm cả code để bạn đọc tự thử nghiệm. Ví dụ bài viết sau về Deep Learning là của một giáo sư ở Barcelona, toàn bộ Code có trong Notebook trên Google Colab. Vì chạy trên Cloud nên bạn không cần cài đặt gì mà có thể lập tức chạy chương trình ngay được, cực kì phù hợp cho những ai muốn xem qua trước và không muốn mất công cài đặt này nọ.
https://towardsdatascience.com/deep-learning-for-beginners-practical-guide-with-python-and-keras-d295bfca4487
2. https://www.datascienceweekly.org/
Một bạn người Na Uy trên Tandem giới thiệu cho mình về trang này, bảo rằng đang tự học machine learning ở đây. Thế là mình cũng đăng ký nhận Newsletter từ mấy hôm trước. Mỗi tuần, mình nhận được một email tổng hợp các bài viết nổi bật trong ngành. Như vậy để mình luôn nắm bắt được những xu hướng mới nhất và cập nhật những tiến bộ công nghệ mới.
3. https://www.kaggle.com/
Một đồng nghiệp người Ấn Độ chỉ cho mình trang này quá hay luôn. Đây là nơi bạn học hỏi bằng cách thực hành qua các dự án, các cuộc thi và thử thách quốc tế. Các công ty, tổ chức treo giải thưởng có khi lên tới cả 100,000$ cho đội nào chiến thắng. Chẳng hạn hiện giờ có 20 cuộc thi đấu song song, và đã có hàng ngàn đội đăng kí tham gia. Trên này cũng có các micro-courses hoàn toàn miễn phí từ Python cho tới Deep Learning dành cho beginner.
https://www.kaggle.com/learn/overview
4. https://www.coursera.org/browse/data-science
Và cuối cùng, dĩ nhiên là trên coursera cũng có khóa học miễn phí dành cho DS. Khi nào có thời gian, bạn thử đăng ký xem sao.
Trên đây là những hướng dẫn chung dành cho những ai muốn tìm hiểu về Data Science và học những kĩ năng cơ bản trước. Hi vọng giúp được các bạn đang quan tâm. Mình sẽ tiếp tục cập nhật thêm nhé.
Blog Mai Knows
https://www.facebook.com/maiknowsnow/
Link tham khảo về lương của DStist:
https://www.burtchworks.com/2018/07/09/2018-data-scientist-salary-report-highlights/
<3 Like và share nếu các em thấy thông tin có ích nhé <3
#HannahEd #duhoc #hocbong #sanhocbong #scholarshipforVietnamesestudents
java deep copy 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的精選貼文
+++ access token คืออะไรใน facebook ++++
😋 ปกติ facebook เปิดให้เว็บ (รวมทั้งแอพ) ที่เราเขียนขึ้น
สามารถใช้ระบบ login ของ facebook ได้
ทำให้เว็บนั้นได้สิทธิเข้าถึงข้อมูลส่วนตัวของ user นั้นๆ บน facebook
....
Continue Reading+++ What is access token on Facebook ++++
😋 Facebook is usually open for web (including apps) that we write up.
Facebook login system can be used
Make that web access to user's personal information on Facebook.
.
And in many sites, we must have seen.
Just have an account on Facebook, you can log in.
No need to waste time. Fill out a new subscription.
:
In this post will quote
Using Facebook Login
Behind that success, Facebook will give away access token
So that any web can manage user login
:
Before talking about access token, let me go back to the age of 2534
When "Timberners-Lee" delivered the world's first website.
It's a common thing that human beings use to be.
:
❣ but my weaknesses.... is in the heart
Hey, it's not the weaknesses of the website.
Well it uses HTTP potocol
Which is stateless. Don't remember any status.
The meaning is that Server is very short of memory. Alzheimer's disease.
When it gets request from browser
I don't remember where it came from???
Who sent it, I can't remember anymore!!!!!
:
🤔 to solve this cuddle nha technically
He will give you a server to send session id (or session token)
Which session id is something we can't read and long
It will be sent to browser. Keep this in the cookie.
.
.. Wrong is not that cookie.. but cookies are text
Server will send session id to browser
Keep the value in cookies (keep text on browser side)
:
Programming time on server side
Like PHP when using session _ start ();
Will tell browser to collect session id in text photos such as
PHPSESSID=tqb4s5q7k25234eabbvs11dp02
(session id is a random code)
:
But if it's another language, it may be seen in other words.
E.g. JSSIONID (JAVA EE), PHPSESSID (PHP), and ASPSESSIONID (Microsoft ASP).
.
😉 Even here session id... may think it's a ID code.
:
From now on when users click on what on the web page
Browser will be kind.
Secretly sending this session id to server automatically
Make the server recover from Alzheimer's.
... I remember where the request sent this... yay yay
.
So if the request sent in
It has the same session id
It's considered the same friends.
(Computer vocabulary says these request is in the same SESSION)
.
What if it's not the same session id
It's considered that request is not the same people.
:
👉 Benefits of session id
Will be used in conjunction with login / logout mechanism
1) When user name XXX comes in, there will be a session id.
2) When another user name YY does login, there will be a session id as a different ID.
3) When both users do logout, it will expire session id.
:
Question if we went to wash all the cookies in browser what would happen?
- answer for session id will be gone.
- So who secretly login is holding this web? What is that... huhu
- I have to logout automatically for new login... So sad. Haha.
(server doesn't remember us anymore
Because browser doesn't send session id)
:
Session id sounds like good
😨 but using user / password to login will have disadvantage such as
1) Easy to hacker to sneak in session
To wear sesion id (Cross-Site Request Forgery: CSRF)
... Technically, let's not talk about it. Read it on the
2) It is a burden for server to remember the session id. What rights you have and remember other information of user etc.
3) If you want to give the same user, login different devices such as
Web is fine. Mobile phone is good... It will be more difficult. (I have to copy session)
4) and other disadvantage not mentioned
:
😘 but he has a technique to solve the way.
.
Well, use what's called "acces token"
To get access token
I have to login with user / password to exchange it.
... We have to stand in the cat before we get access token.
Then we can use it instead of login
.
Keep us from feeding user / password often
And each user will get access token. Different look alike.
When it's time for user to do logout, access token will expire immediately.
:
😙 Here access token may compare like a key
Or maybe you can see it as a ticket or a pass... It's up to the imagination.
Difference from session id is
1) access token will not be kept in cookies
2) access token will collect information that can be revealed.
e.g. user _ id, rights, expiration date
(Not a burden for server to remember these information)
:
If you use access token with login mechanism, you will see the advantages like
1) Prevent hacker from using session by Cross-Site Request Forgery (CSRF)
2) Can login from mobile phone and just use the same user.
Just giving away access token... It's like Facebook.
(Not stored in browser cookies)
3) The server can leave a hassle login / logout duty... Throw it to authenticate service outside.
4) Server doesn't need to take care of user information.
:
😀 Cut back to see login mechanism with facebook user / password
The concept is as shown in the photo that I posted. (as an example of php)
Simple summary
- user time login
- It will sneak a switch to Facebook to do login instead.
- Then Facebook will throw back access token to our web
- Then user will use it as a pass. No need to login again.
:
There are many types of access token of Facebook such as
-User Access Token
- App Access Token
- Page Access Token
-Client Token
Each type has different rights. I can't ask for deep.
:
👉 session id and access token all this story
It's a sweet, fragrant hacker. I like it very much.
If they can steal, they can wear a login user.
Then hacker will get all rights like user... done here
.
Except we logout
To make session id or access token expire
Then the hacker will be out of bogs.
:
In the user corner. Just login.
Don't mind access token behind the scenes
But if it's a #programmer, you need to be extra mindful.
Because even four feet know that the philosopher knows.
The biggest giant. Big brother like Facebook.
Still missed it. Let access token out so that it's a big news.
.
👌 So, programming
Let's be mindful about access token. Don't fall off.
Be safe from hakcker to the best
Good luck to all of you.
:
:
Written by Thai programmer thai programmer
:
+++++++++++++
Reference
1) https://developers.facebook.com/docs/php/howto/example_facebook_login?locale=th_TH
2) https://developers.facebook.com/docs/facebook-login/access-tokens?locale=th_THTranslated
java deep copy 在 kostaskougios/cloning: deep clone java objects - GitHub 的推薦與評價
The cloning library is a small, open source (Apache licensed) Java library which deep-clones objects. The objects don't have to implement the Cloneable ... ... <看更多>
java deep copy 在 2464. Java Advanced - Shallow Copy vs Deep Copy Shallow ... 的推薦與評價
Deep copy is creating a new object and then copying the non-static fields of the current object to the new object. If a field is a value type, a bit by bit copy ... ... <看更多>
java deep copy 在 How do you make a deep copy of an object? - Stack Overflow 的推薦與評價
... <看更多>
相關內容