#物聯網IoT #人工智慧AI #神經網路NeuralNetworks #機器學習MachineLearning #深度學習DeepLearning #中央處理器CPU #繪圖處理器GPU #視覺處理器VPU #現場可編程邏輯陣列FPGA #特定應用積體電路ASIC #邊緣運算EdgeComputing
【什麼是 NNP?與 GPU、VPU 有何不同?還在霧裡看花?】
如果說,物聯網是科技業界的「下一件大事」,那麼,人工智慧 (AI) 就是下一個產業巨浪。目前 AI 運用還停留在描述、診斷型的初級操作,但用於預測、指示及認知的進階分析正在興起。深度學習 (Deep Learning) 只是核心起點,向外擴展至神經網路和機器學習,才是最終應用取向。
以人臉辨識為例,典型的機器學習只是以臉部 T 字部位為基準、定出若干重點函數,然後透過支援向量機 (Support Vector Machine, SVM)、隨機森林 (Random Forest)、原始貝氏機率 (Naive Bayes) 演算,建立決策樹 (Decision Trees) 模型、進行邏輯迴歸 (Logistic Regression) 分析,最終加以組合。
然而,結合神經網路的「深度學習」可沒這麼簡單!它須建置好幾個運算層,至少包括 6,000 萬個參數,以擷取資料找出特徵、在抽象層萃取特性;期借助更多資料改善效能、提高表徵再現能力 (Representational Power)。新近英特爾 (Intel) 所發佈的 Nervana 類神經網路處理器 (Neural Network Processor, NNP) 已引發高度關注,因為它是業界首款專為類神經網路 (Neural Network) 所設計的晶片。
NNP 與繪圖處理器 (GPU) 或特定視/聽硬體加速器最大的不同在於:它不只是訓練或推論,而是懂得進一步根據模式/型態 (pattern) 與關聯性 (association),仿效人腦「做決策」!是通往自主學習的開端。為盡可能彌平認知過程的時間落差 (運算週期),NNP 改用軟體管理片上記憶體;既避免快取記憶體 (Cache) 殘留片段不一致的問題,又可極大化每個矽晶裸片的運算利用率。
延伸閱讀:
《仿效人腦決策!Intel Nervana NNP 開先河》
http://compotechasia.com/a/____//2017/1114/37278.html
(點擊內文標題即可閱讀全文)
#英特爾Intel #Nervana #NNP #Crest #LakeCrest #Xeon #Stratix10 #MovidiusMyriad2 #神經運算棒NCS #Mobileye #ProjectBrainwave #NervanaAI學院計畫 #NervanaDevCloud #Coursera #MobileODT #Kaggle
★★【智慧應用開發論壇】(FB 不公開社團:https://www.facebook.com/groups/smart.application/) 誠邀各界擁有工程專業或實作經驗的好手參與討論,採「實名制」入社。申請加入前請至 https://goo.gl/forms/829J9rWjR3lVJ67S2 填寫基本資料,以利規劃議題方向;未留資料者恕不受理。★★
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
mobileodt 在 BioMed Talent Training 生醫人才培育計畫 Facebook 的精選貼文
【婦產科】
子宮頸癌曾是美國主要的癌症死亡原因,隨著進行常規的子宮頸癌篩檢,其死亡率已有顯著下降的趨勢。子宮頸抹片檢查(Pap smear test)主要是可以讓婦女知道是否該進行進一步的陰道鏡檢查,以識別異常組織隨後將切片檢查子宮頸。
但依世界衛組織的估計,85%的發展中國家女性想接受這種檢查是十分地不容易的。
因此,MobileODT開發了一套子宮頸癌篩查系統,能將任何智慧手機變成一個陰道鏡,其硬體配有光源和放大透鏡,能利用手機攝像頭可視化子宮頸組織。一旦可視化,護士即可利用此系統初步診斷或捕獲患者的子宮頸圖像並將其傳輸給醫師,讓其作進一步的分析。
此裝置是目前傳統陰道鏡10%左右的成本,並已獲得了CE認證。
#子宮頸癌 #陰道鏡