A new self-driving Mars rover developed by NASA is said to be more autonomous than previous ones. The vehicle consists of a second computer for machine vision, which allows it to drive continuously without hitting any objects.
For more details, click to read the article on WIRED.
#selfdrivingcar #Mars #Spacetech
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
spacetech 在 說說能源 Talk That Energy Facebook 的精選貼文
#太空的時代沒有非核家園
#apollo50thanniversary
今天適逢人類登月五十周年,Apollo 11計畫順利執行,為人類正式展開月球表面的探索。阿姆斯壯說他的一小步是人類的一大步,但背後更因為有了一顆顆小鈽,才有可能成就人類至今的太空探索活動,讓我們得以步步邁前。
阿波羅十一的計畫中,不僅是將人類送上月球,三名太空人們更在月球上架設了EASEP,用以蒐集月球上的數據,包含地震儀、太陽風觀測儀以及復歸反射器(測量與月球距離),其中儀器供電由太陽能電池負責(途中黑黑板子),咦,竟然是太陽能...嘿嘿,但核能的強大就在於不受天氣影響,只要有核燃料持續反應,就會有熱持續釋放,考量到實驗儀器需要穩定運作,儀器的溫度不能如月球溫度一樣有五六百度的變異,因此當時的儀器搭載了兩部由鈽238為主件的加熱器(Radioisotope Heater RHU),供應設備必要熱源維持穩定運作。
放射性同位素加熱器單元(RHU)被稱為放射性同位素動力技術的“無名英雄”。大多數太空技術可以使用太陽能來提供熱量,以保持其結構,但是當其不可行需要備用熱源時,RHU便派上用場,利用鈽-238的衰變來提供熱量,以保持零件和系統的溫暖,從而使設備能夠在寒冷的空間環境中存活足夠長的時間來完成其任務。這種熱量直接傳遞給太空船的結構,系統和儀器,無需移動部件或插入電子元件。通過使用RHU,太空船的設計者可以分配珍貴的電力來操作系統和儀器。 RHU還具有減少可能由電加熱系統產生的儀器或電子設備的潛在干擾(電磁干擾)的附加價值。另外,也有再將熱量透過熱電偶轉換成電力的設備RTG,阿波羅12開始就把這項技術帶到月球上去,與太陽能電池一起供應電力。
而真正最早的核能太空用途起於1961年,RTG搭載於海軍的導航衛星上,1969年四月,Nimbus III,美國的第一座氣象衛星開始為地球蒐集氣象資料,太空遙測正式開啟,同年七月,人類正式登陸月球,將近六十年至今日火星探測以及未來太陽系以外的地方。過去如此,未來亦是如此,鑒於鈽238的稀少性以及太空用電於未來的增加,NASA也積極投入太空核分裂反應爐(Kilopower)的研發,不論發電產熱,核能的應用會繼續在太空的時代在陪人類走好久好久。
🚀美國能源部
https://www.energy.gov/articles/history-nuclear-power-space
🚀NASA放射同位素動力中心
https://rps.nasa.gov/
🚀NASA STMD
https://www.nasa.gov/directorates/spacetech/kilopower
spacetech 在 說說能源 Talk That Energy Facebook 的最讚貼文
#太空的時代沒有非核家園
#apollo50thanniversary
今天適逢人類登月五十周年,Apollo 11計畫順利執行,為人類正式展開月球表面的探索。阿姆斯壯說他的一小步是人類的一大步,但背後更因為有了一顆顆小鈽,才有可能成就人類至今的太空探索活動,讓我們得以步步邁前。
阿波羅十一的計畫中,不僅是將人類送上月球,三名太空人們更在月球上架設了EASEP,用以蒐集月球上的數據,包含地震儀、太陽風觀測儀以及復歸反射器(測量與月球距離),其中儀器供電由太陽能電池負責(途中黑黑板子),咦,竟然是太陽能...嘿嘿,但核能的強大就在於不受天氣影響,只要有核燃料持續反應,就會有熱持續釋放,考量到實驗儀器需要穩定運作,儀器的溫度不能如月球溫度一樣有五六百度的變異,因此當時的儀器搭載了兩部由鈽238為主件的加熱器(Radioisotope Heater RHU),供應設備必要熱源維持穩定運作。
放射性同位素加熱器單元(RHU)被稱為放射性同位素動力技術的“無名英雄”。大多數太空技術可以使用太陽能來提供熱量,以保持其結構,但是當其不可行需要備用熱源時,RHU便派上用場,利用鈽-238的衰變來提供熱量,以保持零件和系統的溫暖,從而使設備能夠在寒冷的空間環境中存活足夠長的時間來完成其任務。這種熱量直接傳遞給太空船的結構,系統和儀器,無需移動部件或插入電子元件。通過使用RHU,太空船的設計者可以分配珍貴的電力來操作系統和儀器。 RHU還具有減少可能由電加熱系統產生的儀器或電子設備的潛在干擾(電磁干擾)的附加價值。另外,也有再將熱量透過熱電偶轉換成電力的設備RTG,阿波羅12開始就把這項技術帶到月球上去,與太陽能電池一起供應電力。
而真正最早的核能太空用途起於1961年,RTG搭載於海軍的導航衛星上,1969年四月,Nimbus III,美國的第一座氣象衛星開始為地球蒐集氣象資料,太空遙測正式開啟,同年七月,人類正式登陸月球,將近六十年至今日火星探測以及未來太陽系以外的地方。過去如此,未來亦是如此,鑒於鈽238的稀少性以及太空用電於未來的增加,NASA也積極投入太空核分裂反應爐(Kilopower)的研發,不論發電產熱,核能的應用會繼續在太空的時代在陪人類走好久好久。
🚀美國能源部
https://www.energy.gov/articles/history-nuclear-power-space
🚀NASA放射同位素動力中心
https://rps.nasa.gov/
🚀NASA STMD
https://www.nasa.gov/directorates/spacetech/kilopower