人工視網膜 - Part 1 解剖生理及機轉簡介
恭喜林口長庚眼科部醫療團隊成功完成全國首例人工視網膜植入手術,恭喜黃奕修主任的傲人成就!
關於這個新科技人工視網膜(Retinalprothesis),就是俗稱人工電子眼。3-4年前,我還在美國進修的時候,非常幸運地,我所在的視網膜手術團隊(Professor Stanley Chang in Columbia University Medical Center, New York)被認證為人工視網膜手術的執行醫院,也有完成人工視網膜植入手術,非常有趣,也非常值得分享。
今天我們來分享一個有趣的人工視網膜科技!
其實這個生物醫學植入科技(Biomedical implanttechnology) 其實已經臨床試驗很多年了,因為今年年初 Feb 2013,Argus II retinal implant 獲得美國FDA核准上市(Marketapproval),這個科技又再一次成為熱門話題。不過大部份的媒體還是如過往一般,不斷強調這是台灣之光,發明人是台灣人(其實還有很多其他重要的人),而忽略了此項技術的原理,機轉,最重要的是哪些人或哪些疾病可以適用。
中樞神經(CNS)無法再生,這句雖然不是牢不可破的,但是以目前的科技,確實非常困難。所以,我們無法再生一些神經細胞來用,只能用原來還能用的。
視覺的產生是影像光線透過若干眼器(淚膜,眼角膜,前後房水,水晶體,及玻璃體)屈光折射,隨後聚像在視網膜上而造成視網膜外層感光細胞(Photoreceptor cell)去極化,接著將神經衝動傳送給許多內層傳遞與調節細胞 (Bipolar, Horizontal,Amacrine cells),最後經由神經節細胞(Ganglion cells)發出軸突(Axon)匯聚成視神經而傳遞視覺衝動到大腦視覺皮質,產生影像。過程相當複雜,其中只要一個環節出問題,我們就看不到了。(註:視網膜結構上可分成十層,就神經功能而言,可以大致分為外層和內層。)
我們今天要談的人工視網膜,就是扮演視覺產生中,內層傳遞與調節細胞之前的所有功能。影像會藉由先進的攝影科技,將訊號轉換後經植入微電極陣列(implanted electrode array),直接刺激內層傳遞與調節神經細胞來產生視覺訊號。簡單的說,人工視網膜取代了外層感光細胞的功能,也就是我們所熟知的桿狀細胞與錐狀細胞(Rod and Cone cells)。
所以說,只有外層感光細胞嚴重受損的患者才能使用此項科技。最常見的疾病是視網膜色素性病變(Retinitis pigmentosa )及老化性黃斑部退化性病變 (Age-related macular degerenation)。並不是任何視網膜疾病都適合使用。
根據美國FDA的適應症規定,人工視網膜,俗稱人工電子眼,目前只適用於視網膜色素性病變及老化性黃斑部退化性病變,而且雙眼視力都需退化到低於僅餘光覺或是無光覺,才能接受手術。所以尚有視力的黃斑病變或是視網膜剝離術後都不能接受手術。
有關外層感光細胞病變的診斷,必須要做進一步的電生理檢查(Electrophysiological testing),像是 ERG(electroretinogram) 再合併視野檢查(Visual field testing)才能診斷出外層感光細胞病變。
待續!
amacrine cell 在 國立臺灣大學 National Taiwan University Facebook 的最佳解答
【NTU MIC講座:視網膜內特殊感光視神經調控光適應】
Neuronal connection of intrinsically photosensitive retinal ganglion cells: how light influence physiological functions
時間:2/17 (五) 12:30
地點:國立臺灣大學校總區生物科技館 R101
講師:陳示國教授
歡迎踴躍參加!
摘要:Retinal ganglion cells (RGCs) in the retina receive input from classical photoreceptor rod and cone through bipolar cells and many lateral processing from amacrine cell. For image forming function, classic photoreceptor rods and cones are primary photon detector located at the outer retina. However, recent studies showed that a small population of melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) located at the inner retina is essential for many non-image forming visual functions. There are many subtypes of ipRGCs which provide environmental luminance signal for circadian photoentrainmnet, pupillary light reflex. Furthermore, ipRGCs could also influence the physiological functions of upstream order of retinal neuron such as dopaminergic amacrine cell and even the retinal development through intra-retinal axon collaterals. Therefore, ipRGC could conveying luminance signal from the inner retina to outer retina to control light adaptation and simultaneously to the hypothalamus for other non-image forming function such as circadian clock modulation. We also construct the innervation pattern of ipRGC to the SCN, the brain nucleus controls circadian clock. Unlike regular sensory neurons which usually innervate opposite side of the brain, a single ipRGC can project bi-lateral innervation to both left and right side of the brain. This innervation pattern could provide information input to SCN for potential better synchronization of the biological clock. Together, our studies showed that the atypical photoreceptor in the retina can modulate many of our physiological function from vision to clock.