📜 [專欄新文章] Uniswap v3 Features Explained in Depth
✍️ 田少谷 Shao
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Once again the game-changing DEX 🦄 👑
Image source: https://uniswap.org/blog/uniswap-v3/
Outline
0. Intro1. Uniswap & AMM recap2. Ticks 3. Concentrated liquidity4. Range orders: reversible limit orders5. Impacts of v36. Conclusion
0. Intro
The announcement of Uniswap v3 is no doubt one of the most exciting news in the DeFi place recently 🔥🔥🔥
While most have talked about the impact v3 can potentially bring on the market, seldom explain the delicate implementation techniques to realize all those amazing features, such as concentrated liquidity, limit-order-like range orders, etc.
Since I’ve covered Uniswap v1 & v2 (if you happen to know Mandarin, here are v1 & v2), there’s no reason for me to not cover v3 as well ✅
Thus, this article aims to guide readers through Uniswap v3, based on their official whitepaper and examples made on the announcement page. However, one needs not to be an engineer, as not many codes are involved, nor a math major, as the math involved is definitely taught in your high school, to fully understand the following content 😊😊😊
If you really make it through but still don’t get shxt, feedbacks are welcomed! 🙏
There should be another article focusing on the codebase, so stay tuned and let’s get started with some background noise!
1. Uniswap & AMM recap
Before diving in, we have to first recap the uniqueness of Uniswap and compare it to traditional order book exchanges.
Uniswap v1 & v2 are a kind of AMMs (automated market marker) that follow the constant product equation x * y = k, with x & y stand for the amount of two tokens X and Y in a pool and k as a constant.
Comparing to order book exchanges, AMMs, such as the previous versions of Uniswap, offer quite a distinct user experience:
AMMs have pricing functions that offer the price for the two tokens, which make their users always price takers, while users of order book exchanges can be both makers or takers.
Uniswap as well as most AMMs have infinite liquidity¹, while order book exchanges don’t. The liquidity of Uniswap v1 & v2 is provided throughout the price range [0,∞]².
Uniswap as well as most AMMs have price slippage³ and it’s due to the pricing function, while there isn’t always price slippage on order book exchanges as long as an order is fulfilled within one tick.
In an order book, each price (whether in green or red) is a tick. Image source: https://ftx.com/trade/BTC-PERP
¹ though the price gets worse over time; AMM of constant sum such as mStable does not have infinite liquidity
² the range is in fact [-∞,∞], while a price in most cases won’t be negative
³ AMM of constant sum does not have price slippage
2. Tick
The whole innovation of Uniswap v3 starts from ticks.
For those unfamiliar with what is a tick:
Source: https://www.investopedia.com/terms/t/tick.asp
By slicing the price range [0,∞] into numerous granular ticks, trading on v3 is highly similar to trading on order book exchanges, with only three differences:
The price range of each tick is predefined by the system instead of being proposed by users.
Trades that happen within a tick still follows the pricing function of the AMM, while the equation has to be updated once the price crosses the tick.
Orders can be executed with any price within the price range, instead of being fulfilled at the same one price on order book exchanges.
With the tick design, Uniswap v3 possesses most of the merits of both AMM and an order book exchange! 💯💯💯
So, how is the price range of a tick decided?
This question is actually somewhat related to the tick explanation above: the minimum tick size for stocks trading above 1$ is one cent.
The underlying meaning of a tick size traditionally being one cent is that one cent (1% of 1$) is the basis point of price changes between ticks, ex: 1.02 — 1.01 = 0.1.
Uniswap v3 employs a similar idea: compared to the previous/next price, the price change should always be 0.01% = 1 basis point.
However, notice the difference is that in the traditional basis point, the price change is defined with subtraction, while here in Uniswap it’s division.
This is how price ranges of ticks are decided⁴:
Image source: https://uniswap.org/whitepaper-v3.pdf
With the above equation, the tick/price range can be recorded in the index form [i, i+1], instead of some crazy numbers such as 1.0001¹⁰⁰ = 1.0100496621.
As each price is the multiplication of 1.0001 of the previous price, the price change is always 1.0001 — 1 = 0.0001 = 0.01%.
For example, when i=1, p(1) = 1.0001; when i=2, p(2) = 1.00020001.
p(2) / p(1) = 1.00020001 / 1.0001 = 1.0001
See the connection between the traditional basis point 1 cent (=1% of 1$) and Uniswap v3’s basis point 0.01%?
Image source: https://tenor.com/view/coin-master-cool-gif-19748052
But sir, are prices really granular enough? There are many shitcoins with prices less than 0.000001$. Will such prices be covered as well?
Price range: max & min
To know if an extremely small price is covered or not, we have to figure out the max & min price range of v3 by looking into the spec: there is a int24 tick state variable in UniswapV3Pool.sol.
Image source: https://uniswap.org/whitepaper-v3.pdf
The reason for a signed integer int instead of an uint is that negative power represents prices less than 1 but greater than 0.
24 bits can cover the range between 1.0001 ^ (2²³ — 1) and 1.0001 ^ -(2)²³. Even Google cannot calculate such numbers, so allow me to offer smaller values to have a rough idea of the whole price range:
1.0001 ^ (2¹⁸) = 242,214,459,604.341
1.0001 ^ -(2¹⁷) = 0.000002031888943
I think it’s safe to say that with a int24 the range can cover > 99.99% of the prices of all assets in the universe 👌
⁴ For implementation concern, however, a square root is added to both sides of the equation.
How about finding out which tick does a price belong to?
Tick index from price
The answer to this question is rather easy, as we know that p(i) = 1.0001^i, simply takes a log with base 1.0001 on both sides of the equation⁴:
Image source: https://www.codecogs.com/latex/eqneditor.php
Let’s try this out, say we wanna find out the tick index of 1000000.
Image source: https://ncalculators.com/number-conversion/log-logarithm-calculator.htm
Now, 1.0001¹³⁸¹⁶² = 999,998.678087146. Voila!
⁵ This formula is also slightly modified to fit the real implementation usage.
3. Concentrated liquidity
Now that we know how ticks and price ranges are decided, let’s talk about how orders are executed in a tick, what is concentrated liquidity and how it enables v3 to compete with stablecoin-specialized DEXs (decentralized exchange), such as Curve, by improving the capital efficiency.
Concentrated liquidity means LPs (liquidity providers) can provide liquidity to any price range/tick at their wish, which causes the liquidity to be imbalanced in ticks.
As each tick has a different liquidity depth, the corresponding pricing function x * y = k also won’t be the same!
Each tick has its own liquidity depth. Image source: https://uniswap.org/blog/uniswap-v3/
Mmm… examples are always helpful for abstract descriptions 😂
Say the original pricing function is 100(x) * 1000(y) = 100000(k), with the price of X token 1000 / 100 = 10 and we’re now in the price range [9.08, 11.08].
If the liquidity of the price range [11.08, 13.08] is the same as [9.08, 11.08], we don’t have to modify the pricing function if the price goes from 10 to 11.08, which is the boundary between two ticks.
The price of X is 1052.63 / 95 = 11.08 when the equation is 1052.63 * 95 = 100000.
However, if the liquidity of the price range [11.08, 13.08] is two times that of the current range [9.08, 11.08], balances of x and y should be doubled, which makes the equation become 2105.26 * 220 = 400000, which is (1052.63 * 2) * (110 * 2) = (100000 * 2 * 2).
We can observe the following two points from the above example:
Trades always follow the pricing function x * y = k, while once the price crosses the current price range/tick, the liquidity/equation has to be updated.
√(x * y) = √k = L is how we represent the liquidity, as I say the liquidity of x * y = 400000 is two times the liquidity of x * y = 100000, as √(400000 / 100000) = 2.
What’s more, compared to liquidity on v1 & v2 is always spread across [0,∞], liquidity on v3 can be concentrated within certain price ranges and thus results in higher capital efficiency from traders’ swapping fees!
Let’s say if I provide liquidity in the range [1200, 2800], the capital efficiency will then be 4.24x higher than v2 with the range [0,∞] 😮😮😮 There’s a capital efficiency comparison calculator, make sure to try it out!
Image source: https://uniswap.org/blog/uniswap-v3/
It’s worth noticing that the concept of concentrated liquidity was proposed and already implemented by Kyper, prior to Uniswap, which is called Automated Price Reserve in their case.⁵
⁶ Thanks to Yenwen Feng for the information.
4. Range orders: reversible limit orders
As explained in the above section, LPs of v3 can provide liquidity to any price range/tick at their wish. Depending on the current price and the targeted price range, there are three scenarios:
current price < the targeted price range
current price > the targeted price range
current price belongs to the targeted price range
The first two scenarios are called range orders. They have unique characteristics and are essentially fee-earning reversible limit orders, which will be explained later.
The last case is the exact same liquidity providing mechanism as the previous versions: LPs provide liquidity in both tokens of the same value (= amount * price).
There’s also an identical product to the case: grid trading, a very powerful investment tool for a time of consolidation. Dunno what’s grid trading? Check out Binance’s explanation on this, as this topic won’t be covered!
In fact, LPs of Uniswap v1 & v2 are grid trading with a range of [0,∞] and the entry price as the baseline.
Range orders
To understand range orders, we’d have to first revisit how price is discovered on Uniswap with the equation x * y = k, for x & y stand for the amount of two tokens X and Y and k as a constant.
The price of X compared to Y is y / x, which means how many Y one can get for 1 unit of X, and vice versa the price of Y compared to X is x / y.
For the price of X to go up, y has to increase and x decrease.
With this pricing mechanism in mind, it’s example time!
Say an LP plans to place liquidity in the price range [15.625, 17.313], higher than the current price of X 10, when 100(x) * 1000(y) = 100000(k).
The price of X is 1250 / 80 = 15.625 when the equation is 80 * 1250 = 100000.
The price of X is 1315.789 / 76 = 17.313 when the equation is 76 * 1315.789 = 100000.
If now the price of X reaches 15.625, the only way for the price of X to go even higher is to further increase y and decrease x, which means exchanging a certain amount of X for Y.
Thus, to provide liquidity in the range [15.625, 17.313], an LP needs only to prepare 80 — 76 = 4 of X. If the price exceeds 17.313, all 4 X of the LP is swapped into 1315.789 — 1250 = 65.798 Y, and then the LP has nothing more to do with the pool, as his/her liquidity is drained.
What if the price stays in the range? It’s exactly what LPs would love to see, as they can earn swapping fees for all transactions in the range! Also, the balance of X will swing between [76, 80] and the balance of Y between [1250, 1315.789].
This might not be obvious, but the example above shows an interesting insight: if the liquidity of one token is provided, only when the token becomes more valuable will it be exchanged for the less valuable one.
…wut? 🤔
Remember that if 4 X is provided within [15.625, 17.313], only when the price of X goes up from 15.625 to 17.313 is 4 X gradually swapped into Y, the less valuable one!
What if the price of X drops back immediately after reaching 17.313? As X becomes less valuable, others are going to exchange Y for X.
The below image illustrates the scenario of DAI/USDC pair with a price range of [1.001, 1.002] well: the pool is always composed entirely of one token on both sides of the tick, while in the middle 1.001499⁶ is of both tokens.
Image source: https://uniswap.org/blog/uniswap-v3/
Similarly, to provide liquidity in a price range < current price, an LP has to prepare a certain amount of Y for others to exchange Y for X within the range.
To wrap up such an interesting feature, we know that:
Only one token is required for range orders.
Only when the current price is within the range of the range order can LP earn trading fees. This is the main reason why most people believe LPs of v3 have to monitor the price more actively to maximize their income, which also means that LPs of v3 have become arbitrageurs 🤯
I will be discussing more the impacts of v3 in 5. Impacts of v3.
⁷ 1.001499988 = √(1.0001 * 1.0002) is the geometric mean of 1.0001 and 1.0002. The implication is that the geometric mean of two prices is the average execution price within the range of the two prices.
Reversible limit orders
As the example in the last section demonstrates, if there is 4 X in range [15.625, 17.313], the 4 X will be completely converted into 65.798 Y when the price goes over 17.313.
We all know that a price can stay in a wide range such as [10, 11] for quite some time, while it’s unlikely so in a narrow range such as [15.625, 15.626].
Thus, if an LP provides liquidity in [15.625, 15.626], we can expect that once the price of X goes over 15.625 and immediately also 15.626, and does not drop back, all X are then forever converted into Y.
The concept of having a targeted price and the order will be executed after the price is crossed is exactly the concept of limit orders! The only difference is that if the range of a range order is not narrow enough, it’s highly possible that the conversion of tokens will be reverted once the price falls back to the range.
As price ranges follow the equation p(i) = 1.0001 ^ i, the range can be quite narrow and a range order can thus effectively serve as a limit order:
When i = 27490, 1.0001²⁷⁴⁹⁰ = 15.6248.⁸
When i = 27491, 1.0001²⁷⁴⁹¹ = 15.6264.⁸
A range of 0.0016 is not THAT narrow but can certainly satisfy most limit order use cases!
⁸ As mentioned previously in note #4, there is a square root in the equation of the price and index, thus the numbers here are for explantion only.
5. Impacts of v3
Higher capital efficiency, LPs become arbitrageurs… as v3 has made tons of radical changes, I’d like to summarize my personal takes of the impacts of v3:
Higher capital efficiency makes one of the most frequently considered indices in DeFi: TVL, total value locked, becomes less meaningful, as 1$ on Uniswap v3 might have the same effect as 100$ or even 2000$ on v2.
The ease of spot exchanging between spot exchanges used to be a huge advantage of spot markets over derivative markets. As LPs will take up the role of arbitrageurs and arbitraging is more likely to happen on v3 itself other than between DEXs, this gap is narrowed … to what extent? No idea though.
LP strategies and the aggregation of NFT of Uniswap v3 liquidity token are becoming the blue ocean for new DeFi startups: see Visor and Lixir. In fact, this might be the turning point for both DeFi and NFT: the two main reasons of blockchain going mainstream now come to the alignment of interest: solving the $$ problem 😏😏😏
In the right venue, which means a place where transaction fees are low enough, such as Optimism, we might see Algo trading firms coming in to share the market of designing LP strategies on Uniswap v3, as I believe Algo trading is way stronger than on-chain strategies or DAO voting to add liquidity that sort of thing.
After reading this article by Parsec.finance: The Dex to Rule Them All, I cannot help but wonder: maybe there is going to be centralized crypto exchanges adopting v3’s approach. The reason is that since orders of LPs in the same tick are executed pro-rata, the endless front-running speeding-competition issue in the Algo trading world, to some degree, is… solved? 🤔
Anyway, personal opinions can be biased and seriously wrong 🙈 I’m merely throwing out a sprat to catch a whale. Having a different voice? Leave your comment down below!
6. Conclusion
That was kinda tough, isn’t it? Glad you make it through here 🥂🥂🥂
There are actually many more details and also a huge section of Oracle yet to be covered. However, since this article is more about features and targeting normal DeFi users, I’ll leave those to the next one; hope there is one 😅
If you have any doubt or find any mistake, please feel free to reach out to me and I’d try to reply AFAP!
Stay tuned and in the meantime let’s wait and see how Uniswap v3 is again pioneering the innovation of DeFi 🌟
Uniswap v3 Features Explained in Depth was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
example of conclusion for new product 在 台灣光鹽生物科技學苑 Facebook 的最佳解答
重量級人物開講!
~開放報名中~ 2020/8/1 (六)【新藥開發系列】-蛋白質藥物上市法規解析與產品開發到商業化實務
台灣生技研發的實力在國際舞台慢慢顯現,近年來海外授權的消息不斷,今年更傳出合一生技與丹麥的皮膚科大廠LEO Pharma 簽訂一筆總金額(不含未來銷售權利金)達5.3億美金的授權案,創了台灣生技醫藥史上由本土開發單一產品最大的授權紀錄的好消息!本課程很榮幸邀請到可以說是此案的兩個重要人物-柯逢年 副總裁與陳念宜總經理,來跟我們談談在抗體新藥上取得新里程碑背後產品研發的故事。
#蛋白質藥物製造流程的組成 #前臨床藥毒理研究 #藥動學 #蛋白質藥物產品開發實務 #產品商業化與合作開發
主辦單位:台灣光鹽生物科技學苑
課程日期:109年8月1日 (六) 09:00至17:30 (08:30開始報到)
課程地點:光鹽會議中心(台北市復興北路369號7樓-保富通商大樓)
授課師資:
柯逢年 博士/副總裁 鑽石生技投資股份有限公司
陳念宜 博士/副總經理 合一生物科技股份有限公司
學員對象:
(1)大專以上具理工背景,對蛋白質藥物法規及產品開發有興趣者
(2)生技公司/藥廠人員訓練
【授課大綱】
一、 蛋白質藥物上市法規解析
1.小分子與蛋白質藥物的區別Differences between Therapeutic Proteins and Small Molecule Drugs
2.生物藥品的市場及銷售Markets and Sales of Biologic Drugs
3.利用細胞生產蛋白質藥物的主要方法Majority of Biotech Products Use Living Cells to Produce a Protein Product
4.蛋白質藥物製造流程的組成Components of the Manufacturing Process of Protein Drug
(1)法規議題Regulatory Issues
(2)表現載體Expression Vectors (Plasmids)
(3)高產量穩定細胞株High Productive and Stable Clone
(4)細胞庫系統Cell Banking System
-Master Cell Bank (MCB), Working Cell Bank (WCB) and End of Production Cells (EPC)
(5)製造與放行Manufacturing and Release
-上下游製程Upstream and Downstream Processing
-病毒與外來病原之來源Sources of Adventitious Agents
-原料之病毒與外來病原的控制與分析Control and Analysis of Adventitious Agents from Raw Materials
-病毒清除研究Viral Clearance Studies
-原料藥特性與結構鑑定Drug Substance Characterization
-成品特性Drug Product Characterization
-製程管制和確效Control and Validation
5.蛋白質藥物之前臨床藥毒理研究Preclinical Pharmacology and Safety Studies of Protein Drugs
(1)蛋白質與小分子藥物前臨床試驗比較Differences of Preclinical Studies of Protein and Small Molecule Drugs
(2)藥效學及安全藥理學Pharmacodynamic Studies and Safety Pharmacology
(3)基因毒性試驗Genotoxicity Studies
(4)單一劑量毒性試驗Single Dose Toxicity Studies
(5)重複劑量毒性試驗Repeated Dose Toxicity Studies
(6)生殖與發育毒性試驗Reproductive and Developmental Toxicity Studies
(7)致癌性試驗Carcinogenicity Studies
6.蛋白質藥物之藥動學PK Studies of Therapeutic Proteins
7.生物相似性產品Biosimilars
(1)生物相似性產品的挑戰Challenge of Biosimilars
(2)生物相似性產品的品質議題Quality Issues of Biosimilars
(3)生物相似性產品之非臨床試驗Non-Clinical Issues of Biosimilars
(4)生物相似性產品之藥動學議題Pharmacokinetics Issues of Biosimilars
(5)生物相似性產品之藥效學議題Pharmacodynamic Issues of Biosimilars
(6)生物相似性產品之臨床試驗議題Clinical Issues of Biosimilars
8. 結論Conclusion
9. 蛋白質藥物許可證License of Protein Drugs
10. 其他資源Some Further Resources
二、蛋白質藥物產品開發實務-以單株抗體為例Development of Protein Therapeutics from Bench to Clinical – Antibody Therapeutics for Example
1.蛋白質藥物產品早期研究 Discovery Stage of Protein Therapeutics
(1)選題階段 Target validation
(2)驗證階段 Proof of Idea
2.蛋白質藥物產品臨床前開發 Early Development of Protein Therapeutics
(1)化學製造與管制 Chemistry, Manufacturing, and Control Activities of Protein Drug
(2)前臨床試驗 Preclinical Studies
(3)委託生產/研究機構管理CMO/CRO Managements
3.蛋白質藥物產品臨床開發 Clinical Development of Protein Therapeutics
(1)新藥臨床試驗申請 Investigational New Drug (IND)
(2)與法規單位溝通 Communicating with Regulatory
4.蛋白質藥物產品晚期開發 Late Stage Development of Protein Therapeutics
5.產品商業化與合作開發 Partnership development
課程費用:每人2,500元
報名方式:<線上報名>https://slbiotech-edu.pse.is/QSLUS
*上課達滿時數六小時,核發本課程結業證書
【溫馨提醒】
本學苑採用線上繳費系統,請注意下列重要事項:
1.請學員報名務必先填寫Google報名表單後,再進入線上繳費系統。
2.本線上系統有下列兩種繳費方式
(1)信用卡繳費-需輸入卡號、有效月/年、卡片背面末三碼、手機驗證(2)ATM櫃員機-產生虛擬帳號,由ATM轉帳
3.如您需報帳,可直接於線上繳費系統中輸入公司正確統編,或您可來信學苑告知。(凡發票打抬頭統編者,視為單位/公司付費派訓,結訓證書將署名「xxx單位/公司(統編公司)及學員姓名」,敬請學員自行評估,謝謝。
4.因繳費系統產生之帳單三日後即失效,敬請特別留意,如有任何問題,請來信或來電與學苑聯絡。
5.公司報名作業,如無法於本繳費系統作業者,再來信或來電本學苑洽詢。
*因應疫情變化,為維護上課學員之健康,實施下列安心防疫培訓政策:
1.自本學苑公告日起(2020/3/11)至開課日(2020/8/1),全面限制自境外返台者(不分國家)參加本學苑課程。
2.自課程公告日起(2020/7/6)至開課日(2020/8/1)凡有收到居家隔離、居家檢疫、自主健康管理者,均不得參加本學苑課程。
3.本學苑配合政府政策,上課座位保持安全距離,但為學員健康安全,仍建議學員配戴口罩,謝謝。
學苑信箱:bioschool@biotech-edu.com 學苑電話:02-2545-9721
example of conclusion for new product 在 台灣光鹽生物科技學苑 Facebook 的最佳解答
重量級人物開講!
~開放報名中~ 2020/8/1 (六)【新藥開發系列】-蛋白質藥物上市法規解析與產品開發到商業化實務
台灣生技研發的實力在國際舞台慢慢顯現,近年來海外授權的消息不斷,今年更傳出合一生技與丹麥的皮膚科大廠LEO Pharma 簽訂一筆總金額(不含未來銷售權利金)達5.3億美金的授權案,創了台灣生技醫藥史上由本土開發單一產品最大的授權紀錄的好消息!本課程很榮幸邀請到可以說是此案的兩個重要人物-柯逢年 副總裁與陳念宜總經理,來跟我們談談在抗體新藥上取得新里程碑背後產品研發的故事。
#蛋白質藥物製造流程的組成 #前臨床藥毒理研究 #藥動學 #蛋白質藥物產品開發實務 #產品商業化與合作開發
主辦單位:台灣光鹽生物科技學苑
課程日期:109年8月1日 (六) 09:00至17:30 (08:30開始報到)
課程地點:國立臺北大學 臺北(民生)校區 教學大樓一樓105教室 (暫定)
授課師資:
柯逢年 博士/副總裁 鑽石生技投資股份有限公司
陳念宜 博士/副總經理 合一生物科技股份有限公司
學員對象:
(1)大專以上具理工背景,對蛋白質藥物法規及產品開發有興趣者
(2)生技公司/藥廠人員訓練
【授課大綱】
一、 蛋白質藥物上市法規解析
1.小分子與蛋白質藥物的區別Differences between Therapeutic Proteins and Small Molecule Drugs
2.生物藥品的市場及銷售Markets and Sales of Biologic Drugs
3.利用細胞生產蛋白質藥物的主要方法Majority of Biotech Products Use Living Cells to Produce a Protein Product
4.蛋白質藥物製造流程的組成Components of the Manufacturing Process of Protein Drug
(1)法規議題Regulatory Issues
(2)表現載體Expression Vectors (Plasmids)
(3)高產量穩定細胞株High Productive and Stable Clone
(4)細胞庫系統Cell Banking System
-Master Cell Bank (MCB), Working Cell Bank (WCB) and End of Production Cells (EPC)
(5)製造與放行Manufacturing and Release
-上下游製程Upstream and Downstream Processing
-病毒與外來病原之來源Sources of Adventitious Agents
-原料之病毒與外來病原的控制與分析Control and Analysis of Adventitious Agents from Raw Materials
-病毒清除研究Viral Clearance Studies
-原料藥特性與結構鑑定Drug Substance Characterization
-成品特性Drug Product Characterization
-製程管制和確效Control and Validation
5.蛋白質藥物之前臨床藥毒理研究Preclinical Pharmacology and Safety Studies of Protein Drugs
(1)蛋白質與小分子藥物前臨床試驗比較Differences of Preclinical Studies of Protein and Small Molecule Drugs
(2)藥效學及安全藥理學Pharmacodynamic Studies and Safety Pharmacology
(3)基因毒性試驗Genotoxicity Studies
(4)單一劑量毒性試驗Single Dose Toxicity Studies
(5)重複劑量毒性試驗Repeated Dose Toxicity Studies
(6)生殖與發育毒性試驗Reproductive and Developmental Toxicity Studies
(7)致癌性試驗Carcinogenicity Studies
6.蛋白質藥物之藥動學PK Studies of Therapeutic Proteins
7.生物相似性產品Biosimilars
(1)生物相似性產品的挑戰Challenge of Biosimilars
(2)生物相似性產品的品質議題Quality Issues of Biosimilars
(3)生物相似性產品之非臨床試驗Non-Clinical Issues of Biosimilars
(4)生物相似性產品之藥動學議題Pharmacokinetics Issues of Biosimilars
(5)生物相似性產品之藥效學議題Pharmacodynamic Issues of Biosimilars
(6)生物相似性產品之臨床試驗議題Clinical Issues of Biosimilars
8. 結論Conclusion
9. 蛋白質藥物許可證License of Protein Drugs
10. 其他資源Some Further Resources
二、蛋白質藥物產品開發實務-以單株抗體為例Development of Protein Therapeutics from Bench to Clinical – Antibody Therapeutics for Example
1.蛋白質藥物產品早期研究 Discovery Stage of Protein Therapeutics
(1)選題階段 Target validation
(2)驗證階段 Proof of Idea
2.蛋白質藥物產品臨床前開發 Early Development of Protein Therapeutics
(1)化學製造與管制 Chemistry, Manufacturing, and Control Activities of Protein Drug
(2)前臨床試驗 Preclinical Studies
(3)委託生產/研究機構管理CMO/CRO Managements
3.蛋白質藥物產品臨床開發 Clinical Development of Protein Therapeutics
(1)新藥臨床試驗申請 Investigational New Drug (IND)
(2)與法規單位溝通 Communicating with Regulatory
4.蛋白質藥物產品晚期開發 Late Stage Development of Protein Therapeutics
5.產品商業化與合作開發 Partnership development
課程費用:每人2,500元
報名方式:<線上報名>https://slbiotech-edu.pse.is/QSLUS
*上課達滿時數六小時,核發本課程結業證書
【溫馨提醒】
本學苑採用線上繳費系統,請注意下列重要事項:
1.請學員報名務必先填寫Google報名表單後,再進入線上繳費系統。
2.本線上系統有下列兩種繳費方式
(1)信用卡繳費-需輸入卡號、有效月/年、卡片背面末三碼、手機驗證(2)ATM櫃員機-產生虛擬帳號,由ATM轉帳
3.如您需報帳,可直接於線上繳費系統中輸入公司正確統編,或您可來信學苑告知。(凡發票打抬頭統編者,視為單位/公司付費派訓,結訓證書將署名「xxx單位/公司(統編公司)及學員姓名」,敬請學員自行評估,謝謝。
4.因繳費系統產生之帳單三日後即失效,敬請特別留意,如有任何問題,請來信或來電與學苑聯絡。
5.公司報名作業,如無法於本繳費系統作業者,再來信或來電本學苑洽詢。
*因應疫情變化,為維護上課學員之健康,實施下列安心防疫培訓政策:
1.自本學苑公告日起(2020/3/11)至開課日(2020/8/1),全面限制自境外返台者(不分國家)參加本學苑課程。
2.自課程公告日起(2020/7/6)至開課日(2020/8/1)凡有收到居家隔離、居家檢疫、自主健康管理者,均不得參加本學苑課程。
3.本學苑配合政府政策,上課座位保持安全距離,但為學員健康安全,仍建議學員配戴口罩,謝謝。
學苑信箱:bioschool@biotech-edu.com 學苑電話:02-2545-9721