[ #書訊 / Book News] 雪莉的午后水彩時光 雪莉畫日誌
接續前天和大家分享的,其實在我的 Instagram 好友裡,也有一些互相追蹤數年,直到目前為止還沒見過面,卻總能從對方的作品和互動中感受到溫柔與溫暖的人。這些朋友既有才華又非常努力,在這幾年中總不時聽到出書、開個展、接到重要合作案等好消息,每次聽到都高興地像是自己也獲得肯定。雪莉 Sherry 就是其中一位。
第一次發現雪莉的帳號,應該是透過朋友的追蹤名單。那時候只覺得,哇,竟然可以有人把生活裡的那些美好時刻用水彩表現,無論是令人垂涎欲滴的甜點、餐點,還是可愛的貓狗、怡人的花草,都像在她的筆下有了生命,在螢幕前對我招手。努力經營社群媒體的人都知道,要維持人氣、與時時改變的演算法及新功能搏鬥,其實非常耗費心神,許多人在這期間喪失了自己分享的初衷、也有許多人不再分享自己喜歡的事物,轉而只發「演算法說大家會喜歡」的東西。但雪莉的 Instagram 帳戶,卻始終如一地紀錄那些讓她感到幸福的美好時刻。面對各種留言詢問,她也從不藏私地回覆,無論是使用的畫筆型號、水彩色號、繪製步驟還是技巧。
不過,即使追蹤雪莉數年,其後甚至在 Facebook 上也成了好友,知道她私底下是個少一根筋,卻非常努力面對生活的女孩,但如果不是這次她出書,我可能還不知道原來她原本做的是平面設計。開始用水彩畫插畫,其實是因為之前工作過度使用手腕,受傷後歷經開刀、復健、休養三年,那些悠然的筆觸,是因為比起素描與色鉛筆,水彩對手腕來說更省力;繪畫主題集中在甜點、咖啡、貓狗、花草,則是因為那些都是真正療癒她的事物,畫它們不是工作,而是在面對生活的壓力、面對自己的不完美間,重新打起精神。
這本書的完成,和她過去的人生歷程也有些相似。歷經家中巨變、編輯離職,好不容易才看到本書出版。在書中,她秉持著一直以來的認真和高規格,從水彩用具、基本技法介紹起,接著分為甜點、輕食、植物、毛寶貝等主題,一一詳細介紹繪製步驟與細節提點,最後還分享她每次都引起眾人驚呼豔羨的手帳內容。雖然因為疫情嚴峻、新書分享會又遭取消,但我知道堅強開朗的她一定不會被此打擊。她的畫療癒了許多人,希望藉著這本書的完成,她也能更加肯定自己。
在出書之前,雪莉還貼心地私訊我,特別告訴我不要為了人情而有任何壓力,就算我無法幫她推薦新書,她也會用自己的作者書 quota 幫我留一本。但是雪莉的書我怎麼可能不推薦呢?而且,疫情受控後,我們還要一起去吃甜點喔,要實現五年以來的約定!
🔖 相關連結:
《雪莉的午后水彩時光》博客來 購書連結:https://tinyurl.com/2urzn6hr
雪莉 Sherry 的 Facebook 專頁: https://tinyurl.com/s397ju6y、Instagram:https://tinyurl.com/y24p5djb
#yingsbookreviews #yingc #雪莉的午后水彩時光 #水彩 #插畫 野人文化
「facebook好友推薦演算法」的推薦目錄:
- 關於facebook好友推薦演算法 在 Facebook 的精選貼文
- 關於facebook好友推薦演算法 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於facebook好友推薦演算法 在 紀錄觀點 Facebook 的精選貼文
- 關於facebook好友推薦演算法 在 Re: [請益] Facebook 的朋友建議機制是怎麼回事? - 看板ask-why 的評價
- 關於facebook好友推薦演算法 在 Re: [請益] Facebook 的朋友建議機制是怎麼回事? - 看板ask-why 的評價
- 關於facebook好友推薦演算法 在 Facebook「你可能認識的朋友」建議的依據 的評價
- 關於facebook好友推薦演算法 在 關於FB的"你可能認識的朋友"測試 的評價
- 關於facebook好友推薦演算法 在 推薦「你可能認識的朋友」,臉書迴避到底的運作機制 的評價
- 關於facebook好友推薦演算法 在 一窺Facebook演算法的秘密:你每天看什麼都是它決定! 的評價
- 關於facebook好友推薦演算法 在 FB交友建議- 感情板 的評價
- 關於facebook好友推薦演算法 在 誰最常逛我FB?如何查詢誰常偷偷關注你臉書Facebook技巧 的評價
- 關於facebook好友推薦演算法 在 Facebook真的會竊聽我嗎?推薦系統是如何運作? 的評價
- 關於facebook好友推薦演算法 在 fb可能認識的朋友順序2023-在Facebook/IG/Youtube上的焦點 ... 的評價
- 關於facebook好友推薦演算法 在 fb可能認識的朋友順序2023-在Facebook/IG/Youtube上的焦點 ... 的評價
- 關於facebook好友推薦演算法 在 好友名單整理中?3 招找出Facebook 真心朋友! - 3C科技 的評價
- 關於facebook好友推薦演算法 在 Facebook 改變演算法,強調有意義的互動 的評價
- 關於facebook好友推薦演算法 在 交友邀請:我的Facebook社群經營心得/程天縱 的評價
- 關於facebook好友推薦演算法 在 如何關閉Facebook 通知上「你可能認識的朋友」欄位 的評價
- 關於facebook好友推薦演算法 在 [討論] Facebook 好友建議好可怕啊- 看板WomenTalk - PTT網頁版 的評價
- 關於facebook好友推薦演算法 在 [討論] Facebook 好友建議好可怕啊- 看板WomenTalk - PTT網頁版 的評價
- 關於facebook好友推薦演算法 在 fb交友建議演算法的蘋果、安卓和微軟相關APP,DCARD 的評價
- 關於facebook好友推薦演算法 在 Facebook 讓用戶客製化動態消息,AI 演算法還要推薦其他內容 的評價
- 關於facebook好友推薦演算法 在 2023年fb演算法介紹!分享3個避免犯的錯誤和5個提高觸及 ... 的評價
- 關於facebook好友推薦演算法 在 FaceBook 用戶破20億人聚焦AI 推薦Reels 短影音 - 客新聞 的評價
- 關於facebook好友推薦演算法 在 如何利用facebook推荐好友机制加精准的facebook好友- YouTube 的評價
- 關於facebook好友推薦演算法 在 如何利用facebook推荐好友机制加精准的facebook好友- YouTube 的評價
- 關於facebook好友推薦演算法 在 Facebook 教學:教你禁止推送「你可能認識的朋友」 的評價
- 關於facebook好友推薦演算法 在 愈平靜愈有生產力 - Google 圖書結果 的評價
- 關於facebook好友推薦演算法 在 找出在Facebook中最關心你的朋友 - 工具邦 的評價
facebook好友推薦演算法 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
Netflix的「AI顧客科學」
2021-03-04 14:33 聯合新聞網 / 能力雜誌
【文/廖志德 圖片提供/達志影像】
直接與消費者進行互動是企業的重要工作,唯有如此,我們才能深入理解顧客的需求、渴望、不安、疑慮與痛苦,並且從中尋求開發新產品及新服務的正確切入點,進而提昇顧客整體的消費體驗。因此,「直面顧客」是品牌創新的關鍵要點,絕對不能假手他人,一定要親力親為才能挖掘出隱藏於市場深處的成功祕笈。
過去,想要直接與顧客進行溝通與互動相對困難,企業不可能一一拜會或致電顧客,因為需要動員的人力及成本太高,往往只能退而求其次,採取間接的方式來與消費者進行互動。或是經由代理商、經營商、零售通路來負責銷售服務;或是由外包客服中心幫忙接聽顧客來電;又或者採取抽樣市場調查來理解顧客的基本圖像,這使得企業洞察顧客需求宛如瞎子摸象,往往只能知道市場部分的情況,不能全盤且深入的掌握市場全貌。
現在,隨著數位科技的快速推進,企業擁有越來越多元的訊息溝通管道與消費者直接互動,加上人工智慧(Artificial Intelligence, AI)從旁協助,市場的顧客圖像變得越來越清晰,越來越可視化,消費者的行為模式不再撲朔迷離且難以掌握。
根據微軟預測,到了2025年將有95%的顧客互動管道是通過AI來完成,如果預測成真,表示企業對於消費者旅程的理解能力將大幅度增強,無論是在搜尋、方案、選擇、下單、取貨、服務、維修、客訴的階段,顧客圖像都能夠取得更高的解析度,經營市場不用像過去一樣,在迷霧當中踽步前行。
市場藝術家vs.科學家
擁有清晰的顧客圖像,能幫助企業規劃出更加貼心的消費者旅程,屆時經理人評估經營績效時,不會再局限於單一層面,例如:訂單轉換率,而是可以更加細緻地從不同的角度與階段來剖析消費者的行為偏好。過去由於市場資訊嚴重不足,企業只能從銷售數字來評量市場成果,或者憑藉行業經驗與直覺來預估消費者的行為動向;現在由於人們對於數位科技的廣泛運用,使得企業更容易掌握顧客在實體與虛擬世界的數位足跡,無論是在實體商店、網站、APP、LINE、Facebook、Instagram、Youtube等線上線下互動點,我們都可以取得比過去更多元的消費數據。消費者瀏覽過那些商品資訊?關注的要點是什麼?考察過哪些「關鍵意見領袖」(Key Opinion Leader, KOL)的看法?分享的使用體驗是正面還是負面?是否進行重複採購?
實測驗證需求
唯有「直面顧客」才能了解顧客,然後做出正確的服務體驗設計。啟動永無止境的追蹤使用者的偏好與習慣,並且經由實地測試來驗證顧客洞察的結果,是影音串流龍頭Netflix能夠在市場異軍突起的關鍵要素。正確使用數位科技使得Netflix在殺成一片紅海的影音市場開創出新藍海,這是Netflix創辦人哈斯廷斯(Reed Hastings)刻意培養出來的企業傳承。如果說賈伯斯(Steve Jobs)是「市場藝術家」,那麼哈斯廷斯就是「市場科學家」。賈伯斯所帶領的Apple基本上不做市場調查與分析,而是著重於創建起獨特的美學風格及培養敏銳的顧客感知能力;哈斯廷斯認為自己並不具備與賈伯斯同等的市場洞察力,因此,在其掌舵下的Netflix另闢「顧客科學」(Consumer Science)的新航向以抵達賈伯斯的美麗境界。
同樣是「直面顧客」,Apple與Netflix的做法南轅北轍,不過條條道路通羅馬,只要能夠取得顧客歡心就是正確的道路,並沒有優劣之分,就像我們無法比較莫札特(Wolfgang Amadeus Mozart)與貝多芬(Ludwig Van Beethoven)的好壞;無法論斷李白與杜甫的高低,重點是找到適合自己的成長路徑,感性成分比較多的經理人可以考慮培養賈伯斯般的直覺感知;如果思維模式偏向於邏輯與數理思考,哈斯廷斯就是最佳的學習典範。學習不是全然的模仿,而是啟發自己內在本來就具備的潛能,至於採取何種直面顧客的演化路徑,最終還是要經營者不斷的在現場探索才能進行實證。
相對而言,賈伯斯的做法是比較難模仿的,除了認真、用心、努力外,多少要具備某種與生俱來的天賦。因此,我們鼓勵大部分的經理人採取類似Netflix「顧客科學」的做法來設計服務體驗,畢竟不需要感性天賦的標準作業流程比較容易學習、理解與模仿,包含蒐集資訊、形成假設、定性定量、市場調查、A/B測試等階段的「顧客科學」方法是有一定的邏輯可以掌握,可以不斷的進行複製並且形成相同結果,想要效法賈伯斯以心印心的感性思維模式,恐怕要有相當高的悟性,沒有一定的感性天賦很難求成。
迷戀顧客的5種途徑
哈斯廷斯希望Netflix的產品經理能夠建立起大量實驗的組織文化,進而發展出令人驚嘆的顧客洞察力,從Netflix不斷的推進A/B測試就可以看出端倪。Netflix的產品團隊會由不同的市場定位與品牌展現方式發展出不同的行銷方案,並且每2個星期就要針對非會員拜訪的網頁進行A/B測試,借助消費者進行評價與判斷的反覆驗證,Netflix設法調整出有效的內容呈現方式,前Netflix產品副總裁吉布森(Gibson Biddle)表示,Netflix希望藉此持續不斷的提昇以下2項衡量指標:
1. 試用比率
非會員網頁的訪客中,約有2%選擇免費試用Netflix。
2. 付費轉換率
當免費試用結束,約有90%顧客會轉變成Netflix付費會員。
對於Netflix而言,提昇試用及轉換比率的做法不能僅止於「聚焦顧客」(Customer Focus),而是要發展到「迷戀顧客」(Customer Obsession)的更高經營標準,此時落實策略佈局的重點不單是傾聽顧客怎麼說,不再是停滯於顧客現在的渴望與需求,不再是只追求顧客滿意。吉布森表示,「迷戀顧客」是要善用「組合式的研究技巧」(Mix of Research Techniques),將顧客安放在你做的每一件事情上,並且開始透過顧客的視角來看產品。吉布森發現利用科學方法來形成及測試假設,正是建立「迷戀顧客」文化的最佳途徑,這項努力使得Netflix在取悅顧客的做法上很難被競爭者複製。想要發展出「迷戀顧客」的組織文化,企業可以參酌吉布森所提出的建議,採用5種不同的途徑來超越過去聚焦於顧客的做法:
1. 經由顧客科學的方法來進行測試與學習
2. 創造並落實非預期以及未來的市場需求
3. 追求長期的顧客喜悅
4. 成為新領域的先鋒以減少競爭
5. 顧客喜悅為先,確保難以複製,較高利潤就會來
這5個直面顧客的原則表面上很容易懂,不過要正確的執行並不簡單,因為有太多的主觀意識在影響經理人的判斷,Netflix的高層就曾經犯下這樣的思維錯誤。回顧2004年之際,Netflix在哈斯廷斯強力的支持下,推出Friends功能,Netflix的開發團隊堅信使用者必定樂於接受朋友的建議,而隨著使用這項功能的人越來越多,所形成的網絡效應就越強大。假設前提是藉由提昇顧客的好友推薦率,Netflix可以有效的降低行銷成本,取得穩固的市場口碑,建立起難以複製的品牌定位。
6年的失敗教訓
然而,事與願違,事後證明Netflix高層想當然耳的直覺判斷是錯誤的,其實該公司最終的績效目標是提昇「顧客留存率」,而好友推薦率似乎是最好的先行指標。當顧客將產品及服務至少推薦給1位好友的比率越高,應該「顧客留存率」就越高吧?這個命題並沒有經過測試證明是正確的,但是在眾人樂觀的想像之下,使得Friends社群開發專案得到長期的投資與支持,長達6年的時間裡,Netflix的高層都以為社群策略是相當值得投入的關鍵項目,絕對不能半途而廢,他們堅信只要下定決心就能做出成績來,更何況該公司已經在社群專案投資這麼多的時間與資金,加上沒有人願意將創始人充滿熱情的提案扼殺於搖籃之中,於是Friends這個專案就這麼堅持許久。
直到2010年,Netflix高層才痛下決心關閉這項功能,開發團隊終於意識到想要透過好友推薦來提高「顧客留存率」並沒有想像中容易,根據推算至少要達到20%的好友推薦率才有可能實現。但Friends上線的初期只達到2%推薦率,再經過4年的努力也不過達到8%而已,離理想目標可說是遙遙無期。如果Netflix早些採用顧客科學的驗證方法來評估Friends的市場價值,或許可以有效排除直覺的偏見,訂定類似迷戀顧客的5種途徑不會太難,但是要落實原則往往會遭到人性謬誤的干擾。
經營企業要完全不犯錯很難,關鍵是要建立起自我校正的管理機制,而直面顧客正是幫助我們不斷調整市場策略的最佳驗證途徑,Netflix在好友推薦上面的努力並沒有完全白費,最終證實使用者對於分享電影並沒有想像中熱切,況且有時候他們不過是根據自己的偏好來進行推薦,結果親友反過頭來吐槽使用者的品味太差,這一點恐怕是Friends開發團隊事前無法察覺的情境。同時,正因為如此,使得許多人並不太願意全然公開自己收視的影片。犯錯不一定是壞事,失敗是學習必然的過程,有助於我們察覺潛藏於市場深處的商業祕密,沒有Friends專案,誰知道朋友會吐槽我們自己呢?
AI顧客科學
經營過程中的失敗是常態,通常只要大方向是正確的,並不會影響企業在市場上的藍海佈局。多年來Netflix運用「顧客科學」針對直面顧客的行銷方案進行測試,充分發揮去蕪存菁的功能,有助於積極推升Netflix的品牌形象及產品開發的成效,該公司的影音串流服務因而獲得無數消費者的選擇與青睞。此外,近年因為新冠肺炎(COVID-19)肆虐,導致許多人寧願待在家裡觀看影集打發時間,Netflix的影音服務平台因此成為市場最佳的選擇方案,光是2020年的第1季,Netflix就增加了1,600萬名顧客,使得該公司全球使用者增加到1.8億名,更有效將Netflix的股價一舉推上492美元的歷史新高峰。
談完失敗個案,讓我們來談談Netflix的成功故事,除吉布森所強調的「消費者試用率」及「付費轉換率」,如果再加上前文提及的「顧客留存率」,這3大績效衡量指標可說是Netflix最重視的市場經營指導方針,其中又以「顧客留存率」最為多數公司所經常採用,由於Netflix採取的是按月扣款的訂閱模式,如果訂戶對於平台所提供的服務感到不滿意就很容易退訂,因此,如何避免顧客流失就成為Netflix經營的關鍵要務,其實最簡單易懂的做法就是讓使用者永遠有好戲可看,保持每天追劇的良好習慣,然而說來容易,做起來可是困難重重。
Netflix運用的是大數據追蹤術,每當用戶進入Netflix的影音平台,他的一舉一動就被「顧客科學」完全掌握,無論是活動時段、搜尋電影、觀賞類型、收看清單、中斷收看、觀賞時長、演員喜好、內容評論等都將會列入追蹤,種種數據經過AI演算法處理之後,Netflix就會自動生成推薦內容,就算是推薦同一部電影給不同的人,電影選單所展現的演員介紹海報也是擁有個別化差異的。其實Netflix的底層基因和Google很類似,2家公司主要目的都是讓顧客很容易找到自己想看的內容,當然最好是能達到完全不用找,想要看的內容就能自動上門來的境界。
根據使用者的數位旅程來分析顧客的行為偏好是目前的顯學,有助於企業創造個人化的貼心服務體驗,而且隨著AI工具的越來越平民化,顧客科學不再是Amazon、Google、Netflix這樣的大公司才能實踐的商業模式,未來有一天,就算是最不起眼的小公司也能操作同樣的工具。不過或許Netflix提出的「迷戀顧客」的5大途徑才是策略求勝的最終決戰點,畢竟取悅顧客才是最高指導原則,顧客科學則是強大的管理工具,誰是主,誰是從,我們應該分辨清楚才成。
資料來源:https://udn.com/news/story/6868/5294010?from=udn-relatednews_ch1015
facebook好友推薦演算法 在 紀錄觀點 Facebook 的精選貼文
#為何人們會相信假新聞?#假新聞從何而來?
📰 假新聞製造者:『如果你看過我寫的任何文章,內容都很荒誕,但開頭部分都非常合理,#大部分人只看標題,可能只接著讀了一句, 就在臉書分享給上千好友👍。』
假新聞氾濫成災,充斥在社群網站,謊言被當成選戰策略,和操縱群眾的武器。本片將揭露,2016年川普選戰背後的👥藏鏡人和「#劍橋分析」公司如何利用從Facebook、Google、銀行、信貸、保險等公司獲得的數百萬美國人的資料,操縱群眾心理,影響選戰...
【不公平的遊戲:川普是如何贏的】#美國大選 #假新聞 #川普
📺 公視13 台┃10/15(四) 22:00┃紀錄觀點
📺 網路直播┃https://bit.ly/30PaMj6
🎬 重播時間┃10/16(五) 凌晨1:02
🎬 公視+#免費線上看┃https://www.ptsplus.tv/ (10/15-10/22)
🎬Unfair Game: How Trump Won┃導演:Thomas Huchon ┃ 2018
.
#如果看過🔥#個資風暴劍橋分析事件🔥
#推薦再補一下這部喔~~
#個資就是武器
#披薩門 #資訊戰 #心理測驗 #脫歐公投
#大數據 #數位足跡 #心理戰
#劍橋分析如何操控選民心理?
#科技擾亂了政治和民主?
#演算法比你更了解自己?
#CambridgeAnalytica
.
══ 相關報導 ══
▍《操弄:劍橋分析事件大揭祕》作者現身說法
專訪前「劍橋分析」業務總監:只要臉書的生意繼續,民主就有危機
https://reurl.cc/VXYpNA
▍社群媒體的暗黑政治學》
「劍橋分析」竊取臉書5000萬用戶資料、設局製造貪腐性愛醜聞
https://www.storm.mg/article/413450
▍深入全球假新聞之都,看「境外網軍」是如何煉成的?
https://reurl.cc/1QMG1m
.
.
▍厲害了!我的領導人| 紀錄觀點𝟏𝟎月片單 ▍
🇵🇭10╱8(四)22:00 【菲律賓的殺人執照】
公視+#免費線上看►https://reurl.cc/Z7ZY53 (觀賞期限至10/15)
🇺🇸10╱15(四)22:00 【不公平的遊戲:川普是如何贏的】
🇷🇺10╱22(四)22:00 【普丁的見證人】
🇨🇳10╱29(四)22:00 【習近平的世界】
.
┃節目資訊┃http://viewpoint.pts.org.tw/
┃#紀錄觀點┃ 首播週四22:00
╔═══════════════╗
►設紀錄觀點 搶先看!不再錯過好電影!
╚═══════════════╝
facebook好友推薦演算法 在 Re: [請益] Facebook 的朋友建議機制是怎麼回事? - 看板ask-why 的推薦與評價
我簡單說一下~~如果有錯誤 煩請指正
因為我有在寫facebook app
所以對於它的好友trace方式大概有了解
你提到的三點基礎線索(同一個 network 學校 共同的朋友)
的確是facebook的優先考量
但facebook有一種特殊的演算機制
這可能要拓樸學領域的會比較了解
據說街上每隨機抽取50個人 其中至少有兩個人是同一天生日
這是建構在機率系統上的假說
同樣的 在網絡的平面概念中一樣適用
只是把一維的機率 延伸到平面而已
用通俗一點的解釋如下:(假設你是A)
第0層 A
|
第1層 B---C---D---E
BCDE是在"基礎線索"上與你有關的好友
於是BCDE出現在好友的建議名單中
這時候你會加入他們的機率幾乎是99%
於是進入第二層
第0層 A
|
第1層 B---C---D---E
| | | |
第2層 F-G H-I J-K L-M
FGHIJKLM是在拓墣觀念上與你有關聯的好友
這時你可能只加入G.J或M
加入機率可能可能只有37.5%
此時演算法會去檢討0-1與1-2的路徑
然後重新調整方向 提升你的加入機率
(為方便說明 舉極端的例子)
簡單來說 在第2層中FGHIJKLM GJM是你的高中同學的同學
FHIKL是你的高中同學的家人
演算法發現你加入GJM的機率為100% 而FHIKL為0%
因此"同學的同學"這項關聯就會成為未來第3層建議名單的原則
而"同學的家人"這項關聯就會被捨棄
理想上 之後你的建議名單都是"同學的同學的同學...無限延伸"
而你的加入率也會接近100%
第0層 A
|
第1層 B---C---D---E
| | | |
第2層 F-G H-I J-K L-M
| | |
第3層 N O P .......
以上~你會發現 facebook給你建議的名單好像神一樣!! 準到一整個不行
看到這別先END
如果只有這樣 facebook也沒比無名高明多少
facebook的野心還不只這樣
就如同有案例發現 有的人之間的關聯完全消失在網路上
facebook一樣神的出來 有時候讓表特版的鄉民也自嘆弗如
這就要牽扯到平面機率(或網狀機率) 以及部分的心理學
FB演算法由兩部分組成
一部分是先前提到的"基礎線索"
另一部分是針對前一部分的盲點所設計的"機率線索"
一開始我們有提到"每隨機50人中至少有兩人生日相同"
我們先假設50人的生日完全不同
機率P=(365/365)*(364/365)*(363/365)......*(316/365)
=0.0296
也就是說 假設"生日"是人與人之間的"關聯條件"
那麼我隨便找50人 這50人完全沒關聯的機率小於3%
因此facebook只要隨便把沒關係的50人的湊一推
會有97%的機率其中"至少"有兩人看對眼爆出愛的火花
有這樣的基礎 就可以產生很多玩法
例如以"學校"作為人與人之間的關聯條件
假設全台灣一共有160所大學 (基數)
那麼50人(庫數)無關聯的機率P=(160/160)*(159/160).....*(111/160)
=0.000185
天哪 0.0185耶~ 隨便都中 同學會到處開!!
人與人之間認識的可能性 當然不只是表面上的關聯表徵
可能是機率表徵 (你無法預測機天可能會在路上遇到誰 然後和誰成為朋友)
使用機率表徵的計算原則相同
公式化後如下:
關聯A 基數=a
庫數=a'
關聯A完全沒命中機率P(a)=a!/{[a^(a')]*[(a-a')!]}
把所有關聯集合起來 P=P(a)*P(b)...... P會趨近於零
假設FB很衰小 取樣這50個人在任何關係上通通不認識沒關聯
"機率趨近於零"!!!!!!!!!!!!!!!!! (尤其是考慮越多關聯)
因此 咱們的facebook又再度神奇的從陌生人猜出你可能認識誰!!
這樣還不夠嚴謹
facebook還有一招
根據社會網絡心理學 認識的人其中必定有某種層度的關聯
可能是興趣.居住地.語言.喜愛的食物.善長的技能等等...
如果今天有兩個認識的人之間完全查不到任何表面關聯
那麼那麼它一定落入"完全沒關聯區"
恩...什麼跟什麼 一定有人會聽不懂
那用下圖來說明好了
(下面的數線代表與你有相關的線索數目)
高度相關 輕度相關 完全無相關
<------------------------------------------>
你認識的人 你不認識的人 你可能認識的人
如果畫成座標圖如下:
你 |*
可 |*
能 | *
認 | * A B
識 | *
的 | * *
人 | * *
數 | * *
|_______*******________
與你相關的線索數目
一般A的狀況很能理解 與你共通線索特徵越多的人 你越可能認識他
但是大家往往忽略B的區段
這有點像"反常態曲線"
有部分你認識的人會落在幾乎與你沒相關的區域
雖然曲率沒有A的高
但很明顯的可以看出
所謂的半生不熟的關係 卻是人們最不可能認識的陌生人
所以 facebook只要把與你"最不相關"與"最相關"的人丟到你的建議名單
你就會有一長串 看似神奇的建議名單嚕!!
當然心理學上來說 facebook給你50人 你有49人不認識 但有1人你認識
你的注意會在那一人上 並且直呼好神奇
而"猜錯的49人"會被你忽略或是遺忘!!
說了這麼多 麼複雜的演算在程式撰寫上來說卻不是很難
配合資料庫與資料定義演算 就可以在很短的時間算出建議名單了
facebook應該不會無聊到去偷窺大家的信箱啦
雖然技術上是辦的到 但完全沒C/P值!?
除非是你主動匯入名單~
以上 因為我不太會畫BBS圖
若難以理解敬請見諒!!^^
※ 引述《Equalmusic (Cosmajoonitist)》之銘言:
: 我知道他會建議
: 1. 同一個 network 的人
: 2. 同一所學校的人
: 3. 如果你們有共同朋友
: 但是有的時候他會出現我認識的人, 但是我跟她在 facebook 上根本沒有共同朋友的情況
: 不是同一個 netowrk, 也沒有去過同一所學校
: (另外就即使是同一個 network 或是去過同一個學校, network 那麼大, 學校那麼大
: 他卻知道要建議誰, 這也還蠻神奇的...)
: 我想過一個狀況就是這個人先在 Facebook 上搜尋我, 查看我的資料
: 但後來我稍微 google 了一下發現了這個討論串
: https://www.topix.com/forum/com/facebook/TIM2PL2T0O5BQJO1C
: 裡面有人舉了一個例子排除了這個可能性
: 1. 他們八年沒聯絡, 所以這個人主動查詢他的可能性不高
: 2. 就算他真的搜尋他的資料, 他的名字是菜市場名, FB 上有千百個跟他同名的
: 3. 如果他用的是他的 email, 他的 email 早就換了
: 我沒有看完整個討論串, 一來實在文章太多, 二來文章的相似性太高
: 特別很多人提出提出 FB 會 tap into 你的 email contact list, yahoo 或 MSN 帳號
: 我覺得是 nonsense
: 雖然我對網路安全不是特別了解, 不過 FB 只是一堆 web applets
: 不可能跑到我的電腦裡來碰我的資料(如果是這樣那瀏覽器的安全性也太低了吧)
: 另外有些人也不在我的 AIM, GTalk 或是 MSN 裡面
: 但是 FB 還是很盡職的把他們都找出來了 ~_~
: 想請教一下有沒有板友對 Facebook 這種查找機制有研究的
: 好想知道阿!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 60.248.76.222
... <看更多>
facebook好友推薦演算法 在 Facebook「你可能認識的朋友」建議的依據 的推薦與評價
若要從「你可能認識的朋友」名單中將某人加為朋友,您可以向他們傳送交友邀請。如果不喜歡某項建議,您可以將其移除。瞭解如何從動態消息隱藏「你可能認識的朋友」建議 ... ... <看更多>
facebook好友推薦演算法 在 Re: [請益] Facebook 的朋友建議機制是怎麼回事? - 看板ask-why 的推薦與評價
我簡單說一下~~如果有錯誤 煩請指正
因為我有在寫facebook app
所以對於它的好友trace方式大概有了解
你提到的三點基礎線索(同一個 network 學校 共同的朋友)
的確是facebook的優先考量
但facebook有一種特殊的演算機制
這可能要拓樸學領域的會比較了解
據說街上每隨機抽取50個人 其中至少有兩個人是同一天生日
這是建構在機率系統上的假說
同樣的 在網絡的平面概念中一樣適用
只是把一維的機率 延伸到平面而已
用通俗一點的解釋如下:(假設你是A)
第0層 A
|
第1層 B---C---D---E
BCDE是在"基礎線索"上與你有關的好友
於是BCDE出現在好友的建議名單中
這時候你會加入他們的機率幾乎是99%
於是進入第二層
第0層 A
|
第1層 B---C---D---E
| | | |
第2層 F-G H-I J-K L-M
FGHIJKLM是在拓墣觀念上與你有關聯的好友
這時你可能只加入G.J或M
加入機率可能可能只有37.5%
此時演算法會去檢討0-1與1-2的路徑
然後重新調整方向 提升你的加入機率
(為方便說明 舉極端的例子)
簡單來說 在第2層中FGHIJKLM GJM是你的高中同學的同學
FHIKL是你的高中同學的家人
演算法發現你加入GJM的機率為100% 而FHIKL為0%
因此"同學的同學"這項關聯就會成為未來第3層建議名單的原則
而"同學的家人"這項關聯就會被捨棄
理想上 之後你的建議名單都是"同學的同學的同學...無限延伸"
而你的加入率也會接近100%
第0層 A
|
第1層 B---C---D---E
| | | |
第2層 F-G H-I J-K L-M
| | |
第3層 N O P .......
以上~你會發現 facebook給你建議的名單好像神一樣!! 準到一整個不行
看到這別先END
如果只有這樣 facebook也沒比無名高明多少
facebook的野心還不只這樣
就如同有案例發現 有的人之間的關聯完全消失在網路上
facebook一樣神的出來 有時候讓表特版的鄉民也自嘆弗如
這就要牽扯到平面機率(或網狀機率) 以及部分的心理學
FB演算法由兩部分組成
一部分是先前提到的"基礎線索"
另一部分是針對前一部分的盲點所設計的"機率線索"
一開始我們有提到"每隨機50人中至少有兩人生日相同"
我們先假設50人的生日完全不同
機率P=(365/365)*(364/365)*(363/365)......*(316/365)
=0.0296
也就是說 假設"生日"是人與人之間的"關聯條件"
那麼我隨便找50人 這50人完全沒關聯的機率小於3%
因此facebook只要隨便把沒關係的50人的湊一推
會有97%的機率其中"至少"有兩人看對眼爆出愛的火花
有這樣的基礎 就可以產生很多玩法
例如以"學校"作為人與人之間的關聯條件
假設全台灣一共有160所大學 (基數)
那麼50人(庫數)無關聯的機率P=(160/160)*(159/160).....*(111/160)
=0.000185
天哪 0.0185耶~ 隨便都中 同學會到處開!!
人與人之間認識的可能性 當然不只是表面上的關聯表徵
可能是機率表徵 (你無法預測機天可能會在路上遇到誰 然後和誰成為朋友)
使用機率表徵的計算原則相同
公式化後如下:
關聯A 基數=a
庫數=a'
關聯A完全沒命中機率P(a)=a!/{[a^(a')]*[(a-a')!]}
把所有關聯集合起來 P=P(a)*P(b)...... P會趨近於零
假設FB很衰小 取樣這50個人在任何關係上通通不認識沒關聯
"機率趨近於零"!!!!!!!!!!!!!!!!! (尤其是考慮越多關聯)
因此 咱們的facebook又再度神奇的從陌生人猜出你可能認識誰!!
這樣還不夠嚴謹
facebook還有一招
根據社會網絡心理學 認識的人其中必定有某種層度的關聯
可能是興趣.居住地.語言.喜愛的食物.善長的技能等等...
如果今天有兩個認識的人之間完全查不到任何表面關聯
那麼那麼它一定落入"完全沒關聯區"
恩...什麼跟什麼 一定有人會聽不懂
那用下圖來說明好了
(下面的數線代表與你有相關的線索數目)
高度相關 輕度相關 完全無相關
<------------------------------------------>
你認識的人 你不認識的人 你可能認識的人
如果畫成座標圖如下:
你 |*
可 |*
能 | *
認 | * A B
識 | *
的 | * *
人 | * *
數 | * *
|_______*******________
與你相關的線索數目
一般A的狀況很能理解 與你共通線索特徵越多的人 你越可能認識他
但是大家往往忽略B的區段
這有點像"反常態曲線"
有部分你認識的人會落在幾乎與你沒相關的區域
雖然曲率沒有A的高
但很明顯的可以看出
所謂的半生不熟的關係 卻是人們最不可能認識的陌生人
所以 facebook只要把與你"最不相關"與"最相關"的人丟到你的建議名單
你就會有一長串 看似神奇的建議名單嚕!!
當然心理學上來說 facebook給你50人 你有49人不認識 但有1人你認識
你的注意會在那一人上 並且直呼好神奇
而"猜錯的49人"會被你忽略或是遺忘!!
說了這麼多 麼複雜的演算在程式撰寫上來說卻不是很難
配合資料庫與資料定義演算 就可以在很短的時間算出建議名單了
facebook應該不會無聊到去偷窺大家的信箱啦
雖然技術上是辦的到 但完全沒C/P值!?
除非是你主動匯入名單~
以上 因為我不太會畫BBS圖
若難以理解敬請見諒!!^^
※ 引述《Equalmusic (Cosmajoonitist)》之銘言:
: 我知道他會建議
: 1. 同一個 network 的人
: 2. 同一所學校的人
: 3. 如果你們有共同朋友
: 但是有的時候他會出現我認識的人, 但是我跟她在 facebook 上根本沒有共同朋友的情況
: 不是同一個 netowrk, 也沒有去過同一所學校
: (另外就即使是同一個 network 或是去過同一個學校, network 那麼大, 學校那麼大
: 他卻知道要建議誰, 這也還蠻神奇的...)
: 我想過一個狀況就是這個人先在 Facebook 上搜尋我, 查看我的資料
: 但後來我稍微 google 了一下發現了這個討論串
: https://www.topix.com/forum/com/facebook/TIM2PL2T0O5BQJO1C
: 裡面有人舉了一個例子排除了這個可能性
: 1. 他們八年沒聯絡, 所以這個人主動查詢他的可能性不高
: 2. 就算他真的搜尋他的資料, 他的名字是菜市場名, FB 上有千百個跟他同名的
: 3. 如果他用的是他的 email, 他的 email 早就換了
: 我沒有看完整個討論串, 一來實在文章太多, 二來文章的相似性太高
: 特別很多人提出提出 FB 會 tap into 你的 email contact list, yahoo 或 MSN 帳號
: 我覺得是 nonsense
: 雖然我對網路安全不是特別了解, 不過 FB 只是一堆 web applets
: 不可能跑到我的電腦裡來碰我的資料(如果是這樣那瀏覽器的安全性也太低了吧)
: 另外有些人也不在我的 AIM, GTalk 或是 MSN 裡面
: 但是 FB 還是很盡職的把他們都找出來了 ~_~
: 想請教一下有沒有板友對 Facebook 這種查找機制有研究的
: 好想知道阿!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 60.248.76.222
... <看更多>