打通5G射頻前端任督二脈 MIPI第三代RFFE介面登場
2020-07-06Jim RossVictor WilkersonLalan Mishra
5G技術擁有比4G超過1,000倍的資料流量處理能力,勢必將為無線通訊開啟全新世代。這項技術不僅可提供更豐富又無處不在的沉浸式多媒體體驗,還將改變工業和汽車應用的通訊和控制方式。
自駕車革命已經準備好使用5G作為其支柱。透過搭配全新類型的物聯網(IoT)裝置,使用分散式無線感應和共享人工智慧(AI),自駕車產業已開始駕馭5G的力量。5G無線技術的真正潛力遠超我們的想像。其應用範圍沒有極限。在5G無邊能力的背後潛藏著無線科技的複雜功能,而MIPI RF前端控制介面(MIPI RFFE)規格是關鍵推動力(圖1)。
對5G而言,幾乎沒有什麼比RF前端(RFFE)控制基礎架構更為重要。任何影片資料、任何應用程式資料(基本上以無線方式傳輸或接收的任何內容皆然)都仰賴RFFE來控制RF前端模組(FEM)或子系統,包含所有功率放大器、天線調諧器、濾波器、低雜訊放大器(LNA)、交換器等等,這些子系統均連結至數據機基頻和/或射頻積體電路(RFIC)收發機。
MIPI RFFE自2010年推出以來,已逐步取代了好幾代通常為點對點的專有獨立前端元件介面,從而簡化了日益複雜的RF前端設計、配置和整合。MIPI RF前端控制工作組在研發已於2020年5月推出的3.0版介面時,刻意將通訊協定簡化和最佳化,並高度專注於讓製造商能在不斷發展的5G時代中充分發揮現實世界裡的機會。
觸發器是關鍵
5G將帶來涉及上行和下行通訊的RF頻帶數量的爆炸性成長,並相應縮小RF封包間的子載波間距(SCS)。另一項不斷發展的需求,則是要縮短在各頻段和頻段組合間切換的延遲時間。傳統上RFFE主要是部署在手機中,但隨著5G的推出,無線通訊的控制需求也擴展到汽車、物聯網和其他使用案例上,這也影響了現況。有鑑於此,開發MIPI RFFE v3.0的目的在於讓使用案例不僅局限於行動裝置,並針對當今3GPP 5G標準中定義的更高計時精準度和更短延遲時間,滿足一些前所未有的需求。
為了因應5G的需求,在更短時間內完成動態配置更改,最新推出的v3.0為介面的觸發器提供了多項增強措施。各種觸發器可用於讓RF子系統能夠在極嚴時間控制下配置多部RF裝置,以及在一部從屬裝置內或跨多部裝置間同步暫存器設定變更:
・定時觸發器(Timed Trigger):
可為無數使用中的載波聚合組態提供更嚴格的同步時間控制(圖2)。
讓多項控制功能可重新映射至特定的延伸觸發器(圖3)。
增加RF控制系統中可用的獨特觸發器的數量。延伸觸發器的數量在RFFE v3.0中有所增加,帶來比以往更加複雜的無線電基礎架構。
觸發器會交互作用,為5G不斷擴展的所有頻帶範圍快速設定並靈活地重新設定RF前端。舉例而言,對於連續(Back-to-back)觸發器操作,MIPI RFFE v3.0將計時精準度改善了20倍。如此一來,新版規格的設計目的便在於提升通量效率,減少封包延遲和錯誤,協助確保5G裝置能夠在關鍵顧客和商業功能的核心提供高效能RF功能。
此外,有了v3.0帶來的靈活度,設計系統時也能減少RF面板上的RFFE匯流排數量。介面的可映射觸發器會啟動動態重新映射,以觸發作業來處理隨著逐步增加的潛在RF頻帶數量而增加的上行和下行載波聚合組數量。頻道已經過最佳化,提升了裝置的使用率。另外,所有控制皆集中在單一匯流排內,插腳便被保留在主要基頻收發機上。由於需要協調的不同RFFE匯流排數量變少,軟體因此也可能獲得簡化,進而全面節省成本。
實際標準
5G的實踐是個過程,現今仍僅在非常早期的階段。MIPI RFFE v3.0推出的功能,目的在於讓RF系統設計師能夠把握5G帶來的第一個主要效益,也就是6GHz以下網路頻段的頻率範圍1(FR1)。v3.0讓人們能夠快速、靈活、半自動化和全面地控制多種獨立RFFE子系統,為主流RF市場提供了所需功能,推動當今5G部署的蓬勃發展。
v3.0也相容於先前的RFFE版本,因此系統設計師無需更改MIPI RFFE之實體層。
這是一項關鍵特色,因為RFFE規格廣受仰賴,市場上早有一個龐大的採用者和裝置生態系。RFFE確實已成為RF產業的明確主力。回顧2008年,MIPI RF前端控制工作組開始研發工作時,各裝置仍使用多種方法來管理前端。然多虧過去十年將MIPI RFFE作為中心實際標準,RF技術再也不是一盤散沙。 工作組會持續努力增加新功能,讓使用者社群脫穎而出,收穫益處。事實上,下一代RFFE規格已開始研發,以支援極具時效性的RF前端控制需求,配合5G的大規模多輸入多輸出(MIMO)、在毫米波(24.25GHz至56GHz)頻段中運行的5G新無線電(NR)頻率範圍2(FR2)以及全球正在進行的下一階段5G部署,做好充足準備。
附圖:圖1 5G手機射頻前端設計
圖2 定時觸發器操作概覽
・可映射觸發器(Mappable Trigger):
圖3 可映射觸發器應用範例
・延伸觸發器(Extended Trigger)
資料來源:https://www.2cm.com.tw/2cm/zh-tw/tech/97EE654D60D24D2FB5CA11FC933F8B2D?fbclid=IwAR0o6Cgpz7ME1Z23M_MPZPJvDEAWEy6Dt0c9ACMc-y1S7d_OZ91EmNJ0-n0
lna電路 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
打通5G射頻前端任督二脈 MIPI第三代RFFE介面登場
2020-07-06Jim RossVictor WilkersonLalan Mishra
5G技術擁有比4G超過1,000倍的資料流量處理能力,勢必將為無線通訊開啟全新世代。這項技術不僅可提供更豐富又無處不在的沉浸式多媒體體驗,還將改變工業和汽車應用的通訊和控制方式。
自駕車革命已經準備好使用5G作為其支柱。透過搭配全新類型的物聯網(IoT)裝置,使用分散式無線感應和共享人工智慧(AI),自駕車產業已開始駕馭5G的力量。5G無線技術的真正潛力遠超我們的想像。其應用範圍沒有極限。在5G無邊能力的背後潛藏著無線科技的複雜功能,而MIPI RF前端控制介面(MIPI RFFE)規格是關鍵推動力(圖1)。
對5G而言,幾乎沒有什麼比RF前端(RFFE)控制基礎架構更為重要。任何影片資料、任何應用程式資料(基本上以無線方式傳輸或接收的任何內容皆然)都仰賴RFFE來控制RF前端模組(FEM)或子系統,包含所有功率放大器、天線調諧器、濾波器、低雜訊放大器(LNA)、交換器等等,這些子系統均連結至數據機基頻和/或射頻積體電路(RFIC)收發機。
MIPI RFFE自2010年推出以來,已逐步取代了好幾代通常為點對點的專有獨立前端元件介面,從而簡化了日益複雜的RF前端設計、配置和整合。MIPI RF前端控制工作組在研發已於2020年5月推出的3.0版介面時,刻意將通訊協定簡化和最佳化,並高度專注於讓製造商能在不斷發展的5G時代中充分發揮現實世界裡的機會。
觸發器是關鍵
5G將帶來涉及上行和下行通訊的RF頻帶數量的爆炸性成長,並相應縮小RF封包間的子載波間距(SCS)。另一項不斷發展的需求,則是要縮短在各頻段和頻段組合間切換的延遲時間。傳統上RFFE主要是部署在手機中,但隨著5G的推出,無線通訊的控制需求也擴展到汽車、物聯網和其他使用案例上,這也影響了現況。有鑑於此,開發MIPI RFFE v3.0的目的在於讓使用案例不僅局限於行動裝置,並針對當今3GPP 5G標準中定義的更高計時精準度和更短延遲時間,滿足一些前所未有的需求。
為了因應5G的需求,在更短時間內完成動態配置更改,最新推出的v3.0為介面的觸發器提供了多項增強措施。各種觸發器可用於讓RF子系統能夠在極嚴時間控制下配置多部RF裝置,以及在一部從屬裝置內或跨多部裝置間同步暫存器設定變更:
・定時觸發器(Timed Trigger):
可為無數使用中的載波聚合組態提供更嚴格的同步時間控制(圖2)。
讓多項控制功能可重新映射至特定的延伸觸發器(圖3)。
增加RF控制系統中可用的獨特觸發器的數量。延伸觸發器的數量在RFFE v3.0中有所增加,帶來比以往更加複雜的無線電基礎架構。
觸發器會交互作用,為5G不斷擴展的所有頻帶範圍快速設定並靈活地重新設定RF前端。舉例而言,對於連續(Back-to-back)觸發器操作,MIPI RFFE v3.0將計時精準度改善了20倍。如此一來,新版規格的設計目的便在於提升通量效率,減少封包延遲和錯誤,協助確保5G裝置能夠在關鍵顧客和商業功能的核心提供高效能RF功能。
此外,有了v3.0帶來的靈活度,設計系統時也能減少RF面板上的RFFE匯流排數量。介面的可映射觸發器會啟動動態重新映射,以觸發作業來處理隨著逐步增加的潛在RF頻帶數量而增加的上行和下行載波聚合組數量。頻道已經過最佳化,提升了裝置的使用率。另外,所有控制皆集中在單一匯流排內,插腳便被保留在主要基頻收發機上。由於需要協調的不同RFFE匯流排數量變少,軟體因此也可能獲得簡化,進而全面節省成本。
實際標準
5G的實踐是個過程,現今仍僅在非常早期的階段。MIPI RFFE v3.0推出的功能,目的在於讓RF系統設計師能夠把握5G帶來的第一個主要效益,也就是6GHz以下網路頻段的頻率範圍1(FR1)。v3.0讓人們能夠快速、靈活、半自動化和全面地控制多種獨立RFFE子系統,為主流RF市場提供了所需功能,推動當今5G部署的蓬勃發展。
v3.0也相容於先前的RFFE版本,因此系統設計師無需更改MIPI RFFE之實體層。
這是一項關鍵特色,因為RFFE規格廣受仰賴,市場上早有一個龐大的採用者和裝置生態系。RFFE確實已成為RF產業的明確主力。回顧2008年,MIPI RF前端控制工作組開始研發工作時,各裝置仍使用多種方法來管理前端。然多虧過去十年將MIPI RFFE作為中心實際標準,RF技術再也不是一盤散沙。 工作組會持續努力增加新功能,讓使用者社群脫穎而出,收穫益處。事實上,下一代RFFE規格已開始研發,以支援極具時效性的RF前端控制需求,配合5G的大規模多輸入多輸出(MIMO)、在毫米波(24.25GHz至56GHz)頻段中運行的5G新無線電(NR)頻率範圍2(FR2)以及全球正在進行的下一階段5G部署,做好充足準備。
附圖:圖1 5G手機射頻前端設計
圖2 定時觸發器操作概覽
・可映射觸發器(Mappable Trigger):
圖3 可映射觸發器應用範例
・延伸觸發器(Extended Trigger)
資料來源:https://www.2cm.com.tw/…/…/97EE654D60D24D2FB5CA11FC933F8B2D…
lna電路 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 的最佳貼文
#通訊 #數位接收器 #數位訊號處理器DSP #軟體定義無線電SDR
【數位無線電之設計心法】
「類比數位化」可降低尺寸、成本、複雜性並改進製造,關鍵元件包括:集成混頻器、低雜訊放大器 (LNA)、表面聲波濾波器 (SAW filter)、類比數位轉換器 (ADC)、可編程數位調諧器和濾波器。整個無線電系統可再細分為無線電和數位處理器兩個區塊,其中,數位處理器的核心是數位訊號處理器 (DSP),允許開發者透過軟體控制整個無線電接收器,可升級或基於分眾客戶的新功能重新編程。
數位接收器可用於任何類比或數位訊號的調變,有「單載波」和「多載波」兩種類型——前者是傳統的無線電接收器,可在中頻 (IF) 級的類比濾波器產生選擇性,後者是在 ADC 之後的數位濾波器內獲得選擇性。數位接收器的好處在於:在具有調諧到相同頻帶內之不同頻率、多個接收器的應用中,消除了冗餘電路,可實現較小的系統設計並降低成本,蜂巢/無線區域基地台以及使用掃描儀監視多個頻率的監視接收器皆是典型應用。
那麼,該如何處理過採樣 (Oversampling)、增益、欠採樣 (Undersampling)、頻率規劃與混附訊號的「毛刺」(Spur) 問題?且看半導體的通訊專家如何解析。
延伸閱讀:
《ADI 技術文章專區:Basics of Designing a Digital Radio Receiver (Radio 101)》
http://compotechasia.com/microsite/ADI/techarticle.html
(點擊內文標題即可閱讀全文)
#亞德諾ADI
★★【智慧應用開發論壇】(FB 不公開社團:https://www.facebook.com/groups/smart.application/) 誠邀各界擁有工程專業或實作經驗的好手參與討論,採「實名制」入社。申請加入前請至 https://goo.gl/forms/829J9rWjR3lVJ67S2 填寫基本資料,以利規劃議題方向;未留資料者恕不受理。★★