--課程已於 2020 年 11 月更新--
--課程已於 2020 年 11 月更新--
課程說明
本課程將讓你開始使用深度學習技術構建你的第一個人工類神經網路( artifical neural network )。按照我以前的邏輯回歸(logistic regression)課程,我們採用這個基本的構建塊(builing block),並使用Python和Numpy 構建全開的非線性類神經網路。本課程的所有教材都是免費的
我們使用softmax函數將以前的二進制分類模型擴展為多個分類,並且我們使用第一原理導出非常重要的訓練方法稱之為“反向傳播 (backpropagation)”。我會向你說明如何在Numpy中反向傳播代碼,首先是“緩慢的方式”,然後是“快速的方式”使用Numpy功能。
接下來,我們使用 Google 的新 TensorFlow 程式庫實現一個類神經網路。
如果你有興趣開始朝向成為深度學習專業人士這個目標,或者如果你對機器學習和資料科學感興趣,那麼你應該參加這門課程。我們超越了基本模型,例如邏輯回歸和線性回歸,我向你展示一些自動學習特徵的東西。
本課程為你提供了許多實用範例,以便你可以真正了解如何使用深度學習。在整個課程中,我們將實作一個課程專案,該專案將向你展示如何預測使用者在網站上的操作,這些使用者數據包括使用者是否在移動設備上,他/她們查看的產品數量,他/她們在你的網站上停留多長時間,他/她們是否是回訪使用者,以及他/她們訪問的時間。
課程結束時的另一個專案向你展示如何使用深度學習來進行臉部表情識別。想像一下,能夠預測某人的情緒只是基於一張圖片!
在讓你動手做後有了基礎,我提供了一些最新的類神經網路發展的簡要概述-稍微修改的架構和它們用來做什麼。
https://softnshare.com/data-science-deep-learning-in-python/
python線性回歸預測 在 紀老師程式教學網 Facebook 的最佳貼文
[系列文章] 想要學人工智慧,你必須先懂些統計學(繁中)
大家好!今天要分享給大家的,是我在網路上找到的一系列文章:「想要學人工智慧,你必須先懂些統計學」。
這個系列目前出了十四篇,每一篇的連結如下所示:
(01)統計學導論和數據收集: https://is.gd/v7foEL
(02)數據的描述與概括性度量: https://is.gd/5AsDLi
(03)機率與機率分布: https://is.gd/Qj7L6J
(04)方差分析概述: https://is.gd/w9A8Jy
(05)單因素方差分析: https://is.gd/uhy9lF
(06)統計學中的顯著性水平、統計量和P值之間什麼關係?: https://is.gd/f1p9zI
(07)雙因素方差分析: https://is.gd/zfzngJ
(08)相關分析概述: https://is.gd/lJKkf5
(09)相關分析及顯著性檢驗: https://is.gd/jG7CDA
(10)回歸分析概述: https://is.gd/J8TIKA
(11)一元線性回歸: https://is.gd/0ACXDn
(12)回歸方程的顯著性檢驗: https://is.gd/ppAFkf
(13)回歸係數的顯著性檢驗: https://is.gd/PL66lM
(14)利用回歸模型進行預測: https://is.gd/0vMQoj
會找到這一系列文章,是因為我在台大計算機中心的機器學習新班昨天開班了( https://is.gd/lTOecq 耶~~)!課後大家的問題很踴躍!我也從晚間九點下課,回答大家的問題到九點四十分才離開。其中有一位同學問到,他聽了我第一堂課後,知道機器學習很吃統計概念。但他的統計基礎不太好,所以想知道有沒有什麼書籍或文章,可以快速惡補一下統計學的?
於是昨晚回到家後,找了一下資料,發現這一系列的文章寫得不錯,就把這十四篇文章,提供給該位同學,也順便分享給大家參考。希望大家喜歡!
如果你想要一本比較正式的統計書籍,我推薦「程大器」老師的書籍!寫得很好!我自己有買,而且已經很愉快的看完了!您可以在博客來書店找到程老師那兩本統計學的著作:
統計學(上): https://is.gd/Zh63mG
統計學(下): https://is.gd/5uliI9
希望今天的資訊,能夠幫助到想在學機器學習之前,加強統計背景的朋友!如果您有統計學該怎麼學?或者機器學習用到哪些統計學?以及這些統計學該怎麼應用到機器學習...等疑問的話,歡迎在底下留言給我。我會儘快回答您的問題的。
PS: 本文歡迎轉發、按讚、留言鼓勵我一下!您的隻字片語,都是讓我繼續提供好物的動力喔!
--------
看更多的紀老師,學更多的程式語言:
● YOTTA Python 課程購買: https://bit.ly/2k0zwCy
● Facebook 粉絲頁: https://goo.gl/N1z9JB
● YouTube 頻道: https://goo.gl/pQsdCt
● Instagram 日常生活: https://goo.gl/nBHzXC
● Twitter 碎碎念: https://is.gd/xFZeub
如果您覺得這個粉絲頁不錯,請到「評論區」給我一個好評喔!
https://www.facebook.com/pg/teacherchi/reviews/
python線性回歸預測 在 軟體開發學習資訊分享 Facebook 的最讚貼文
講師 Lazy Programmer ( http://bit.ly/2JQxP2s )是一名資料科學家,大數據工程師和全端軟體工程師。碩士論文使用機器學習的 brain-computer 介面。這些幫助語言障礙和行動不變的人與他/她們的家人和照顧者溝通。 曾在網路廣告和數位媒體擔任資料科學家和大數據工程師,以數據建構各種高流量的 web 服務。也曾經使用Hadoop / Pig / MapReduce 建立了新的大數據管道,建立了機器學習模型來預測點擊率,使用線性回歸建立新聞推薦系統,Bayesian Bandits和collaborative filtering,並使用A / B測試驗證結果。
這堂課他將教你運用最新的程式庫如 Tensorflow、Theano、Keras、PyTorch、CNTK、MXNet 建構深度學習系統。 在 AWS 上使用 GPU 更快速地訓練。
✍ 想要學習 Python 程式語言可以從這幾堂課開始
http://bit.ly/2FX77SP
https://softnshare.com/moderndeeplearningpython/