最近幾天之前提過使用的P圖軟體Swar Chia Plot Manager推出新的0.1版 畫面顯示更為清楚, 但舊版的設定無法延續使用 不過水哥發現其實只是多添加幾個部分 其實補上去差異的部分就可以的 差異主要在於通知設定以及任務設定新增了幾個參數 在通知設定的部分 現在新增對於telegram機器人與IFTTT的支援 其實水哥之前接收訊息都是用telegram機器人居多, 但因為之前已經有discord了, 這次就沒有去設定 至於IFTTT, 推測應該可以搭配LINE notify來使用做通知, 不過一樣啦, 看自己常用哪個就用哪種吧! 任務參數的部分 這次新增了排除最終資料夾(skin full destinations)的功能 這樣可以有效排除solo與礦池雙挖的問題!! 像是之前版本, P好一張圖後, 官方錢包就會被加入P好圖的路徑, 因而把原本排除的plot都載入形成雙挖 加入這選項後就能避免... 另一個特性則是CPU親合度(enable cpu affinity)的部分 預先設定好P圖會用到的核心, 這樣就能夠避免減少調度CPU資源時所額外耗費的時間 讓你P圖更有效率 其實windows本身也可以設定這個功能 但預設都是系統管理 若是使用swar的親和性功能, 你在工作管理員內就可以看到預設被排定在哪幾個核心處理作業 以這樣的原則下去設定 就可以在多P的情況下, 盡可能去利用CPU資源而不打結 另外之前對於權重問題沒有太多理解 原來你P過幾個圖之後 可以使用指令python manager.py analyze_logs來分析既有的紀錄檔 他會列出建議的權重值 我們再把權重值填入設定檔中重新啟動即可 舊的設定檔可以前面加# mark掉 可以看到目前水哥設定的與原本預設的還是有段差距 應該是針對不同主機所因應的調整手段吧 0.1版大概就是這樣了 其他都差不多 原本水哥以為沒顯示的phase進度會有改善 沒想到卻還是沒有Orz... 或許~~之後再看看吧, 確實是有越來越好用的趨勢 像是現在都還會標示哪個任務使用哪個暫存硬碟, 連最終會放哪個硬碟都會標示 真是清楚多了@奇雅 希望未來能再進步吧 畢竟才0.1版...
https://mshw.info/mshw/?p=27239
同時也有1部Youtube影片,追蹤數超過12萬的網紅prasertcbs,也在其Youtube影片中提到,สอน matplotlib การสร้าง scatter plot การใช้ scipy ในการคำนวณหาสมการถดถอยเชิงเส้น (linear regression) เพื่อนำมาสร้างเป็น regression line การทำหนดรูปแบ...
「python line plot」的推薦目錄:
- 關於python line plot 在 哪裡好吃哪裡去:神秘的水原誠 Facebook 的最佳貼文
- 關於python line plot 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的精選貼文
- 關於python line plot 在 prasertcbs Youtube 的精選貼文
- 關於python line plot 在 Simple Line Plots | Python Data Science Handbook 的評價
- 關於python line plot 在 Line Plots in Python with Matplotlib - YouTube 的評價
- 關於python line plot 在 How do I plot a line graph with dots for each data point using ... 的評價
- 關於python line plot 在 Introduction to Matplotlib and Line Plots - GitHub 的評價
- 關於python line plot 在 python - How to plot a line graph with extreme value changes ... 的評價
python line plot 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的精選貼文
ในวิชา "วิทยาการคำนวณ" ระดับชั้น ม. 5
ได้ดึงวิชา data science (วิทยาศาสตร์ข้อมูล)
มาปูพื้นฐานให้เด็กๆ ได้เรียนกันแล้ว นับว่าเป็นโชคดี
เพราะวิชาพวกนี้เป็นของสูง กว่าจะสัมผัสก็คงตอนป.ตรี โท เอก
...Continue ReadingIn the subject of ′′ Calculation Theology ′′ class. 5
Pulled data science (data science)
Let's master the foundation for kids to learn. It's considered lucky.
Because these subjects are high to touch. It's probably in the middle of the year. Tri To Aek
Which I will review the content to read roughly. The content is divided into 4 chapters.
.
👉 ++++ Chapter 1-Information is valuable +++++
.
Data science in the textbook. Used by Thai name as ′′ Information Science ′′
This chapter will mention Big Data or big data with lots of valuable information.
And so much role in this 4.0 s both public and private sector.
.
If you can't imagine when you played Google search network, you'll find a lot of information that you can use in our business. This is why data science plays a very important role.
.
It's not surprising that it makes the Data Scientist s' career (British name data scientist) play the most important role and charming and interesting profession of the 21th century.
.
Data science, if in the book, he defines it
′′ Study of the process, method or technique to process enormous amounts of data to process to obtain knowledge, understand phenomena, or interpret prediction or prediction, find out patterns or trends from information.
and can be analysed to advise the right choice or take decision for maximum benefit
.
For Data science work, he will have the following steps.
- Questioning my own interest.
- Collect information.
- Data Survey
- Data Analysis (analyze the data)
- Communication and Results Visualization (Communicate and visualize the results)
.
🤔 Also he talks about design thinking... but what is it?
Must say the job of a data scientist
It doesn't end just taking the data we analyzed.
Let's show people how to understand.
.
The application design process is still required.
To use data from our analytics
The word design thinking is the idea. The more good designer it is.
Which Data Scientists Should Have To Design Final Applications
Will meet user demand
.
👉 ++++ Chapter 2 Collection and Exploration +++++
.
This chapter is just going to base.
2.1 Collection of data
In this chapter, I will talk about information that is a virtual thing.
We need to use this internet.
2.2 Data preparation (data preparation)
Content will be available.
- Data Cleaning (data cleansing)
- Data Transformation (data transformation)
In the university. 5 is not much but if in college level, you will find advanced technique like PCA.
- Info Link (combining data)
2.3 Data Exploration (data exploration)
Speaking of using graphs, let's explore the information e
Histogram graph. Box plot diagram (box plot). Distributed diagram (scatter plot)
With an example of programming, pulls out the plot to graph from csv (or xls) file.
2.4 Personal Information
For this topic, if a data scientist is implementing personal data, it must be kept secret.
.
Where the issues of personal information are now available. Personal Data Protection is Done
.
.
👉 ++++ Chapter 3 Data Analysis ++++
.
Divided into 2 parts:
.
3.1 descriptive analysis (descriptive analytics)
Analyzing using the numbers we've studied since
- Proportion or percentage
- Medium measurement of data, average, popular base.
Correlation (Correlation) relationship with programming is easy.
.
.
3.2 predictive analysis (predictive analytics)
.
- numeric prediction is discussed. (numeric prediction)
- Speaking of technique linear regression, a straight line equation that will predict future information.
Including sum of squared errors
Let's see if the straight line graph is fit with the information. (with programming samples)
- Finally mentioned K-NN (K-Nearest Neighbors: K-NN) is the closest way to finding K-N-Neighborhood for classification (Category)
*** Note *****
linear regression กับ K-NN
This is also an algorithm. One of the machine learning (machine learning, one branch of AI)
Kids in the middle of the day, I get to study.
.
.
👉 +++ Chapter 4 Making information pictured and communicating with information +++
.
This chapter doesn't matter much. Think about the scientist after analyzing what data is done. The end is showing it to other people by doing data visualization. (Better summoning)
.
In contents, it's for example using a stick chart, line chart, circular chart, distribution plan.
.
The last thing I can't do is tell a story from information (data story telling) with a message. Be careful when you present information.
.
.
.
*** this note ***
😗 Program language which textbooks mentioned and for example.
It's also python and R language
.
For R language, many people may not be familiar.
The IT graduate may be more familiar with Python.
But anyone from the record line will surely be familiar.
Because R language is very popular in statistical line
And it can be used in data science. Easy and popular. Python
.
But if people from data science move to another line of AI
It's deep learning (deep learning)
Python will be popular with eating.
.
.
#########
😓 Ending. Even I wrote a review myself, I still feel that.
- The university. 5 is it going to be hard? Can a child imagine? What did she do?
- Or was it right that I packed this course into Big Data era?
You can comment.
.
But for sure, both parents and teachers are tired.
Because it's a new content. It's real.
Keep fighting. Thai kids 4.0
.
Note in the review section of the university's textbook. 4 There will be 3 chapters. Read at.
https://www.facebook.com/programmerthai/photos/a.1406027003020480/2403432436613260/?type=3&theater
.
++++++++++++++++++++
Before leaving, let's ask for publicity.
++++++++++++++++++++
Recommend the book ′′ Artificial Intelligence (AI) is not difficult ′′
It can be understood by the number. End of book 1 (Thai language content)
Best seller ranked
In the MEB computer book category.
.
The contents will describe Artificial Intelligence (A) in view of the number. The end.
Without a code of dizzy
With colorful illustrations to see, easy to read.
.
If you are interested, you can order.
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
Personal like the book. You can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
Sorry, paper book. I don't have it yet. Sorry.
.
✍ Written by Thai programmer thai progammerTranslated
python line plot 在 prasertcbs Youtube 的精選貼文
สอน matplotlib
การสร้าง scatter plot
การใช้ scipy ในการคำนวณหาสมการถดถอยเชิงเส้น (linear regression) เพื่อนำมาสร้างเป็น regression line
การทำหนดรูปแบบของเส้นด้วย linestyle เช่น กำหนดให้แสดงเป็นเส้นประ
การใช้ LaTex ในการแสดงสมการ
=== ดาวน์โหลดไฟล์ตัวอย่างได้ที่ ► https://goo.gl/ypnWO6
เชิญสมัครเป็นสมาชิกของช่องนี้ได้ที่ ► https://www.youtube.com/subscription_center?add_user=prasertcbs
สอน matplotlib ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGRvUsTmO8MQUkIuM1thTCf
สอน Numpy ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFNEpzsCBEnkUwgAwOu_PWw
สอน Jupyter Notebook ► https://www.youtube.com/playlist?list=PLoTScYm9O0GErrygsfQtDtBT4CloRkiDx
สอน Jupyter Lab ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEour5CiwfSnoutg3RyA76O
สอน Pandas ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGsOHPCeufxCLt-uGU5Rsuj
สอน seaborn ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGC9QvLlrQGvMYatTjnOUwR
สอน Python สำหรับ data science ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFVfRk_MmZt0vQXNIi36LUz
สอนภาษาไพธอน Python เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GH4YQs9t4tf2RIYolHt_YwW
สอนภาษาไพธอน Python OOP ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEIZzlTKPUiOqkewkWmwadW
สอน Python 3 GUI ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFB1Y3cCmb9aPD5xRB1T11y
#prasertcbs_matplotlib #prasertcbs_numpy
python line plot 在 Line Plots in Python with Matplotlib - YouTube 的推薦與評價
Buy HP v236w 64GB USB 2.0 Pen Drive only 478 rupees by using the following link link https://amzn.to/3mfka9WBuy ST... ... <看更多>
python line plot 在 How do I plot a line graph with dots for each data point using ... 的推薦與評價
... <看更多>
python line plot 在 Simple Line Plots | Python Data Science Handbook 的推薦與評價
Perhaps the simplest of all plots is the visualization of a single function y=f(x). Here we will take a first look at creating a simple plot of this type. ... <看更多>