從火星探測系統到輔助工業製程,美國工業用 AI 新創 Beyond Limits 如何在台灣做到技術在地化應用?
李佳樺 2021/08/13
從2012 年美國太空總署成功將探測車「好奇號」送上火星至今,已經過了3000多個「火星日」,肩負著火星探測的重要任務,8年來好奇號傳回許多對火星的重要觀察與發現。背後更不為人知的,則是好奇號的 AI 運算系統,其實是由美國新創 Beyond Limits 的團隊建立的,公司發展至今也將觸角伸到能源、先進製造等產業,建立 SaaS 服務,為產業提供 AI 輔助平台,2020 年更獲得 1.3 億美元的投資,拓點到台灣、日本、新加坡、香港等地。
Beyond Limits 將 AI 應用到產業製程的契機,源自於當時跨國石油集團 BP 在墨西哥灣發生的漏油事件,企業希望導入 AI 優化決策過程,合作中也發現了石化能源產業的痛點,研發出石油配方建議系統、石油製程操作檢引系統等 SaaS 產品,不僅受到美國石油公司歡迎,日本市場也買單。
有了日本的先例,這套美國研發出的產品,照理說要拓展到亞洲市場應該不成問題,不料到了台灣卻窒礙難行,甚至需要重新開發不同的產品。
Beyond Limits 的台灣團隊究竟面臨了什麼挑戰?
台灣市場與美國差異大,Beyond Limits 台灣團隊必須如創業般從頭研發產品
台灣分公司總經理張中宜說明,台灣產業的先天特性,讓美國母公司已開發的產品都面臨市場可行性低落的問題,以石油產業的產品舉例,在台灣只有中油、台塑兩個客戶,且台灣的石油公司並不做研發工作,多半直接向國外公司購買配方,因此團隊必須在美國 SaaS 模式 的技術基礎下,研發出符合台灣市場、針對不同產業需求的商品。
「Beyond Limits 在台灣設立公司時的處境,跟重新創業差不多。」張中宜表示,AI 應用產品的開發不僅需要能夠從零開始寫演算法的工程師,也要有懂產業製程的專家團隊,龐大的研發費用與對產業專家的需求,讓每一次產品開發都像募資活動,團隊必須透過產業訪談做足市場研究找到痛點,說服製造公司與他們合作開發能解決產業問題的軟體。
然而開發全新市場對張中宜來說並不陌生。
她曾經在孟加拉創立幫助偏遠地區孩童課輔的非營利組織 e-Education ,第一年就讓偏鄉學子考上孟國最高學府卡達大學,更順勢搭上鼓勵企業與 NPO 合作的開放式創新風潮,讓卡西歐、 AI 新創、安永都找她擔任顧問,執行戰略布局或開發新通路的工作,面對 Beyond Limits 在台灣的難題,團隊選擇了電動車電池研發、面板機器手臂維修與人流異常預警系統等三個產業切入。
延伸既有美國產品技術,尋找合適的台灣在地產業切入開發產品
選擇電動車電池產業與 Beyond Limits 在美國石油產業的經驗有關,研發電池的過程與石油廠研發機油的邏輯相似,痛點都在於漫長的研發過程,就像做菜時要多次嘗試才會知道多少的鹽與油才是最佳的調配一樣,電池配方更要經歷至少半年的實驗,且實驗設計也要在無數次團隊與客戶的交鋒後才能成型,溝通成本相當高昂。
使用 Beyond Limits 導入認知 AI 架構的電池配方建議系統,研發人員只要以自然語言輸入期望的電池規格、價格與電車轉速,系統即可在 43 分鐘內提供數百種配方與實驗方式供選擇,縮短約 2 千倍的研發時間。
Beyond Limits 也在 7 月 29 日宣布與日本的三井物產公司進行策略結盟,以其認知 AI 的核心技術,協助三井投資的液化天然氣廠進行巨量資料分析,並整合作業人員專業知識與數位化作業模式,制定出精簡有效率的解決方案。日本三井整合數位策略部部長常務董事真野雄司氏說,透過與 Beyond Limits 的合作可以改善與再造營運流程,更有效率執行現有事業群的高附加價值項目。
另外,Beyond Limits基於公司在美國既有的輔助風電機維修平台,投入面板機器手臂維修建議系統的開發,「雖然也想在台灣用同一套產品幫助風電產業,也與風電廠陸續接洽,但台灣的風電仍在建設階段,缺乏營運經驗,目前的維修需求也不高。」張中宜談到,市場開發的大方向是要在台灣尋找具備預測維修需求,且市場密集、成熟的產業,公司在與投資人仁寶電腦的合作中,發現光電面板產線中機器手臂的維修概念與風機維修類似,而且痛點也類似:包含高昂的維修成本、未經標準化的維修流程,以及依賴經驗的維修決策。
目前輔助維修系統正與日本機器手臂原廠合作開發,由廠商提供維修資料與產業專家, Beyond Limits 透過 AI 分析維修數據,建立資料背後的邏輯推演,系統最終能判斷機器損壞的原因,並建議耗材種類與維修方式。從管理者的角度能降低維修、備料倉儲成本,對維修人員來說也有可依循的維修建議,長遠更能累積產業知識 ( domain know-how ) ,促進升級。
以邊緣運算技術,與北捷合作開發人流異常預警系統
而將技術從太空拉回到地面,Beyond Limits 也能在大眾運輸犯罪預警上有所發揮。他們與北捷合作,使用等同於在火星探測時、消弭與地球時差的邊緣運算技術,原理是透過分散式的運算提升效率,達成在監控系統的邊緣節點就進行異常人流的辨別,降低反應時間落差。
張中宜舉例,正常的人流像是乘客擠進車廂內的固定位置,開始滑手機,異常的人流可能是人群往四面八方散去,產生快速移動的樣態,異常訊息可以在 10 秒內將送到中控室,大幅縮減以往需要 4 分鐘以上的訊號傳輸時間,也能避免踩到人臉辨識的紅線,未來希望擴張應用到大樓監控,或是銷往他國的大眾運輸系統。
源自NASA,認知型AI成為技術優勢與門檻
與其他單純使用機器學習技術分類數據並預測結果的數值 AI 系統不同,Beyond Limits 的 AI 服務融合了數值 AI 與符號 AI ,前者的數值 AI 是透過大量數據讓模型認知「此為何物」,而符號 AI 則是藉由邏輯定義數值 AI 判斷的結果是好還是壞,並加以做出決策與判斷,以電池配方為例,將實驗室過去的實驗數據導入數值 AI 系統後,會得出樹種配方組合,再藉由符號 AI 判斷個配方辦法的優劣,並給予客戶回饋與建議。藉由結合數值 AI 與符號 AI 兩大系統的結合,讓人工智慧的每項建議都能以人類可理解的思路解釋,輔助人類做最後決策,也使人機協作的製程模式成為可能。
對於這項技術,張中宜表示這其實是源自於 NASA 將探測器「好奇號」送上火星後,由於火星與地球之間的數值傳遞有時間差,人類基本上不可能遙控好奇號,而且火星上的數據在這之前是 0,所以數值 AI 也無法運作,為了能夠讓好奇號自行在火星上探測與行動,勢必須要模擬人類大腦的認知型 AI 系統,當時才會開發出符號 AI。
根據研究報告,2025 年工業用 AI 規模將達 160 億美元,其應用開發仍具高度可能性,Beyond Limits 在台灣也希望更全面地研發產品打進該市場。除了正在培養市場的風電產業外,未來也希望協助優化晶圓半導體產業的製程,團隊更積極與社會、產業溝通,讓社會了解 AI 進入產業能讓人類更有餘力進行創意發想與決策,也讓產業正視轉型需求,近期將與台灣新創基地合作舉辦 AI 科普講座,持續促進製造業的人機共榮合作。
創業快問快答
Q:服務的創意來源,是因為發生甚麼事情而有這樣的想法?
A:台灣數位轉型瓶頸
Q:創業至今,做得最好的三件事為何?
A:用國際薪資招聘頂尖人才、台灣市場國際定位清楚、客戶分潤共創模式的商業模式
Q:要達到下一步目標,團隊目前缺乏的資源是?
A:能見度
附圖:BeyondLimits 台灣總經理 張中宜
Beyond Limits 以數值AI及符號AI兩大關鍵技術,達到人機互補智能
圖片來源 : Beyond Limits
擠捷運
圖片來源 : diGital Sennin on Unsplash
圖說:BeyondLimits Hybrid AI導入流程說明
BeyondLimits Hybrid AI導入流程說明
圖片來源 : BeyondLimits
資料來源:https://meet.bnext.com.tw/articles/view/47993?fbclid=IwAR2HbB5FrPIBoV9kDL27OnhNF-JDNzfYdsoLoVKn85yAA7GUjzDzI3y5Lw0
同時也有3部Youtube影片,追蹤數超過4萬的網紅負能量宅肥窮魯蛇 Zackexplosion,也在其Youtube影片中提到,我認為區間測速不該存在的主要原因 而這原因,就是 隱私 前幾天看到邱委員的這篇,我實在不是很認同 - 首先,不得不說邱委員是所有現任立委中最關注交通議題的 但我認為區間測速不單單是交通議題而已 雖然不合理的設置跟跟荒妙的速限都是事實 雖然不合理的設置跟跟荒妙的速限都是事實 雖然不合理的設置跟...
「人臉辨識系統原理」的推薦目錄:
- 關於人臉辨識系統原理 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於人臉辨識系統原理 在 緯育TibaMe Facebook 的最佳解答
- 關於人臉辨識系統原理 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
- 關於人臉辨識系統原理 在 負能量宅肥窮魯蛇 Zackexplosion Youtube 的最佳解答
- 關於人臉辨識系統原理 在 范琪斐 Youtube 的最讚貼文
- 關於人臉辨識系統原理 在 侯友宜 houyuih Youtube 的精選貼文
- 關於人臉辨識系統原理 在 臉部辨識系統原理在PTT/Dcard完整相關資訊 - 萌寵公園 的評價
- 關於人臉辨識系統原理 在 臉部辨識系統原理在PTT/Dcard完整相關資訊 - 萌寵公園 的評價
- 關於人臉辨識系統原理 在 AI人臉辨識應用大躍進科技運作原理全面解析| Facebook 的評價
人臉辨識系統原理 在 緯育TibaMe Facebook 的最佳解答
#每日5分鐘快速添補ai知識與技能
影像辨識是什麼?都應用在哪?
⠀⠀
將影像輸入至分析的儀器中來進行影像分析,
廣泛應用在影像監控系統。
⠀⠀
而透過影像分析設定,
可以針對入侵者、移動物體、火焰、煙霧…
等進行特殊事件觸發設定,
具有提早預警的效果。
⠀⠀
終極目標就是教導機器能夠像人⼀樣理解所見之物,
像是:識別物品、辨認人臉、推論物體的幾何形態,
從中理解其中的關聯、情緒、動作及意圖。
電腦要達成這個目標的第一步,就是教它如何辨別物品。
⠀⠀
影像識別的4個基本原理👇
https://blog.tibame.com/?p=19092
⠀⠀
#AI60問 #影像辨識 #影像識別
【AI/資料科學不可不知的60道問題】
具備AI跨域知識,為職場技能加分💪
#TibaMe #緯育TibaMe #知識 #學習 #科技
人臉辨識系統原理 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改
人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警
2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室
本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免代測狀況發生。且利用區塊鏈不可修改的特性,將車輛與人臉資料串上區塊鏈,以確保駕駛人的不可否認性。
長長期以來「酒駕」都是一個很嚴肅且必須被重視的議題,儘管在2019年立法院修法酒駕及拒絕酒測的罰則,但是抱持僥倖心態的人還是數不勝數,導致因酒駕釀成車禍的悲劇還是一再重演,讓不少的家庭因此破滅。
據統計,從2015年到2018年的酒駕取締件數都逾10萬件,而因為酒駕車禍的死亡人數逾百人。在2019年酒駕新制上路以後,2020年警方酒駕取締件數有明顯下降至約6萬件,雖然成功達到嚇阻效果,但是死亡人數仍與去年前年持平,可見離完全遏止酒駕還有很長的路需要努力。
立法院於2018年三讀通過了「道路交通管理處罰條例部分條文修正案」,酒駕者必須重新考照,並且只能駕駛具有酒精鎖(Alcohol Interlock)的車輛,所謂酒精鎖,屬於車輛點火自動鎖定裝置,在汽車發動前必須進行酒測,通過才能將汽車發動,而且在每45分鐘至60分鐘後酒精鎖系統就會要求駕駛人在一定時間內進行重新酒測,以便防範在行車過程中有飲酒的情況發生,若駕駛人未遵守其要求,車子就會強制熄火並鎖死,必須回酒精鎖服務中心才能將鎖解開。
由於法案的方式無法完全遏止酒駕,因此許多創新科技或是企業致力於研究相關科技來解決酒駕的問題。
其中本田(Honda)汽車與日立(Hitachi)公司研發出手持型酒精含量檢測裝置,讓駕駛人必須在駕駛之前都先進行酒測,若酒精濃度超標就會將汽車載具上鎖,藉此避免酒駕意外或事故發生,且該技術結合了智慧鑰匙功能,若偵測到酒測值超標,車輛中的顯示面板將會發出警告訊號告知駕駛人,避免酒駕上路之問題。
另一方面則是解決酒精殘值之問題,因為有許多駕駛人都會認為,休息一下後,身體也無感到不適,即駕車出門,等到駕駛人被警方臨檢時才知道酒測未通過,因此收到罰單,甚至是吊銷駕照處罰等。
根據醫學研究指出,酒精是在人體體內由肝臟代謝,實際代謝時間必須看體質以及飲酒量而定。台灣酒駕防制社會關懷協會建議,喝酒後至少要10至20小時後再駕車比較安全。多數人無具備酒精代謝時間的觀念,導致駕駛人貿然上路,待意外發生或罰單臨頭時,已經為時已晚。
背景知識說明
本文介紹的方法為酒精鎖結合攝影鏡頭進行人臉辨識,並將人臉特徵資料與車輛資料串上區塊鏈,並利用區塊鏈不可篡改的特性,來避免駕駛人在解鎖酒精鎖時發生他人代測的問題。
由於人臉辨識技術具備防偽性、身分驗證的特性,因此將酒精鎖的技術結合人臉辨識,便可確認為駕駛本人。
何謂人臉辨識
人臉辨識技術屬於生物辨識的一種,基於人工智慧、機器學習、深度學習等技術,將大量人臉的資料輸入至電腦中做為模型訓練的素材,讓電腦透過演算法學習人類的面部特徵,藉以歸納其關聯性最後輸出人臉的特徵模型。
目前人臉辨識技術已經遍佈在日常生活之中,其應用面廣泛,最為常見的應用即為智慧型手機的解鎖、行動支付如LINE Pay、Apple Pay等,其他應用還包括行動網路銀行、網路郵局、社區大樓門禁管理系統、企業監控系統、機場出入關、智能ATM、中國天眼系統等。一般來說,人臉辨識皆具備以下幾個特性:
‧ 普遍性:屬於任何人皆擁有的特徵。
‧ 唯一性:除本人以外,其他人不具相同的特徵。
‧ 永續性:特徵不易隨著短時間有大幅的改變。
‧ 方便性:人臉辨識容易實施,設備容易取得,如相機鏡頭。
‧ 非接觸性:不須直接接觸儀器,也可以進行辨識,這部分考量到衛生問題以及辨識速度。
人臉辨識透過人臉特徵的分析比對進行身分的驗證,別於其他生物辨識如虹膜辨識、指紋辨識,無須近距離接觸,也可以精準地辨識身分,且具有同時辨識多人的能力。因應新冠肺炎疫情肆虐全球,人臉辨識技術也被用來管理人來人往的人流。人臉辨識的儀器可以搭配紅外線攝影機來測量人體體溫,在門禁進出管制系統中,利於提高管理效率,有效掌握到進出人員的身分,以及幫助衛生福利部在做疫調時更容易掌握到確診病患行經的足跡。
人臉辨識的步驟
人臉辨識的過程與步驟,包括人臉偵測、人臉校正、人臉特徵值的摘取,進行機器學習與深度學習、輸出人臉模型,從影像中先尋找目標人臉,偵測到目標後會將人臉進行預處理、灰階化、校正,並摘取特徵值,接著人臉資料交給電腦進行機器學習與深度學習運算,最後輸出已訓練好的模型。相關辨識的步驟,如圖1所示。
人臉偵測
基於Haar臉部檢測器的基本思想,對於一個一般的正臉而言,眼睛周圍的亮度較前額與臉頰暗、嘴巴比臉頰暗等其他明顯特徵。基於這樣的模式進行數千、數萬次的訓練,所訓練出的人臉模型,其訓練時間可能為幾個小時甚至幾天到幾周不等。利用已經訓練好的Haar人臉特徵模型,可以有效地在影像中偵測到人臉。
Python中的Dilb函式庫提供了訓練好的人臉模型,可以偵測出人臉的68個特徵點,包括臉的輪廓、眉毛、眼睛、鼻子、嘴巴。基於這些特徵點的資料就能夠進行人臉偵測,如圖2~4所示。圖中左上角的部分是偵測到的分數,若分數越高,代表該張影像就越可能是人臉,右側括弧中的編號代表子偵測器的編號,代表人臉的方向,其中0為正面、1為左側、2為右側。
人臉的預處理
偵測到人臉後,要針對圖片進行預處理。通常訓練的影像與攝影鏡頭拍出來的照片會有很大的不同,尤其會受到燈光、角度、表情等影響,為了改善這類問題,必須對圖片進行預處理以減少這類的問題,其中訓練的資料集也很重要:
‧ 幾何變換與裁剪:將影像中的人臉對齊與校正,將影像中不重要的部分進行裁切,並旋轉人臉,並使眼睛保持水平。
‧ 針對人臉的兩側用直方圖均衡化:可以增強影像中的對比度,可以改善過曝的影像或是曝光不足的問題,更有效地顯示與取得人臉目標的特徵點。
‧ 影像平滑化:影像在傳遞的過程中若受到通道、劣質取樣系統或是受到其他干擾導致影像變得粗糙,藉由使用圖形平滑處理,可以減少影像中的鋸齒效應和雜訊。
人臉特徵摘取
關於人臉特徵摘取,相關的技術說明如下:
‧ 歐式距離:人臉辨識是一個監督式學習,利用建立好的人臉模型,將測試資料和訓練資料進行匹配,最直觀的方式就是利用歐式距離來計算所有測試資料與訓練資料之間的距離,選擇差距最小者的影像作為辨識結果。由於人臉資料過於複雜,且需要大量的訓練集資料與測試集資料,會導致計算量過大,使辨識的速度過於緩慢,因此需要透過主成分分析法(Principal Components Analysis,PCA)來解決此問題。
‧ 主成分分析法:主成分分析法為統計學中的方法,目的是將大量且複雜的人臉資料進行降維,只保留影像中的主成分,即為影像中的關鍵像素,以在維持精確度的前提下加快辨識的速度。先將原本的二維影像資料每列資料減掉平均值,並計算協方差矩陣且取得特徵值與特徵向量,接著將訓練集與測試集的資料進行降維,讓新的像素矩陣中只保留主成分,最後則將降維後的測試資料與訓練資料做匹配,選擇距離最近者為辨識的結果。由於影像資料經過了降維的步驟,因此人臉辨識的速度將會大幅度地提升。
‧ 卷積神經網路:卷積神經網路(Convolutional Neural Network,CNN)是一種神經網路的架構,在影像辨識、人臉辨識至自駕車領域中都被廣泛運用,是深度學習(Deep Learning)中重要的一部分。主要的目的是透過濾波器對影像進行卷積、池化運算,藉此來提取圖片的特徵,並進行分類、辨識、訓練模型等作業。在人臉辨識的應用中,首先會輸入人臉的影像,再透過CNN從影像提取像素特徵並轉換成特定形式輸出,並用輸出的資料集進行訓練、辨識等等。
何謂酒精鎖
酒精鎖(圖5)是一種裝置在車輛載體中的配備,讓駕駛人必須在汽車發動前進行酒測,通過後才能將車輛發動。且每隔45分鐘至60分鐘會發出要求,讓駕駛人在時間內再次進行檢測。
根據歐盟經驗,提高罰款金額以及吊銷駕照只有在短期實施有效,只有勸阻的效果,若在執法上不夠嚴謹,被吊照者會轉變成無照駕駛,因此防止酒駕最有效的方法就是強制讓駕駛人無法上路,這就是「酒精鎖」的設計精神。
在本國2020年3月1日起酒駕新制通過後,針對酒駕犯有了更明確且更嚴厲的規定,在酒駕被吊銷駕照者重考後,一年內車輛要裝酒精鎖,未通過酒測者無法啟動,且必須上15小時的教育訓練才能重考,若酒駕累犯三次,要接受酒癮評估治療滿一年、十二次才能重考。
許多民眾對於「酒精鎖」議論紛紛,懷疑是否會發生找其他人代吹酒精鎖的疑慮,為防範此問題,酒精鎖在啟動後的五分鐘內重新進行吹氣,且汽車在行駛期間的每45至60分鐘內,便會隨機要求駕駛重新進行酒測,如果沒有通過測量或是沒有測量,整合在汽車智慧顯示面板的酒精鎖便會發出警告,並勸告駕駛停止駕車。
對於酒精鎖的實施,目前無法完全普及到每一台車子,而且對於沒有飲酒習慣的民眾而言,根本是多此一舉,反而增加不少麻煩給駕駛。若還有每45~60分鐘的隨機檢測,會導致多輛汽車必須臨時停靠路邊進行檢測,可能加劇汽車違規停車的發生頻率。
認識區塊鏈
區塊鏈技術是一種不依賴於第三方,透過分散式節點(Peer to Peer,P2P)來進行網路數據的存儲、交易與驗證的技術方法。本質上就是一個去中心化的資料庫,任何人在任何時間都可以依照相同的技術標準將訊息打包成區塊並串上區塊鏈,而這些被串上區塊鏈的區塊無法再被更改。區塊鏈技術主要依靠了密碼學與HASH來保護訊息安全,也是賦予區塊鏈技術具有高安全性、不可篡改性以及去中心化的關鍵。區塊鏈相關概念,如圖6所示。
區塊鏈的原理與特性
可以將區塊鏈想像成是一個大型公開帳本,網路上的每個節點都擁有完整的帳本備份,當產生一筆交易時,會將這筆交易廣播到各個節點,而每個節點會將未驗證的交易HASH值收集至區塊內。接著,每個節點進行工作量證明,選取計算最快的節點進行這些交易的驗證,完成後會把區塊廣播給到其他節點,其他節點會再度確認區塊中包含的交易是否有效,驗證過後才會接受區塊並串上區塊鏈,此時就無法再將資料進行篡改。
關於區塊鏈的特性,可分成以下四部分做說明:
1. 去中心化:區塊鏈其中一個最重要的核心宗旨,就是「去中心化」,區塊鏈採用分散式的點對點傳輸,該概念架構中,節點與節點之中沒有所謂的中心,所有的操作都部署在分散式的節點中,而無須部署在中心化機構的伺服器,一筆交易或資料的傳輸不再需要第三方的介入,因此又可以說每個節點就是所謂的「中心」。這樣的結構也加強了區塊鏈的穩定性,不會因為其中的部分節點故障而癱瘓整個區塊鏈的結構。
2. 不可篡改性:透過密碼學與雜湊函數的運用來將資料打包成區塊並上鏈,所有區塊都有屬於它的時間戳記,並依照時間順序排序,而所有節點的帳本資料中又記錄了完整的歷史內容,讓區塊鏈無法進行更改或是更改成本很高,因此使區塊鏈具備「不可篡改性」,並且同時確保了資料的完整性、安全性以及真實性。
3. 可追溯性:區塊鏈是一種鏈式的資料結構,鏈上的訊息區塊依照時間的順序環環相扣,這便使得區塊鏈具有可追溯的特性。可追本溯源的特性適用在廣泛的領域中,如供應鏈、版權保護、醫療、學歷認證等。區塊鏈就如同記帳帳本一般,每筆交易記錄著時間和訊息內容,若要進行資料的更改,則會視為一筆新的交易,且舊的紀錄仍會存在無法更動,因此仍可依照過去的交易事件進行追溯。
4. 匿名性:在去中心化的結構下,節點與節點之間不分主從關係,且每個節點中都擁有一本完整的帳本,因此區塊鏈系統是公開透明的。此時,個人資料與訊息內容的隱私就非常重要,區塊鏈技術運用了HASH運算、非對稱式加密與數位簽章等其他密碼學技術,讓節點資料在完全開放的情況下,也能保護隱私以及用戶的匿名性。
區塊鏈與酒精鎖
由於區塊鏈的技術具備去中心化、記錄時間以及不可篡改的特性,且更加強酒精鎖的檢測需要身分驗證的保證性。當進行酒精鎖檢測解鎖時,系統記錄駕駛人吹氣時間以及車輛的相關資訊,還有人臉特徵資料打包成區塊並串上區塊鏈。因此,在同一時間當監控系統偵測到當前駕駛人與吹氣人不同時,此時區塊鏈中所記錄的資料便能成為一個強而有力的依據,同時也能讓其他的違規或違法事件可以更容易進行追溯。
酒駕防偽人臉辨識系統介紹
為了解決酒精鎖發生駕駛人代測的問題,酒精鎖產品應導入具有身分驗證性的人臉辨識技術。酒駕防偽人臉辨識系統即為駕駛人在進行酒精鎖解鎖時,要同時進行人臉辨識,來確保駕駛人與吹氣人為同一人。
在駕駛座前方的位置會安裝攝影鏡頭,作為駕駛的監控裝置。進行酒測吹氣的人臉資料將會輸入到該系統中的資料庫儲存,並將人臉資料以及酒測的時間戳記打包成區塊串上區塊鏈,當汽車已經駛動時,攝影鏡頭將會將當前駕駛人畫面傳回系統進行人臉比對驗證。如果驗證成功,會將通過的紀錄與時間戳一同上傳至區塊鏈,若是系統偵測到駕駛人與吹氣人為不同對象,系統將發出警示要求駕駛停車並重新進行檢測,並同時將此次異常的情況進行記錄上傳到區塊鏈中。
如果駕駛持續不遵循系統指示仍持續行駛,該系統會將區塊鏈的紀錄傳送回給開罰的相關單位,並同時發出警報以告知附近用路人該車輛處於異常情況,應先行迴避。且該車輛於熄火後,酒精鎖會將車輛上鎖,必須聯絡酒精鎖廠商或酒精鎖服務中心才能解鎖。相關的系統概念流程圖,如圖7所示。
區塊鏈打包上鏈模擬
在進行酒測解鎖完畢以及進行人臉資料儲存後,會透過CNN將影像轉換輸出成128維的特徵向量作為人臉資料的測量值,接著將128個人臉特徵向量資料取出,並隨著車輛資訊一起打包到同一個區塊,然後串上區塊鏈。取出的人臉特徵資料,如圖8所示。
要打包成區塊和上鏈的內容,包括了人臉特徵資料、車牌號碼、酒測解鎖時間點等相關輔助資料,接著透過雜湊函數將相關的資料打包成區塊。以車牌號碼ABC-1234為例,圖9顯示將車輛資料和人臉資料進行區塊鏈的打包,並進行HASH運算。
將人臉資料和車輛相關資料作為一次的交易內容,並打包區塊,經過HASH後的結果如圖10所示,其中prev_hash屬性代表鏈結串列指向前一筆資料,由於這是實作模擬情境,並無上一筆資料,其中messages屬性代表內容數,一筆代表車牌資料,另一筆則為人臉資料。time屬性則代表區塊上鏈的時間點,代表車輛解鎖的時間點。
情境演練說明
話說小禛是一間企業的上班族,平時以開車為上下班的交通工具,他的汽車配置了酒駕防偽影像辨識系統,以下模擬小禛下班後準備開車的情境。
已經下班的小禛今天打算從公司開車回家,當小禛上車準備發動車子時,他必須先拿起安裝在車上的酒測器進行吹氣,並將臉對準攝影鏡頭讓系統取得小禛的人臉影像。小禛在汽車發動前的人臉影像,如圖11所示。
待攝影鏡頭偵測到小禛的人臉後,接著系統便會擷取臉上五官的68個特徵點,如圖12所示。然後,相關數據再透過CNN轉換輸出成128維的特徵向量作為人臉資料的測量值,如圖13所示。
酒精鎖通過解鎖後,車輛隨之發動,解鎖成功的時間點將會記錄成時間戳記,隨著影像與相關資料串上區塊鏈。在行駛途中,設置在駕駛座前方的鏡頭將擷取目前駕駛的人臉,以取得駕駛人的128維人臉特徵向量測量值,並且與汽車發動前所存入的人臉資料進行比對,藉以判斷目前的駕駛人與剛才的吹氣人臉是否為同一位駕駛。當驗證通過後,也會再將通過的紀錄與時間戳上傳至區塊鏈中,如此一來,區塊鏈的訊息內容便完整記載了這一次駕車的紀錄,檢測通過的示意圖如圖14所示。
系統通過辨識後,便確認了駕駛人的身分與吹氣人一致。且透過時戳的紀錄和區塊鏈的輔助,也確保了駕駛的不可否認性。若有其他違規事件發生時,區塊鏈的紀錄便成為一個強而有力的依據來進行追溯。
如此一來,便可以預防小禛喝酒卻找其他人代吹酒測器的情況發生。在駕駛的途中,如果有需要更換駕駛人,必須待車輛靜止時,從車載系統發出更換駕駛要求,再重新進行酒測以及重複上述流程,才可以更換駕駛人。如果沒有按照該流程更換駕駛,系統將視為異常情況。
結語
酒駕一直是全球性的問題,將有高機率導致重大交通事故,造成人員傷亡、家庭破碎,進而醞釀後續更多的社會問題,皆是酒駕所引發的不良效益。為了解決酒駕的問題,各個國家都有不同的酒駕標準或是法律規範,但是大部分國家的規範和制度都只有嚇阻作用卻無法完全遏止。在不同的國家防止酒駕的方式不盡相同,有的國家如新加坡,透過監禁及鞭刑來遏止酒駕犯,又或者是薩爾瓦多,當發現酒駕直接判定死刑,這樣的制度雖嚇阻力極強,但是若讓其他國家也跟進,會造成違憲或是違反人權等問題。因此,各國都在酒駕的問題方面紛紛投入研究,想要達到零酒駕的社會。
為達成此理想,本文介紹了基於區塊鏈的酒駕防偽辨識系統,利用酒精鎖搭配人臉辨識技術以及區塊鏈技術,使有飲酒的駕駛人無法發動汽車。且該系統搭載在行車電腦中,結合攝影鏡頭的監控對駕駛進行酒測防制管理,將人臉資料、酒精鎖、解鎖時間點與相關資訊打包成區塊並上鏈。基於區塊鏈技術內容的不易篡改,可加強駕駛人的不可否認性,當汽車發生異常情況時,便能利用有效且可靠的依據進行追溯。人工智慧和物聯網時代已經來臨,透過酒駕防偽辨識系統來改善酒駕問題,在未來能夠普及並結合法規,智慧汽車以及智慧科技的應用將會帶給人們更安全、更便利的社會。
附圖:圖1 人臉辨識的步驟。
圖2 人臉特徵點偵測(正臉)。
圖3 人臉特徵點偵測(左側臉)。
圖4 人臉特徵點偵測(右側臉)。
圖5 酒精鎖。 (圖片來源:https://commons.wikimedia.org/wiki/File:Guardian_Interlock_AMS2000_1.jpg with Author: Rsheram)
圖6 區塊鏈分散式節點的概念圖。
圖7 系統概念流程圖。
圖8 取出人臉128維特徵向量。
圖9 儲存車輛相關資料及人臉資料到區塊。
圖10 HASH後及打包成區塊的結果。
圖11 汽車發動前小禛的人臉影像。
圖12 小禛的人臉影像特徵點。
圖13 小禛的人臉特徵向量資料。
圖14 系統通過酒測檢測者與駕駛人為同一人。
資料來源:https://www.netadmin.com.tw/netadmin/zh-tw/technology/CC690F49163E4AAF9FD0E88A157C7B9D
人臉辨識系統原理 在 負能量宅肥窮魯蛇 Zackexplosion Youtube 的最佳解答
我認為區間測速不該存在的主要原因
而這原因,就是
隱私
前幾天看到邱委員的這篇,我實在不是很認同
-
首先,不得不說邱委員是所有現任立委中最關注交通議題的
但我認為區間測速不單單是交通議題而已
雖然不合理的設置跟跟荒妙的速限都是事實
雖然不合理的設置跟跟荒妙的速限都是事實
雖然不合理的設置跟跟荒妙的速限都是事實
(很重要所以講三次,不然又有一堆奇怪的鄉民眼殘說我在亂噴lol,但本篇沒有要講這部分)
這些也是大家最幹的幹點,但我一直在提倡,也最反對區間測速的點恰恰與委員相反
沒錯,這個有資安疑慮的隱私權問題其實才是最重要的。
我們來看看老早在2018年就生效的歐盟一般資料保護規範法(簡稱GDPR)在維基百科上的部分內容
資料來源:https://reurl.cc/DvoVOQ
-
原則
個人資料的收集應存在適當的限制,進而以合法且公平的方式取得,並且透過適當的方法知會資料來源或者主體,再進一步取得同意。
(不要跟我說區間有掛牌,等看到那牌子最好來得及迴轉離開齁)
保護範圍
個人身份: 電話號碼、地址、車牌等
生物特徵: 歷資料、指紋、臉部辨識、視網膜掃描、相片等
電子紀錄: Cookie、IP 位置、行動裝置 ID、社群網站活動紀錄
(以上幾點內容,就是為什麼最近的網站都會因為Cookie問使用者一堆問題,J點很重要請記得)
法規基礎
被遺忘權 (Right to be forgotten):可以要求控制資料的一方,刪除所有個人資料的任何連結、副本或複製品。
-
以外,我們還要求資料收集方提供我們被收集的資料COPY,這也讓我去年(2020/06) 車子在保養廠整理,結果車牌被拔去開的事情留下了證據,不過這又是另一個故事了,有『需要』的話我再來跟大家分享
圖:https://imgur.com/a/E2v7ZQY
-
接著簡單解釋一下區間測速的原理
區間測速就是用攝影機『監控』所有經過的車輛,利用固定的道路長度,由車輛進入與離開的『時間點』推算出車輛通過的『平均時速』
沒錯,區間測速就是在用路人『未經同意』之下就收集個人資料
他們利用影像辨識,收集了我的車牌,我的行蹤,而且根本不管我有沒有違法!
這也是我最反對的原因!如果我住在坪林,每天不爽給遠通賺錢跑北宜來回,不就等於是每天都告訴政府我幾點回家?幾點上班?
我根本沒有同意這樣的事情啊!
嗯嗯,講到這有些人就會說『啊你不超速就沒事啦』,對啊,不超素就沒事了,但等政府要弄你的時候就出事啦!這樣搞跟強國的人臉辨識,社會信用評價有什麼兩樣?繼續放任這種東西下去就真的兩岸一家親啦
參考:
中國臉部辨識違規闖紅燈系統認錯人,格力電器女總裁中招
https://reurl.cc/e9draR
-
講了那麼多,一定還是有很多人覺得
『啊我又沒做壞事,幹嘛怕這些』
我改變不了這樣的想法,但我想說的是,至少給我們選擇的權利吧!etc雖然做了車牌辨識並記錄,但是在使用者『簽名』同意收集資料前
使用者同意前
使用者同意前
使用者同意前
(這個真的很重要所以要講三次)
ETC連儲值功能都無法開通,甚至連『本人』也無法透過線上系統查詢詳細通行紀錄,只能拿著帳單一筆一筆去超商或其他管道繳費!
比歐盟落後就算了,好歹跟上自家人的etc吧?
雖然etc這樣還是未經同意就收集個人資料(行蹤),但好歹高速公路是完全封閉的系統,我們可以不上高速公路,用海線往返南北,但住在北宜公路上的人們呢?這些人有選擇嗎?
-
所以,請任何一個單位在收集大家的個人資料前,至少先過問,不要弄的大家連選擇的權利都沒了。
喜歡嗎?快來訂♂閱『負能量』的頻道吧!
► https://goo.gl/mJ2Ezn
想出現在遊戲中嘛?趕快來加入頻道會員!
►https://www.youtube.com/channel/UC-r3V6Y2ljXN9kEBq0a5s8A/join
遊戲試玩點這邊(現在只有電腦版)
►https://members.zackexplosion.fun/
抖內肥宅
►https://goo.gl/Qe3ZgR (綠界)
►https://www.paypal.me/zackexplosion ( Paypal )
想要貼紙嗎?點這裡喔
►https://goo.gl/NoEsSL
DISCORD聊天群組
►https://discord.gg/62TBSdj
FB
► https://goo.gl/SmyDfH
IG
►https://www.instagram.com/zackexplosion/
常用BGM
►https://youtu.be/KbUJH8RFCms
爆菊花同意書
► https://goo.gl/cPwBwE
請___簽署這份文件,因為您認為高速/快速公路太危險,而且在不合法的情況下騎上去就沒有素質。
倘若將來,高速公路開放紅黃牌摩托車行駛,與快速道路開放白牌摩托車行駛,本人___同意絕對不在上敘道路上使用摩托車(如:紅黃牌行駛高速公路,白牌行駛快速公路),若違反的話,願意上傳一支自爆菊花影片到社群網站上,表示個人素質與爆菊花決心。
__
近來有許多媒體盜錄影片,拿去當做新聞營利使用。要做新聞報導絕對沒問題,不用聯絡我,但,請寫清楚出處(內文包含影片原始連結或頻道連結),重新上傳之內容不要刻意蓋住片中浮水印即可,請盜錄者自重。
Cameras
► Garmin Virb XE, Samsung Gear 360 ( 2017 )
剪接軟體
► Apple Final Cut Pro X ( Mac 專用 )
#取消禁行機車 #還我高速公路 #不要低能藍藍路 #三讀已過 #認同請分享 #魯蛇 #肥宅 #宅肥 #負能量
人臉辨識系統原理 在 范琪斐 Youtube 的最讚貼文
人臉辨識,就是用科技計算的方式,來比較臉部視覺特徵,藉此鑑定身分的一種電腦技術。
其實我們可以把人臉辨識想像成是一套演算法,各種不同的廠商或公司可能會有不同的演算規則。但整體的邏輯是一樣的,通常會先偵測人臉、然後進行臉部校正與擷取特徵、再進行比對工作。
當攝影機拍到你的時候,它第一步也會先切成一張一張的影格,然後去找到你的臉,就像是我們相機在拍照的時候,它不是會在臉旁邊出現一個框框讓你比較好對焦,這就是使用了人臉偵測的技術。
也因為人臉其實有一些特徵,所系統會開始擷取一些我們臉上出具有「辨別度」的特徵,像是顴骨的形狀啦、眼窩的深度之類的,一張臉大約有80幾個識別點,但也因為拍攝時可能剛好低頭或轉頭,或是受到光線影響之類的,有些系統會在抓取特徵的時候也要進行校正,利用人中啊、眼睛啊或嘴角之類的作為錨點,將人臉校正到同一個比較基準。現在也有2D轉3D的技術,用3D模型來計算你不同角度應該是長什麼樣子。那抓出這些特徵以後呢,這個演算法會把你臉上用這些特徵畫出來的向量,轉換成編碼,於是你這個人獨特的特徵就可以用一串數字來代表,最後再送到資料庫進行比對。
雖然人臉識別這個技術早再很多年前就已經開始發展,但是到這幾年因為電腦計算速度大幅加快、雲端技術成熟,才有較大的進展。而且這樣子一套演算法,還需要透過AI深度學習,模擬我們大腦神經網絡的運作,然後從大規模未標記的資料中學習,來建立出一套演算法、不斷優化出更好的模型。才能讓辨識度越來越準確。
不過即使臉部辨識技術已經發展了一段時間,辨識準確度卻還是有待加強,美國國家標準暨技術研究院 (Nist) 的一項測試就發現,2014年到2018年期間,人臉辨識系統因為深度學習的技術,失敗率從4% 降到 0.2%。BUT!資料庫中的照片跟現實生活中可不一樣,每個人頭擺的角度、臉出現在畫面中的位置、拍攝光線、畫素、有沒有戴帽子、帶圍巾或變老,這些都會影響準確度。而且目前雙胞胎的辨識,還是一大難題。
像是英國南威爾斯警方2017在歐洲足球冠軍賽期間,測試一款全新的AI臉部識別程序,可以搜尋比對資料庫裡面的50萬筆潛在罪犯資料,結果系統在17萬名觀眾當中,配對了2470人為潛在目標,但是錯誤率高達92%。
Amazon 2016年推出影像辨識 AI 系統Rekognition,也曾經把28名國會議員辨識為罪犯,讓大家都嚇到吃手手。美國奧蘭多市政府也從 2017 年開始與 Amazon 合作進行先導計劃,在市內幾個地方架設監視器,實時進行人臉辨識,希望可以找出通緝犯等特定人士,幫助執法。不過在 15 個月的測試中,卻發現系統經常誤判,準確度常常出問題,後來在2019年終止這項合作。
人臉辨識跟很多技術一樣,就是個雙面刃。雖然這項科技已經越來越進步,而且透過電腦的深度學習,讓判讀的準確度大大提升,但它仍然不像DNA那樣,正確度高達99.9%,可以作為決定性的判定標準。
--------------------------------------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在 #寰宇新聞台 播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 1030pm準時上傳完整版!
人臉辨識系統原理 在 侯友宜 houyuih Youtube 的精選貼文
「科技始終來自於人性」這句廣告台詞大部分的朋友們都應該還有印象,而這也是諾基亞Nokia當年成功打入市場的產品核心。以前侯市長也是Nokia的使用者,所以這一次他也開心能率領市府同仁前往位於 #北歐 #芬蘭的「Nokia Executive Experience Center」,親自向Nokia專業團隊學習最新的 #科技 趨勢。
Nokia政府關係主管Mr. Karol Mattila分享他們堅持產品是應用理性的科技原理,並考慮感性的 #人性因素 來設計的,不論是從早期手機製造商到現在成為國際知名的5G網路布建商,已經逐步從提供5G服務的電信商,轉型為數位服務商。現場NOKIA台灣區總經理 #劉明達 展示專為 #智慧城市 發展的「#整合管理中心」,其中路燈結合監視系統非常吸引侯市長,其中民眾在報警同時,警方就能立即透過現場鏡頭去辨識 #語音、 #臉部面貌,並即時傳輸到後端來追緝嫌犯,幾乎沒有秒差的瞬間擷取現場的影像,後端指揮系統便能馬上派遣所需要警力及技術工作人員到場,將傷害降到最低。
以「#科技建警」概念打造「#智慧安全城」一直是市長上任以來的目標,在這次參訪交流中市府團隊回到新北市可以再重新思考如何透過 #大數據、 #AI人工智慧,精準警察勤務,並整合各單位情資,達到有效 #犯罪預防,編織綿密 #社會安全網,同時給警察弟兄最全面的支持。現場也有多項5G情境應用突破我們對於這個名詞的想像,各行各業都能利用5G進行翻轉式的革新。未來5G不只結合 #IoT #物聯網,也能變成一個實體性的發展,侯市長以及市府團隊也會借鏡5G這樣一個技術來幫助新北企業做 #數位轉型。
同時,市長及團隊們在 #瑞典 也拜訪2011年創立的 #Fintech (金融科技)公司「#Findity」,他們主要是幫助客戶把所有差旅、吃飯、出行等 #單據 資訊,進行#數位 和 #自動化,更能以智慧化及簡單化方式管理流程,解決行政耗時及繁瑣等相關問題。現場與數位化收據部門總經理Mr. Patrick Olsson交流後,讓我們對於新北市未來「#簡政便民」的規劃有更新的想法。我也當場邀請Findity團隊到新北創業基地「#新北創力坊」參訪,並提供軟著陸合作機制包含「#場域空間」、「#專業課程」及「#產業串連」等,為雙邊新創團隊及廠商尋求跨國合作機會。
P.S. Findity數位化收據部門總經理Mr. Patrick Olsson送上印有品牌的T-shirt及環保水瓶,市長則回送我們新北市立黃金博物館的「黃金樹飾品架」,因為知道他們是單據數位化的團隊,所以現場就開個小玩笑說讓他們放收據用的。
#以人為本 #國際厚友誼
-趕快來跟侯市長做朋友吧!-
☑️LINE@ https://page.line.me/youyi/timeline/
☑️ 臉書 https://www.facebook.com/houyuih/
☑️ IG https://www.instagram.com/hou.yuih/
人臉辨識系統原理 在 臉部辨識系統原理在PTT/Dcard完整相關資訊 - 萌寵公園 的推薦與評價
關於「臉部辨識系統原理」標籤,搜尋引擎有相關的訊息討論:. 臉部辨識系統- 維基百科,自由的百科全書- Wikipedia臉部辨識系統(Facial recognition system),又稱人 ... ... <看更多>
人臉辨識系統原理 在 AI人臉辨識應用大躍進科技運作原理全面解析| Facebook 的推薦與評價
【動眼看熱鬧】0102_EP69|AI 人臉辨識 應用大躍進科技運作 原理 全面解析. 人臉辨識 ,就是用科技計算的方式,來比較臉部視覺特徵,藉此鑑定身分的一種電腦技術。 ... <看更多>
人臉辨識系統原理 在 臉部辨識系統原理在PTT/Dcard完整相關資訊 - 萌寵公園 的推薦與評價
關於「臉部辨識系統原理」標籤,搜尋引擎有相關的訊息討論:. 臉部辨識系統- 維基百科,自由的百科全書- Wikipedia臉部辨識系統(Facial recognition system),又稱人 ... ... <看更多>