為自己來一場心靈收納運動,降低焦慮提高自控的防疫新生活
近日國內本土疫情升溫,光六天本土案例就已經累積超過五百例,多個縣市都有個案,台灣民眾也人心惶惶,不僅許多公司都宣布居家上班,先前人來人往的街道、捷運、商圈也明顯少了許多人潮。
親愛的,你也因為這波疫情升溫而感到焦慮不安,想做點什麼卻又因不敢出門而感到無力嗎?其實,待在家裡最好的穩定情緒方法之一,就是「整理房間」。
一想到要整理房間,大多數的人都會覺得「好啦!等我有空時就會整理。」或是「好麻煩哦,過一陣子再說!」即使知道房間已經亂無可亂,甚至每天都為了找東西而花上許多時間,有些人對於整理房間還是會選擇「以後再說」。
撇開會立刻行動整理房間的人,我們今天來談談房間凌亂反映了什麼樣的人格特質,尤其最常見的衣服很多而堆的到處都是的「囤積」亂。
衣服對人們而言如同一張張的「對外」的面具,而衣櫃便是裝載面具的空間,因此,如何整理衣服也就象徵了如何收納我們的面具。而當一個人無法收納好衣服時,其實就代表著三種狀態:
1.缺乏自我整合能力
明明你的衣服很多,但會穿的衣服是不是都是那幾件呢?每次換季整理衣服時,是不是都會挖出很多你已經好久沒穿,但總是不會丟的衣服,使得你的衣櫃空間永遠都被那些「不會穿」的衣服給佔據?
之所以留著那些不會穿的衣服,或許是因為你對每件衣服都保有不一樣的回憶,你想藉由保留這些衣服來確認你與那些回憶的連結。然而,這也表示你其實缺乏自我整合的能力,因為一個成熟的個體具備著將事物「內化」的能力,他們會將對人及對事物的價值感收納在心智中並進行自我整合,不需要透過囤積大量物品來確認自己曾經擁有的歷史或記憶。
2.容易有失分寸
當你無法為衣服好好分類整理,而總是將所有衣服都堆在一起,要穿的時候再重新翻過衣服山,這樣的日常行為可能也代表著你容易在不同的場合有失分寸,或做出不合時宜的表現,因為你總是找不到想穿的衣服而隨便穿一件,衣服無論是否穿過也都隨便的丟在一旁,當整個選衣、穿衣的過程持續混亂,久而久之,你生活中的分寸感也就難以掌握。
3.太隨心所欲
若你在疫情期間已經改為居家工作,但你依然無法整理自己的私人空間,這表示你缺乏結構性、過於隨心所欲,而這最直接的影響就是你的工作與生活的界線會混淆;當工作與生活的界線不明時,你不僅無法在工作時專注,你在生活中也會因為無法將工作完全切割而沒辦法好好休息。
親愛的,疫情嚴峻時代,盡可能地待在家就是對你我最好的保護,無論是居家工作,還是需要長時間地在家防疫,若你出現焦慮、情緒難以平靜,無法休息想要做點什麼事情的情況,不妨花點時間好好整理你的房間。
整理房間不外乎幾個關鍵:
分類、收納以及斷捨離;
不知道如何著手的話,就先從衣服區開始吧!從最簡單的分類開始,先從季節分起,接著可以分為外出服、家居服、洋裝等各個類別,同時你也可以將每件衣服分別很常穿、特定時刻會穿、機能服、紀念衣物等。特別注意的是,有的時候我們也會有幾件是新買但不適合的衣服,這很正常,因為每個人的體型、喜好都會隨著年齡或潮流而有所改變,所以別忘了要整理出那些不適合的衣服。
當衣服都進行好分類及挑選後,就可以將不適合及紀念衣物類別以外的收納進衣櫃,而不適合及紀念衣物就是時候做出斷捨離的決定,你可以為這些衣服尋找更適合的人,或是問問自己「我還需要這些衣服來建立意義感嗎?」在自我對話時,相信你可以找出答案。
也許整理房間的這條路對你來說很漫長,但只要你願意踏出整理的第一步,之後也會漸漸適應,且你在清整房間的過程中,不僅能訓練自己有意識地挑選「需要」的衣服,也能建立起清晰的界線,同時你也會感到一絲平靜,當你的情緒開始流動,你的思緒也會更加清晰!
編輯:鄭寧
同時也有1部Youtube影片,追蹤數超過0的網紅Keng Sports,也在其Youtube影片中提到,今天來拜訪阿耕大學同學宗霖剛開幕的工作室,宗霖從學生時期一直到畢業不斷在學習肌力訓練、體能訓練以及運動防護,他所成立的「 #凝聚運動顧問」整合了「結構訓練」、「傷害預防」、「競技運動整合」,一起跟著阿耕、雅喬的腳步來看看「凝聚運動顧問」 凝聚運動顧問CicoStudio 粉絲專頁:https://...
結構性整合訓練 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
迎接終端AI新時代:讓運算更靠近資料所在
作者 : Andrew Brown,Strategy Analytics
2021-03-03
資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。
這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。
資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。
對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。
與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。
資料正在帶動從集中化到分散化的轉變
隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。
智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。
從邊緣到終端:AI與ML改變終端典範
在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。
在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。
終端AI:感測、推論與行動
在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。
處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。
感測
處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。
它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。
推論
終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。
例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。
行動
資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。
終端 AI:千里之行始於足下
從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。
這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。
隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。
TinyML、MCU與人工智慧
根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」
微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。
物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。
受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。
儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。
如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。
AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。
終端智慧對「3V」至關重要
多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。
Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。
如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:
震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
垂直市場中有多種可以實作AI技術的使用場景:
震動
可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:
溫度監控;
壓力監控;
溼度監控;
物理動作,包括滑倒與跌倒偵測;
物質檢測(漏水、瓦斯漏氣等) ;
磁通量(如鄰近感測器與流量監控) ;
感測器融合(見圖7);
電場變化。
一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。
語音
語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。
在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。
語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。
對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。
視覺
正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。
曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。
使用場景
預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。
震動分析
這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。
磁感測器融合
磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。
聲學分析(聲音)
與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。
聲學分析(超音波)
聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。
熱顯影
熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。
消費者與智慧家庭
將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。
消費者基於各種理由使用智慧音箱,最常見的使用場景為:
聽音樂;
控制如照明等智慧家庭裝置;
取得新聞與天氣預報的更新;
建立購物與待辦事項清單。
除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。
終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。
健康照護
用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。
其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。
結論
由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。
解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。
儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。
終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。
附圖:圖1:從集中式到分散式運算的轉變。
(資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
圖2:全球上網裝置安裝量。
(資料來源:Strategy Analytics)
圖3:深度學習流程。
圖4:MCU的視覺、震動與語音。
(資料來源:意法半導體)
圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
(資料來源:意法半導體)
圖6:物聯網企業對企業應用的使用-目前與未來。
(資料來源:Strategy Analytics)
圖7:促成情境感知的感測器融合。
(資料來源:恩智浦半導體)
資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI
結構性整合訓練 在 中醫師 李嘉菱 Facebook 的最佳解答
書籍推薦 筋膜解密:洞悉藏身在肌肉、器官與骨骼間的神祕網絡
Fascia: what it is and why it matters
感謝 Elsevier醫學資訊站 給我這個機會,讓我搶先可以讀到這本筋膜解密及寫下讀書心得。
大家都應該知道Netter這名醫學插畫家吧,作者與朋友聊天開了個玩笑,「筋膜到底是什麼?筋膜就是你不會在Netter 書上看到的東西。」
那麼其他西方醫學大家又是怎麼定義筋膜的呢?
膜是為了包裹覆蓋增強每個部分,保護不受下方骨頭傷害,供養其上的血管,各部位的一致性取決於纖維連結。(Douglas 1707)
筋膜是指不同長度厚度的纖維薄層,分布在身體的不同區域包覆保護器官。(Wilson 1892)
筋膜是厚度與強度各異的纖維網狀組織,遍佈人體的各個部分包覆助較軟且較纖細的器官。(Gray 1893)
而在筋膜研究大會上筋膜是這樣定義的:「筋膜是鞘,薄膜,或者是在任何皮膚底下形成可分離的結締組織聚合物,用於覆著包裹和分離肌肉及其他內部器官。」
筋膜也可分成四個區塊:淺層筋膜,深層筋膜,腦膜筋膜,內臟筋膜。
最早的生物力學之父Giovanni Alfonso Borelli 出版了論動物運動I與II,這兩本書將動物比擬為機器,以槓桿系統,滑輪來描述身體的運動方式,但可惜的是這些形容不是那麼正確,搬運或撐住身體的能力來自於筋膜的張力整體,與工程方面非常相關,拉張整體來自與張力以及完整兩個單字,簡單來說就是推與拉達到相輔相乘的效果,拉張整體可以在小範圍內連續傳遞張力,張力如果降低能夠讓壓力減輕,人體的拉張整體就是人體的兩百多根骨頭受到筋膜韌帶與肌腱所產生的張力來抵抗重力。
筋膜有可能是身心之間連結的管道嗎?
在大腦的腦膜包含了硬腦膜,蛛網膜和軟腦膜。軟腦膜包覆著整個大腦外圍,並延伸到製造腦脊髓液的室管膜,主要成分為網狀纖維和膠原纖維。
在心臟部分,心肌最豐富的細胞是纖維母細胞,只要筋膜的纖維母細胞能做到的事,心肌都做得到,因此心肌的纖維母細胞能力非常的強大。
本書也敘述了診斷與治療筋膜的方式,也越來越多科技方式能夠輔助診斷,例如觸診科技可用壓力痛覺計,記錄僵硬及延展性的肌肉功能檢測器,超音波也可觀察到身體內的器官與組織。
筋膜導向的治療就連針灸都可以產生相當大的效果,像是筋膜適能可以放鬆及訓練筋膜,筋膜鬆動術則可加強筋膜在運動控制及姿勢控制,筋膜伸展療法則可作筋膜與關節囊的持學牽引伸展,肌筋膜放鬆法可以從結構性放鬆性和回彈性在筋膜上著手,肌筋膜的能量長度技術手法,筋膜運動,肌筋膜的肌痛點療法,結構整合法,內臟鬆弛術都是非常好的方式。
本書作為了解肌筋膜的入門書,介紹了各種筋膜與大腦,神經,器官與解剖的關係,非常值得購買,我們在這邊也提供了兩本要送給大家,請在下方留言為什麼你想要看這本書,我們將在0902抽出2名得獎者,謝謝大家。
購書連結:
https://www.books.com.tw/products/0010868996?sloc=main
作者網站:
http://www.davidlesondak.com/
結構性整合訓練 在 Keng Sports Youtube 的最讚貼文
今天來拜訪阿耕大學同學宗霖剛開幕的工作室,宗霖從學生時期一直到畢業不斷在學習肌力訓練、體能訓練以及運動防護,他所成立的「 #凝聚運動顧問」整合了「結構訓練」、「傷害預防」、「競技運動整合」,一起跟著阿耕、雅喬的腳步來看看「凝聚運動顧問」
凝聚運動顧問CicoStudio 粉絲專頁:https://goo.gl/yNCCb5
凝聚運動顧問CicoStudio Instagram:https://goo.gl/vYGkAi
課程、服務預約:https://ppt.cc/f8wAmx
#Keng_Sports #Keng_Athlete
2019線上訓練課程FIRST CALL:https://www.surveycake.com/s/yoyWe
![post-title](https://i.ytimg.com/vi/zCTvPh7gn3o/hqdefault.jpg)