#無線感測網路WSN #低功耗廣域網路LPWAN #人工智慧AI #機器學習MachineLearning #自組織映射圖SOM #倒傳遞類神經網路BPNN #精準農業PA #無人機UAV
【AI 非萬能,但可洞悉趨勢、提升決策品質】
有沒發現,近年來除了電力吃緊,「水情」也讓人憂心,無論是水庫告急或暴雨氾濫成災;而當全球人口數往 75 億逼近後,糧食危機亦悄然而至,特別是安全、無毒的純良食材,恐更加難能可貴。想擁有優質生活,友善環境、順天應人,方為長久之計。在眾多智慧應用中,有一塊「智慧水庫」操作與智慧型即時淹水預報,更深深牽動我們的生活。國際期刊曾做過研究:受惠於科技的發達,天災所造成的傷害其實正在減少,唯有「洪災」因氣候變遷反而越見凶猛、且不確定大。
部分建築專家認為水利工程、加高堤防會破壞景觀以及人與河岸親水性。但有時就是那麼不起眼的 1 公尺些微差距,就會讓洪水趁隙而入;因為機率是非線性的,砍了一、兩公尺的堤防高度,原有防護力可能因此少了三、四成!城市排水溝、下水道承載力也有限,做好預警才能真正防患於未然。例如,利用設立於路旁的電信箱、將感測器偵測到的水位上升數據傳送到水利署;然而,這種離散型的小量傳輸只能知悉局部、無法全盤掌握整個區域的概況。
俗話說:「旱的旱死、澇的澇死」,過猶不及,皆非我們所樂見。為製作淹水潛勢圖供防災,多採取傳統定點測量配合模擬方式進行,但問題又來了:一是借用物理和數學推導出的模擬結果,與真實資料差距不小;二是需要很長時間做模擬,只能離線操作且是靜態資料;三是若欲在各縣市單位建置私有雲以便即時運算處理,有經費壓力。所幸,AI 在此可發揮作用;儘管資料量大、網格數多,依然能做到精緻化預報,包括配合 Google 地圖做模擬仿真,讓人們對區域更有感。
不過,AI 準確度是奠基於原始資料之上,若資料本身不夠精確或數量太少,AI 亦施力有限。在無法強求資料準確的情況下,借助 LoRa 等低功耗廣域網路 (LPWAN) 技術全面建置感測器以採集數據,至少能先抓到地域趨勢、調整並建立模型,有以下好處:1.可在數秒內算出各網格 (區里) 之即時淹水資訊,繪製淹水圖;2.軟、硬體需求低,只需一般規格電腦即可運作;3.就算初期缺乏大數據,亦可以二維淹水模擬製造並逐步修正;4. AI 可局部學習,無須重新模擬。
此外,傳統農業靠天吃飯,依節氣、憑經驗、無差異性施作,且農作方式效能低落,無法有效提升產量。於是,精準農業 (PA) 成了眾望所歸,而「農業物聯網」的貢獻在於:資訊監控回傳、遠距監控、自動資料採集以及科學化分析、耕作。藉感測器探測農田環境之水質、土壤酸鹼值、日照、溫濕度、氮磷鉀等,並將數據透過網路回傳至資料庫;農友可利用任何可上網的裝置,即時得知上述資訊。「無人機+智慧網+動態大數據分析」,正是建構「精準農業戰情室」的基礎。
延伸閱讀:
《珍愛生命泉源,用 AIoT 體察水情&農糧》
http://compotechasia.com/a/shi__shang_/2018/0604/39009.html
#淡江大學 #東華大學
★★【智慧應用開發論壇】(FB 不公開社團:https://www.facebook.com/groups/smart.application/) 誠邀各界擁有工程專業或實作經驗的好手參與討論,採「實名制」入社。申請加入前請至 https://goo.gl/forms/829J9rWjR3lVJ67S2 填寫基本資料,以利規劃議題方向;未留資料者恕不受理。★★
自組織映射圖som 在 tutorial/assets/src/SOM/SOM.md at master - GitHub 的推薦與評價
并且当两个模式类的特征接近时,代表这两类的节点在位置上也接近。从而在输出层形成能反应样本模式类分布情况的有序特征图。 自组织映射网络(Kohonen)结构见图 ... ... <看更多>
自組織映射圖som 在 自组织映射(self-organizing-map)SOM神经网络 - 我的技术博客 的推薦與評價
突触调节。这个机制使兴奋神经元通过对他们图抽权值的适当调节以增加他们关于该输入模式的判别函数值。所做 ... ... <看更多>
自組織映射圖som 在 【人工智能教程】9.4 - 自组织映射神经网络 - YouTube 的推薦與評價
对 自组织映射 神经网络进行了简单的介绍,推荐1.25或1.5倍数食用。这套系列视频的内容是根据丁世飞老师编著的《人工智能》进行的,书的介绍在 ... ... <看更多>