AI 如何為公司創造更多價值?專家:2 個缺陷,要先由人類來修補
2021/05/13
採訪‧撰文
盧廷羲
張凱崴
美國人工智慧國家安全委員會(NSCAI)今年 4 月建議,國防部每年應至少分配 3.4% 的預算投入科技領域,並提撥 80 億美元研發 AI。企業方面,微軟(Microsoft)4 月宣布,將以 197 億美元收購語音辨識開發商紐安斯通訊(Nuance Communications);後者是雲端與 AI 軟體的先驅。
從企業到國家,都愈來愈重視人工智慧,知道要想辦法運用 AI 創造更好的生活。不過,目前 AI 發展到底處於什麼階段?我們又該如何應用?
美國加州大學洛杉磯分校(UCLA)電腦科學系助理教授張凱崴形容,目前人工智慧技術已經可以幫助人類完成很多事,像是疫情來襲,電腦可以從大數據中篩選條件,自動搜尋、判讀潛在病例,幫助醫生大幅減少檢查時間,但 AI 也並非萬能,要先認知它的局限。他研究如何讓 AI 更符合人性,獲得 2021 年的史隆研究獎(Sloan Research Fellowships)。
AI 局限1. 資料寬廣度不足時,就會複製人類偏見
張凱崴認為,電腦在學習的時候,是依賴「彙整數據資料」來判斷,並沒有真正思考,如果資料來源太狹隘、不夠多元,資料寬廣度不足,電腦判斷就會出現偏差,「你跟電腦講清楚 input(輸入)、output(輸出),提供足夠的數據資料,它可以對應、學得很好,但還有很多面向 AI 做不到。」
舉例來說,亞馬遜(Amazon)2014 年推出智慧音箱(Amazon Echo),使用者口頭下指令給語音助理 Alexa 就能放音樂、查資訊。然而,有些人口音較罕見,或是用字較特殊,智慧音箱的資料庫沒有「不同口音」「不同用詞」的檔案,就可能失靈,這是當前 AI 的其中一大問題。
張凱崴進一步解釋,AI 另一項挑戰是,它無法清楚分辨「不曾出現」與「不能出現」(無法出現)之間的區別,只是從資料統計出要學的東西,無法像人類一樣進行邏輯思辨。
AI 的運作方式,第一步是輸入資料,第二步是分析,但這過程容易出現偏見。例如電腦在理解「總統」這個字,會去看四周有什麼字詞,來學習總統這個詞,由於許多總統都是男性,電腦就會「覺得」總統是男性。
這也是為什麼,如果讓 AI 學習,在它的認知裡,女性「不可能」當美國總統(因為沒有資料紀錄)。「你可以跟人類說,任何職業、性別都是平等的,但對電腦來講,這很困難,」張凱崴說明,一旦資料的寬廣度受限,電腦就容易產生偏見。
就像在自然語言處理(Natural Language Processing,讓電腦把輸入的語言變成有意義的符號)領域,張凱崴說明,AI需要知道代名詞指的是「哪個名詞」,才能運算下去。但如果資料受限,使用男性的「他」,電腦可能判斷這個代名詞是指總統、總理、執行長;但換成女性的「她」,由於數據不足,電腦就會混亂,出現系統性誤差。
他再舉一例,美國人工智慧研究組織 OpenAI 提出「生成式預先訓練」系統(GPT,Generative Pre-training),推出到 GPT3 版本,屬於書寫類 AI,電腦能夠揣測人們說完上一句話,下一句可能會講的句子,自動完成後半段。
好比有人上一句寫下「我正在和教授聊天」,系統可能推導出「我們在研究室討論學術問題」,因為電腦藉由蒐集來的語料資料中判讀出「教授」和「學術」具高度相關。但研究也顯示,GPT2(前一代版本)系統也從資料中學習到許多偏見,像是如果句子前半談論白人男性,系統傾向產生正面評價;如果句子前半是黑人女性,系統竟會產生負面句子。對企業來說,許多組織接觸 AI,想讓它們取代部分工作,首先需要留意資料的廣度、多元性,才能減少電腦犯錯的機會。
AI 局限2. 即便條件相同,也無法每次都做出正確判斷
「其實,現在的 AI 就像一台原型飛機,還缺乏穩定性。」張凱崴說,現行的 AI 就好比萊特兄弟(Wright brothers)剛發明飛機,看似可以做很多有趣的事,但「可以飛」跟「飛得很好」,有一大段落差。
紐西蘭的簽證系統曾鬧出笑話。人們上傳簽證照片,AI 掃描後,確認是不是本人,但當時系統沒有估算到某些亞洲人眼睛比較小,一名亞裔男子被判定「沒有張開眼睛」,因此照片無效。
張凱崴說,在這個例子中,凸顯出 AI 的穩定性不足,「系統沒有考慮到不同人種的差異,很死板地認為你眼睛沒張開。」所謂的缺乏穩定性,指的是 AI 沒辦法在相同條件下,每次都做出正確決策,這也是使用 AI 時,須留意的第二個挑戰。
他再舉例,許多模型可以準確分析,一則影評對電影的評價是正面或負面。然而研究顯示,有時只要將影評中一些字換成同義詞,例如把電影(movie)換成影片(film),或改寫句子,即使意思並未改變,系統卻把原本判斷為正面的影評標註成負面。這顯示AI系統還未真正了解語言的含義。
在設計這些程式時,人們必須注意到 AI 可能有局限,設定的資料範圍要更完整,考慮這些因素,就能減少偏見、落差,進而加強穩定性。
餵指令給 AI 要多元化,嘗試「換句話說」、刻意混淆
經理人雖然不一定具備 AI 方面的專業知識,但只要掌握觀念,再透過 AI 領域專才協助,也能優化系統。張凱崴指出,最直接的方法是,設計 AI 模型時,要把來源群組不同的資料分門別類測試,在測試階段讓群體多元化,並確保不同特色的使用者,用起來都沒有問題。
舉例來說,一套 A 系統擁有來自各地的使用者,如果設計者是台北人,設計系統的思維容易以台北生活為主,很可能因為當地習慣不同,導致花蓮使用者操作不順。
另一個方法,則是用不同的「語意」,去測試 AI 有沒有徹底學會一個概念。例如,有一套餐廳評鑑的 AI 系統,只要蒐集、整理使用者意見,就能判斷每個顧客對於餐廳的評比是高分或低分。那麼要如何確認這套系統的穩定性?張凱崴建議,可以利用「抽換詞面」的方法。
比如,把詞彙換成同義字,再看 AI 是否能運算出相同結果,「你可能會發現,原本評比結果是食物很美味,但如果美味換成比較困難的詞,AI 就會分不出這則評比是好是壞。」因此在訓練模型時,可以將詞彙隨機抽換成同義詞,增加 AI 的詞彙量。
第三種方式更進階:改變句型、重寫句子。張凱崴指出,同樣一句話,如果換成不同說法,電腦可能判讀錯誤,將「因為發生 A 事件,所以導致 B 事件」,改寫成「B 事件發生了,是因為 A 事件的緣故」,明明兩句話意思一樣,但 AI 很可能因為穩定性不足,搞混兩者的差別。如果要鞏固 AI 的穩定性,可以使用自動改寫的方式,增加資料的多樣性。
張凱崴表示,經過這些測試,讓 AI 接受更多元化的訓練,得到更廣的學習範圍,往後碰到同義詞、相似資訊,才能有效判讀。
張凱崴總結,AI 還在快速發展,或許可以創造更多工作機會、新的職位,但現行階段,它只是輔助角色。AI 並非魔術盒子,使用它就一定有更好結果,人們還是要保持高度耐心,先認識它的缺陷,才能在技術更迭下,發揮出最好的結果。
張凱崴
台灣大學資訊工程系碩士、美國伊利諾大學(UIUC)電腦科學博士。美國加州大學洛杉磯分校(UCLA)電腦科學系助理教授,研究領域包括人工智慧、機器學習、自然語言處理。2021 年獲得史隆研究獎(Sloan Research Fellowship),研究團隊開發的運算方法,使人類語言處理的程序更有效率、更多元,同時兼具公平性。
附圖:優化AI系統的3方法
資料來源:https://www.managertoday.com.tw/articles/view/62902?fbclid=IwAR2jI1bhg1anqct0AZZR_3LKKJqIsvG0wz2whSN8iniROZApHt-_qpD7dis
隨機誤差舉例 在 吉。 Facebook 的最佳解答
✨重要通知✨
整晚沒睡跟朋友研擬出來的結論🤣🤣
請大家幫我留意一下哦🙏🏻 🙌🏻時段牌更改為號碼牌! 🔆因為場地的關係,經過審慎評估後我們決定使用號碼叫號的方式,不用時段區分,分時段上新品也取消了,但一樣會限制購買數量,不用擔心。
🔆建議到市集時先來攤位拿號碼牌再去別的攤位逛會比較方便。準時11:50開始發放喔👆🏻
🔆號碼牌總共1-100號,會以區間叫號的方式進行,號碼牌會依現場排隊人數調整,可能會減少或增加,請依現場指示為主。
舉例來說,現在叫號1-20號,持1-20號的朋友都可以進來攤位選購,依照先來後到的順序排隊而不是號碼順序,晚來的就是得排後面喔~
🔆前面20個號碼的客人都服務完畢我們會接著叫下一個區段的號碼。
🔆錯過整個區段號碼就請找小幫手,小幫手會幫你安排入隊伍的。
🔆因為每個區間報到的人數無法預估,只能依照現場狀況告知大概需要多少時間,但僅供參考,難免有誤差還請多多包涵了🙏🏻
🔆部分新品數量有限,每人限購1,部分新品較足會看狀況再現場決定。
🔆拿到號碼牌不保證一定能買得到新品,
新品能帶的數量很有限(款式太多😂),
我們盡力讓大家有比較舒服的空間和方式來逛。這是第一次施行這種方式,難免有未盡如人意之處,有任何意見都歡迎告訴我們。
🔆如果真的沒有買到也不要擔心,我們12月就會上架,現貨售完都會有預購,請大家放心喔😊
謝謝大家~
🔆照片是多用途便條本!
硬要趕在最後再加一篇😂
前面的市集號碼牌說明記得看一下喔🤣🤣
多用途便條本集結了我個人常用愛用的幾種紙,
總共有8種不同材質的紙張,
絕對是拼貼好朋友😆
做了雙封面,哪邊當正面隨你高興~
尺寸為10*15cm
單售價格:230 TWD/本
紙張種類:
聖經紙/蠟紙/牛皮紙/杯墊紙/描圖紙/風采紙/單光白牛皮/米色漫畫紙
紙張容我過了今天之後慢慢再來介紹給大家🤣
重點是!!
這次的背景章5組全包就送你一本🙌🏻
網站也是五組背景章全包就送~
今天來攤位只要消費就送手帳貼紙(燙金/燙銀隨機)
一樣有滿3000送鐵盒以及任兩顆金屬章送蓋章墊的活動❤️
以上單邊消費都不累計,
贈品數量有儘量準備充足,
現場送完就留地址給我用寄的寄到你家囉~
今天還有帶一些這幾天拼貼的小樣本,
歡迎來現場看看喔~
不知道會有多少人來,
請幫我留意一下號碼牌的規則,
如果排到不耐煩也請不要對我們小幫手發脾氣,
可以來罵我沒關係🤣
雖然我覺得應該不會有這麼多人啦⋯
但總之先說好比較完整嘛😆
大家晚點見🙌🏻🙌🏻🙌🏻
#linchianing #creativemarket #stamp #stamps #stationery #stationeryaddict #stickers #sticker #paper #papercrafts #paperlover #scrapbooking #scrapbook #handmade #new
隨機誤差舉例 在 生活中的程式- 【資料科學的15個常見謬誤】 剛好看到以前的 ... 的推薦與評價
舉例 來說就是採櫻桃的工人只採好的櫻桃,會讓你覺得所有的櫻桃都是好的。 ... 單一一次的表現都會不可避免地受到隨機誤差影響,可能增加也可能降低, ... ... <看更多>