【mRNA疫苗臨床試驗95%有效! mRNA疫苗會是COVID-19的救世主嗎?】:發表在新英格蘭醫學期刊(NEJM)上的兩篇論文提到【註1】,兩個mRNA疫苗臨床研究分別收案3萬多人與4萬多人,在打完疫苗之後的兩個月追蹤當中,施打疫苗讓COVID-19感染率減少了95%!【註3】
在本文開始前,在此先簡述說明一下「分子生物學的中心法則」,建立對DNA、RNA、mRNA的基礎認識。
■分子生物學的中心法則 (central dogma)(圖1)
用最簡單最直接的方式來描述的話,生物體的遺傳訊息是儲存在細胞核的DNA中,每次細胞分裂時,DNA可以複製自己 (replication),因而確保每一代的細胞都帶有同樣數量的DNA。
而當細胞需要表現某個基因時,會將DNA的訊息轉錄 (transcribe) 到RNA上頭,再由RNA轉譯 (translate) 到蛋白質,而由蛋白質執行身體所需要的功能。這也就是所謂的分子生物學的中心法則 (central dogma)。
對於最終會製造成蛋白質的基因來說,RNA是扮演了中繼的角色,也就是說遺傳訊息本來儲存在 DNA 上頭,然後經過信使 RNA (messenger RNA, mRNA) 的接棒,最後在把這個訊息傳下去,製造出蛋白質。【註4】
■冠狀病毒的基因組由RNA構成
RNA不如DNA穩定,複製過程容易出錯,因此一般RNA病毒的基因組都不大。但冠狀病毒鶴立雞群,基因組幾乎是其他RNA病毒的三倍長,是所有RNA病毒中最大、最複雜的種類。
冠狀病毒還能以重組RNA的方式,相當頻繁地產生變異,但是基因組中位在最前端的RNA序列相對穩定,因為其中有掌控病毒蛋白酶與RNA聚合酶的基因,一旦發生變異,冠狀病毒很可能無法繼續繁衍。
目前抗病毒藥物的研發策略之一,正是設法抑制病毒RNA複製酶(RdRp)。而最前端的RNA序列也是現階段以反轉錄聚合酶連鎖反應(RT-PCR)檢驗新冠病毒時鎖定的目標。中央研究院院士賴明詔表示,不同病毒的核酸序列當中還是有各自的獨特變異,正好用來區分是哪一種冠狀病毒。【註5】
■SARS-CoV-2是具有3萬個鹼基的RNA病毒
中國科學院的《國家科學評論》(National Science Review)期刊【註2】,2020年3月發表《關於SARS-CoV-2的起源和持續進化》論文指出,現已發生149個突變點,並演化出L、S亞型。
病毒會變異的原因可略分成兩種:
▶一是「自然演變」
冠狀病毒是RNA病毒,複製精準度不如DNA病毒精準度高,只要出現複製誤差,就是變異。
▶二是「演化壓力」
當病毒遇到抗體攻擊,就會想辦法朝有抗藥性的方向演變,找出生存之道。【註6】
■mRNA 疫苗是一種新型預防傳染病的疫苗
近期,美國莫德納生物技術公司(Moderna)與輝瑞公司(Pfizer),皆相繼宣布其COVID-19 mRNA疫苗的研究成果。
莫德納公司在2020年11月30日宣布他們的mRNA-1273疫苗在三期臨床試驗達到94.1%(p<0.0001)的超高保護力,受試者中約四成為高風險族群(患糖尿病或心臟病等),7000人為高齡族群(65歲以上),另也包含拉丁裔與非裔族群(報告中未提到亞洲裔)。
傳統大藥廠輝瑞公司,亦在美國時間11月18日發佈令人振奮的新聞稿:他們的RNA疫苗(BNT162b2)三期臨床試驗已達設定終點,保護力高達95%(p<0.0001)。該試驗包含了4萬名受試者,其中約有四成受試者為中高齡族群(56~85歲),而亞洲裔受試者約占5%。
■mRNA疫苗為什麼可以對抗病毒?
為什麼mRNA疫苗會有用?就讓我們先從疫苗的原理「讓白血球以為有外來入侵者談起」。
在過往,疫苗策略大致上可分為兩種:
● 將病毒的屍體直接送入人體,如最早的天花疫苗(牛痘,cowpox)、小兒麻痺疫苗(沙克疫苗,polio vaccines)、肺結核疫苗(卡介苗,Bacillus Calmette-Guérin, BCG)以及流感疫苗等。
✎補正
卡介苗 BCG(Bacillus Calmette-Guerin vaccine) :卡介苗是一種牛的分枝桿菌所製成的活性疫苗,經減毒後注入人體,可產生對結核病的抵抗力,一般對初期症候的預防效果約85%,主要可避免造成結核性腦膜炎等嚴重併發症。
▶以流感疫苗為例,科學家通常先讓病毒在雞胚胎大量繁殖後,再將其殺死,也有部分藥廠會再去除病毒屍體上的外套膜(envelope),進一步降低疫苗對人體可能產生的副作用後,再製成疫苗。
● 將病毒的蛋白質面具,裝在另一隻無害的病毒上再送入人體,如伊波拉病毒(Ebola virus disease, EVD)疫苗等。
▶以伊波拉病毒疫苗為例,科學家會剪下伊波拉病毒特定的醣蛋白(glycoproteins)基因,置換入砲彈病毒(Rhabdoviridae)的基因組中,使砲彈病毒長出伊波拉病毒的醣蛋白面具。
上述例子都是將致命病毒的部分殘肢送入人體,當病毒被樹突細胞(dendritic cells)或巨噬細胞(macrophages)等抗原呈現細胞(antigen-presenting cell, APC)吃掉後,再由細胞將病毒殘肢吐出給其他白血球,進而活化整個免疫系統,然而,mRNA疫苗採取了更奇詭的路數 - 「讓人體細胞自己生產病毒殘肢!」
■mRNA 疫苗設計原理(圖2)
將人工設計好可轉譯出病毒蛋白質片段的mRNA,包裹於奈米脂質顆粒中,送入淋巴結組織內,奈米脂質顆粒會在細胞中釋出RNA,使人體細胞能自行產出病毒蛋白質片段,呈現給其他白血球,活化整個免疫系統。
■mRNA疫苗設計流程(圖3)
1「科學家獲得病毒的全基因序列」
因社群媒體的發達、公衛專家、病毒研究者以及期刊編輯的努力,這次的COVID-19病毒序列很快的被發表;中國北京疾病管制局的研究團隊,挑選了九位患者,其中有八位,都有前往華南海鮮市場的病史,並從這些患者採取了呼吸道分泌物的檢體,運用次世代定序 (NGS,Next Generation Sequencing) 的方式,拼湊出新型冠狀病毒全部與部分的基因序列。並陸續將這些序列資料,提供給全世界的病毒研究者交互確認,修正序列的錯誤。
2「解析病毒基因群裡所有的功能,選定目標蛋白質(Covid-19病毒棘蛋白質)」
以冠狀病毒為例,通常會選病毒表面的棘狀蛋白(spike protein)。因為棘蛋白分布於病毒表面,可作為白血球的辨識目標,同時病毒需透過棘蛋白和人體細胞受體(receptor)結合,進而撬開人體細胞,因此以病毒繁殖的策略而言,此處的蛋白質結構較穩定。
3「製造要送入人體的mRNA,挑選出會製造棘蛋白的mRNA進行修飾」
挑選會轉譯(translation)出目標蛋白質的mRNA,並進行各項修飾,以提高該人工mRNA在細胞裡被轉譯成蛋白質的效率。如:輝瑞的mRNA疫苗(BNT162b1)選用甲基化(methylation)後的偽尿嘧啶(1-methyl-pseudouridine)取代mRNA裡的原始尿嘧啶(uracil, U),有助於提升mRNA的穩定性,並提高mRNA被轉譯成病毒棘蛋白的效率。
4「將人工mRNA裹入特殊載體,將mRNA包裹入特殊載體顆粒中」
因為mRNA相當脆弱且容易被分解,因此需要對載體進行包裹和保護。然而,有了載體後,接踵而來的問題是「該怎麼送到正確的位置(淋巴結)?」。而輝瑞和莫德納不約而同地都選用了奈米脂質顆粒(lipid nanoparticles)包裹mRNA載體,奈米脂質顆粒通常由帶電荷的脂質(lipid)、膽固醇(cholesterol)或聚乙二醇(polyethylene glycol, PEG)修飾過的脂質等組成,可以保護RNA,並將mRNA送到抗原呈現細胞豐富的淋巴結組織。
5「包覆mRNA的奈米脂質顆粒,注射在肌肉組織」
使其能循環到淋巴結,被淋巴結中的細胞吃掉。奈米脂質顆粒釋放出mRNA,使細胞產出病毒蛋白質片段,進而呈現給其他白血球並活化整個免疫系統。【註7】
mRNA可將特定蛋白質的製造指示送至細胞核糖體(ribosomes)進行生產。mRNA 疫苗會將能製造新冠病毒棘狀蛋白的 mRNA 送至人體內,並不斷製造棘狀蛋白,藉此驅動免疫系統攻擊與記憶此類病毒蛋白,增加人體對新冠病毒的免疫力,最終 mRNA 將被細胞捨棄。
值得注意的是,由於 mRNA 疫苗並無攜帶所有能製造新冠病毒的核酸(nucleic acid),且不會進入人體細胞核,所以施打疫苗無法使人感染新冠病毒。
Pfizer、BioNTech 研發的 BNT162b2 是美國第 1 個取得 EUA 的 mRNA 疫苗,施打對象除成年人,還包含 16 歲以上非成年人。且相比 Moderna 製造的 mRNA-1273 疫苗,患者施打第 2 劑 BNT162b2 的副作用較輕微。
Moderna 也不遑多讓,mRNA-1273 於 2020 年 12 月中取得 EUA,且具備在 -20°C 儲存超過 30 天的優勢。在臨床試驗中,使用 mRNA-1273 的 196 位受試者皆無演變成重度 COVID-19,相較安慰劑組中卻有 30 人最終被標為重度 COVID-19 患者。【註8】
為了觸發免疫反應,許多疫苗會將一種減弱或滅活的細菌注入我們體內。mRNA疫苗並非如此。相反,該疫苗教會我們的細胞如何製造出一種蛋白質,甚至一種蛋白質片段,從而觸發我們體內的免疫反應。如果真正的病毒進入我們的身體,這種產生抗體的免疫反應可以保護我們免受感染。【註9】
【Reference】
▶DNA的英文全名是Deoxyribonucleic acid,中文翻譯為【去氧核糖核酸】
▶RNA 的英文全名是 Ribonucleic acid,中文翻譯為【核糖核酸】。
1.來源
➤➤資料
∎【註1】
Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2020 Dec 30:NEJMoa2035389. doi: 10.1056/NEJMoa2035389. Epub ahead of print. PMID: 33378609; PMCID: PMC7787219.
https://www.nejm.org/doi/full/10.1056/NEJMoa2035389
Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603-2615. doi: 10.1056/NEJMoa2034577. Epub 2020 Dec 10. PMID: 33301246; PMCID: PMC7745181.
https://www.nejm.org/doi/full/10.1056/NEJMoa2034577
∎【註2】
Xiaoman Wei, Xiang Li, Jie Cui, Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China, National Science Review, Volume 7, Issue 2, February 2020, Pages 239–242, https://doi.org/10.1093/nsr/nwaa009
∎【註3】
▶蘇一峰 醫師:https://www.facebook.com/bsbipoke
▶中時新聞網 「mRNA疫苗臨床試驗95%有效 醫:哪國搶到就能結束比賽」:
https://www.chinatimes.com/realtimenews/20210104004141-260405?chdtv
∎【註4】
( 台大醫院 National Taiwan University Hospital-基因分子診斷實驗室)「DNA、RNA 以及蛋白質」:https://www.ntuh.gov.tw/gene-lab-mollab/Fpage.action?muid=4034&fid=3852
∎【註5】
《科學人》粉絲團 - 「新冠病毒知多少?」:https://sa.ylib.com/MagArticle.aspx?id=4665
∎【註6】
(報導者 The Reporter)【肺炎疫情關鍵問答】科學解惑 - 10個「為什麼」,看懂COVID-19病毒特性與防疫策略:https://www.twreporter.org/a/covid-19-ten-facts-ver-2
∎【註7】
科學月刊 Science Monthly - 「讓免疫系統再次偉大!mRNA疫苗會是COVID-19的救世主嗎?」:https://www.scimonth.com.tw/tw/article/show.aspx?num=4823&page=1
∎【註8】
GeneOnline 基因線上 「4 大 COVID-19 疫苗大解密!」 :https://geneonline.news/index.php/2021/01/04/4-covid-vaccine/
∎【註9】
(CDC)了解mRNA COVID-19疫苗
https://chinese.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html
➤➤照片
∎【註4】:
圖1、分子生物學中心法則
∎【註7】:
圖2:mRNA 疫苗設計原理
圖3:mRNA 疫苗設計流程圖
2. 【國衛院論壇出版品 免費閱覽】
▶國家衛生研究院論壇出版品-電子書(PDF)-線上閱覽:
https://forum.nhri.org.tw/publications/
3. 【國衛院論壇學術活動】
▶https://forum.nhri.org.tw/events/
#國家衛生研究院 #國衛院 #國家衛生研究院論壇 #國衛院論壇 #衛生福利部 #疾病管制署 #COVID-19 #mRNA疫苗 #新英格蘭醫學醫學期刊 #NEJM
衛生福利部 / 疾病管制署 - 1922防疫達人 / 財團法人國家衛生研究院 / 國家衛生研究院-論壇
「envelope pdf」的推薦目錄:
- 關於envelope pdf 在 國家衛生研究院-論壇 Facebook 的精選貼文
- 關於envelope pdf 在 薛宇哲老師醫學教育知識區 Facebook 的最佳解答
- 關於envelope pdf 在 國家衛生研究院-論壇 Facebook 的最佳貼文
- 關於envelope pdf 在 Envelope - Free download as PDF File (.pdf), Text File (.txt ... 的評價
- 關於envelope pdf 在 papercraft-spectrometer/6x9-envelope.pdf at main - GitHub 的評價
- 關於envelope pdf 在 Downloading populated pdf after generating envelope 的評價
- 關於envelope pdf 在 Can envlab create a pdf page the size of the desired envelope? 的評價
- 關於envelope pdf 在 Prepare & Send Both a DocuSign Form & PDF in one Envelope 的評價
envelope pdf 在 薛宇哲老師醫學教育知識區 Facebook 的最佳解答
【細胞激素風暴(失控的免疫反應) - 這名個案年紀輕、無慢性病史,為何撐不過去?】中央流行疫情指揮中心(5/11)宣布新增國內第七例新冠肺炎死亡個案。這名男性年僅40多歲,與40多歲妻子一起去美國探親,返台隔天同時發病,妻子已於4月11日出院,但先生於5月10日不幸病逝。
指揮中心專家諮詢小組召集人張上淳分析「這名個案年紀輕、無慢性病史,為何撐不過去?」,有兩大原因,包括:
1. 失控的免疫反應「細胞激素風暴」
2. 長時間使用葉克膜的併發症增加
這些都導致高死亡率。(資料來源:【註1】)
■ 細胞激素風暴:失控的免疫反應
細胞激素風暴(cytokine storm)又稱「免疫風暴」,是人體的免疫系統出現「防禦過當」行為,發出錯誤訊息,導致身體的B細胞分泌過量的抗體,抗體與過敏原結合後,進而誘發肥大細胞分泌組織胺和前列腺素。
此外,當T細胞與巨噬細胞以為遇到外來敵人,產生各類激素,這也會自毀正常細胞。一連串的殺敵反應,造成體內發炎反應,微血管擴張、血管通透性增加,大量血液滲透到組織中,產生紅腫、熱痛,甚至引發過敏性休克。(資料來源:【註2】)
身體受到病原菌感染後會產生發炎反應。發炎反應會活化自然殺手細胞、單核球細胞、巨噬細胞、嗜中性白血球以及血小板上的先天免疫受體。
➜適度的發炎反應有利身體去除病原菌,但過度的發炎反應會引發大量細胞激素的產生(細胞激素風暴,cytokine storm),卻對身體有害。
這種失控的免疫反應往往造成器官的損傷及衰竭,進而導致休克而死亡。 (資料來源:【註3】)
■ 當冠狀病毒入侵,為什麼COVID-19比流感危險?
冠狀病毒屬於冠狀病毒科(Coronaviridae),為帶有外套膜(envelope)的單股正鏈RNA病毒(positive-sense single-stranded RNA virus),分為α、β、γ及δ四個屬,主要造成禽鳥的上呼吸道病變,於家畜則是造成腸胃道腹瀉等症狀。
而人類如果感染冠狀病毒的症狀則與感冒相似,主要為上呼吸道感染症狀,例如流鼻水、發燒、咳嗽和鼻塞等。但目前所發現冠狀病毒β屬的中東呼吸症候群冠狀病毒(MERS-CoV)、嚴重急性呼吸道症候群冠狀病毒(SARS-CoV)及最近造成嚴重疫情的SARS-CoV-2
➜ 則會造成人類下呼吸道感染,引起嚴重肺炎及呼吸衰竭而導致死亡。
要判斷一個傳染疾病是否容易控制,是依據基本傳染數(basic reproduction number),又稱R0(R naught)的高低。R0指的是當沒有外力介入之下,一個感染者能夠把疾病傳染給多少人的平均數,流行病學通常以R0作為評估傳染疾病是否容易控制的依據數值(【註4】)。
以同屬於冠狀病毒的SARS-CoV為例,SARS-CoV的R0值介於2~5之間,表示一個已感染SARS-CoV的人能夠再將病毒傳染給2~5個人。常見的流感病毒R0值介於1.2~1.6之間,然而COVID-19目前的R0值介於2.0~3.8之間。
➜由此可見,COVID-19在疾病傳播控制比流感病毒不易。
➜除此之外,COVID-19與SARS-CoV不但傳染力相似造成防疫困難度增加外,二者的結構也相似,皆以棘蛋白(spike glycoprotein,S)與血管收縮素轉換酶II(angiotensinconverting enzyme II,ACE2)受體結合以感染細胞。
■ 病毒來襲時,身體如何免疫機制?
當病毒侵入人體,免疫反應馬上會被啟動,體內自然殺手細胞(natural killer cell)會殺死被病毒感染的細胞,以遏制病毒傳播並產生干擾素(interferon, IFN)抑制病毒複製;隨後巨噬細胞(macrophage)會將病毒的抗原呈現給T細胞(T cell)及B細胞(B cell),以活化毒殺性T細胞(cytotoxic T cell,TC)去攻擊並殺死被病毒感染的細胞,並使B細胞產生抗體與病毒結合,中和病毒感染細胞的能力。
➜這些被病毒活化的T及B細胞,有些會成為記憶性的細胞,若人體再次遇上同樣病毒的侵入,人體免疫系統藉由記憶性的T及B細胞,快速產生高量的抗體中和病毒的感染能力,高量的毒殺性T細胞也同時殺死被病毒感染的細胞,因此病毒很快就被清除。一般的鼻病毒(rhinovirus)及毒性不強的冠狀病毒,人體皆可利用此機轉來清除病毒並使人體恢復健康。
■為什麼SARS-CoV-2 會造成嚴重的發炎反應並造成感染者死亡呢?
➜原因在於它是一種全新的病毒,人體並沒有可辨識及中和病毒感染能力的抗體,也無記憶性的毒殺性T 細胞去攻擊並殺死被病毒感染的細胞。
➜病毒在體內不斷複製,使細胞產生許多促發炎激素和發炎因子,並藉由細胞外微囊體的活化刺激巨噬細胞表面的C 型凝集素5A 大量增加促發炎激素,嗜中性白血球也會產生嗜中性球胞外網狀結構,造成血管內皮損傷使疾病更加惡化。
➜COVID-19複製能力極強,人體產生的干擾素也無法有效的抑制病毒複製,造成病毒持續複製並藉由飛沫傳染給其他人。但最致命的一點,就是此病毒會產生細胞激素風暴,使身體產生過度的免疫反應,像是H5N1 病毒(influenza A virus subtype H5N1)及SARS-CoV 等皆會產生此風暴,造成高致死率。
■ 細胞激素風暴
身體受到病原菌感染後會產生發炎反應。發炎反應會活化自然殺手細胞、單核球細胞、巨噬細胞、嗜中性白血球以及血小板上的先天免疫受體。適度的發炎反應有利身體去除病原菌,但過度的發炎反應會引發大量細胞激素的產生(細胞激素風暴,cytokine storm),卻對身體有害。這種失控的免疫反應往往造成器官的損傷及衰竭,進而導致休克而死亡。【註5】
➜如附圖:病毒在體內不斷複製,使細胞產生許多促發炎激素和發炎因子,並藉由細胞外微囊體的活化刺激巨噬細胞表面的C 型凝集素5A 大量增加促發炎激素,嗜中性白血球也會產生嗜中性球胞外網狀結構,造成血管內皮損傷使疾病更加惡化。)(資料來源:【註6】)
【Reference】
1. 來源
➤➤資料
∎【註1】: 經濟日報「無慢性病40多歲男染疫亡 張上淳歸納兩大致死原因」: https://bit.ly/2X1h78l
∎【註2】: NOW健康( 健康傳媒 )「免疫力失控殺紅了眼 細胞激素風暴多發生在年輕人」: https://bit.ly/3dNu8ZG
∎【註3】: 科技大觀園「細胞激素風暴:失控的免疫反應」:
https://bit.ly/3bypAVx
∎【註4】:
03/27-【從流行病學理論,了解為何推口罩實名制2.0】:
https://www.facebook.com/forum.nhri/posts/2481386348858088
04/01-【(解析)看懂群體免疫是甚麼,換你講給周遭朋友了解】:
https://www.facebook.com/forum.nhri/posts/2485020768494646
∎【註5】:詳細機制,詳:科技大觀園「細胞激素風暴:失控的免疫反應」:
https://bit.ly/3bypAVx
∎【註6】: 科學月刊 Science Monthly「當冠狀病毒入侵—人體內的免疫風暴與致病機轉」:https://bit.ly/361i5VX
作者謝世良/中研院基因體研究中心特聘研究員、教育部國家講座教授。宋佩珊/中研院基因體研究中心博士後研究員。
➤➤照片
∎【註2】、【註6】
2. 【國衛院論壇出版品 免費閱覽】
∎國家衛生研究院論壇出版品-電子書(PDF)-線上閱覽: http://forum.nhri.org.tw/forum/book/
3. 【國衛院論壇學術活動】
➤http://forum.nhri.org.tw/forum/category/conference/
#國家衛生研究院 #國衛院 #國家衛生研究院論壇 #國衛院論壇 #衛生福利部 #國民健康署 #健保署 #中央健康保險署 #五南圖書 #國家書店 #五南網路書店
#武漢肺炎 #新型冠狀病毒 #COVID-19 #Wuhan coronavirus #新興傳染病 #2019COVID19 #2019COVID19News
#免疫反應 #細胞激素風暴 #免疫風暴 #cytokine storm #基本傳染數 #R0 #免疫機制
台大醫院 National Taiwan University Hospital-感染科 / 台灣感染症醫學會 / 國衛院感染症與疫苗研究所台南院區 / 台大公衛學院
衛生福利部 / 國民健康署 / 疾病管制署 / 疾病管制署 - 1922防疫達人 / 財團法人國家衛生研究院 / 國家衛生研究院-論壇
envelope pdf 在 國家衛生研究院-論壇 Facebook 的最佳貼文
【細胞激素風暴(失控的免疫反應) - 這名個案年紀輕、無慢性病史,為何撐不過去?】中央流行疫情指揮中心(5/11)宣布新增國內第七例新冠肺炎死亡個案。這名男性年僅40多歲,與40多歲妻子一起去美國探親,返台隔天同時發病,妻子已於4月11日出院,但先生於5月10日不幸病逝。
指揮中心專家諮詢小組召集人張上淳分析「這名個案年紀輕、無慢性病史,為何撐不過去?」,有兩大原因,包括:
1. 失控的免疫反應「細胞激素風暴」
2. 長時間使用葉克膜的併發症增加
這些都導致高死亡率。(資料來源:【註1】)
■ 細胞激素風暴:失控的免疫反應
細胞激素風暴(cytokine storm)又稱「免疫風暴」,是人體的免疫系統出現「防禦過當」行為,發出錯誤訊息,導致身體的B細胞分泌過量的抗體,抗體與過敏原結合後,進而誘發肥大細胞分泌組織胺和前列腺素。
此外,當T細胞與巨噬細胞以為遇到外來敵人,產生各類激素,這也會自毀正常細胞。一連串的殺敵反應,造成體內發炎反應,微血管擴張、血管通透性增加,大量血液滲透到組織中,產生紅腫、熱痛,甚至引發過敏性休克。(資料來源:【註2】)
身體受到病原菌感染後會產生發炎反應。發炎反應會活化自然殺手細胞、單核球細胞、巨噬細胞、嗜中性白血球以及血小板上的先天免疫受體。
➜適度的發炎反應有利身體去除病原菌,但過度的發炎反應會引發大量細胞激素的產生(細胞激素風暴,cytokine storm),卻對身體有害。
這種失控的免疫反應往往造成器官的損傷及衰竭,進而導致休克而死亡。 (資料來源:【註3】)
■ 當冠狀病毒入侵,為什麼COVID-19比流感危險?
冠狀病毒屬於冠狀病毒科(Coronaviridae),為帶有外套膜(envelope)的單股正鏈RNA病毒(positive-sense single-stranded RNA virus),分為α、β、γ及δ四個屬,主要造成禽鳥的上呼吸道病變,於家畜則是造成腸胃道腹瀉等症狀。
而人類如果感染冠狀病毒的症狀則與感冒相似,主要為上呼吸道感染症狀,例如流鼻水、發燒、咳嗽和鼻塞等。但目前所發現冠狀病毒β屬的中東呼吸症候群冠狀病毒(MERS-CoV)、嚴重急性呼吸道症候群冠狀病毒(SARS-CoV)及最近造成嚴重疫情的SARS-CoV-2
➜ 則會造成人類下呼吸道感染,引起嚴重肺炎及呼吸衰竭而導致死亡。
要判斷一個傳染疾病是否容易控制,是依據基本傳染數(basic reproduction number),又稱R0(R naught)的高低。R0指的是當沒有外力介入之下,一個感染者能夠把疾病傳染給多少人的平均數,流行病學通常以R0作為評估傳染疾病是否容易控制的依據數值(【註4】)。
以同屬於冠狀病毒的SARS-CoV為例,SARS-CoV的R0值介於2~5之間,表示一個已感染SARS-CoV的人能夠再將病毒傳染給2~5個人。常見的流感病毒R0值介於1.2~1.6之間,然而COVID-19目前的R0值介於2.0~3.8之間。
➜由此可見,COVID-19在疾病傳播控制比流感病毒不易。
➜除此之外,COVID-19與SARS-CoV不但傳染力相似造成防疫困難度增加外,二者的結構也相似,皆以棘蛋白(spike glycoprotein,S)與血管收縮素轉換酶II(angiotensinconverting enzyme II,ACE2)受體結合以感染細胞。
■ 病毒來襲時,身體如何免疫機制?
當病毒侵入人體,免疫反應馬上會被啟動,體內自然殺手細胞(natural killer cell)會殺死被病毒感染的細胞,以遏制病毒傳播並產生干擾素(interferon, IFN)抑制病毒複製;隨後巨噬細胞(macrophage)會將病毒的抗原呈現給T細胞(T cell)及B細胞(B cell),以活化毒殺性T細胞(cytotoxic T cell,TC)去攻擊並殺死被病毒感染的細胞,並使B細胞產生抗體與病毒結合,中和病毒感染細胞的能力。
➜這些被病毒活化的T及B細胞,有些會成為記憶性的細胞,若人體再次遇上同樣病毒的侵入,人體免疫系統藉由記憶性的T及B細胞,快速產生高量的抗體中和病毒的感染能力,高量的毒殺性T細胞也同時殺死被病毒感染的細胞,因此病毒很快就被清除。一般的鼻病毒(rhinovirus)及毒性不強的冠狀病毒,人體皆可利用此機轉來清除病毒並使人體恢復健康。
■為什麼SARS-CoV-2 會造成嚴重的發炎反應並造成感染者死亡呢?
➜原因在於它是一種全新的病毒,人體並沒有可辨識及中和病毒感染能力的抗體,也無記憶性的毒殺性T 細胞去攻擊並殺死被病毒感染的細胞。
➜病毒在體內不斷複製,使細胞產生許多促發炎激素和發炎因子,並藉由細胞外微囊體的活化刺激巨噬細胞表面的C 型凝集素5A 大量增加促發炎激素,嗜中性白血球也會產生嗜中性球胞外網狀結構,造成血管內皮損傷使疾病更加惡化。
➜COVID-19複製能力極強,人體產生的干擾素也無法有效的抑制病毒複製,造成病毒持續複製並藉由飛沫傳染給其他人。但最致命的一點,就是此病毒會產生細胞激素風暴,使身體產生過度的免疫反應,像是H5N1 病毒(influenza A virus subtype H5N1)及SARS-CoV 等皆會產生此風暴,造成高致死率。
■ 細胞激素風暴
身體受到病原菌感染後會產生發炎反應。發炎反應會活化自然殺手細胞、單核球細胞、巨噬細胞、嗜中性白血球以及血小板上的先天免疫受體。適度的發炎反應有利身體去除病原菌,但過度的發炎反應會引發大量細胞激素的產生(細胞激素風暴,cytokine storm),卻對身體有害。這種失控的免疫反應往往造成器官的損傷及衰竭,進而導致休克而死亡。【註5】
➜如附圖:病毒在體內不斷複製,使細胞產生許多促發炎激素和發炎因子,並藉由細胞外微囊體的活化刺激巨噬細胞表面的C 型凝集素5A 大量增加促發炎激素,嗜中性白血球也會產生嗜中性球胞外網狀結構,造成血管內皮損傷使疾病更加惡化。)(資料來源:【註6】)
【Reference】
1. 來源
➤➤資料
∎【註1】: 經濟日報「無慢性病40多歲男染疫亡 張上淳歸納兩大致死原因」: https://bit.ly/2X1h78l
∎【註2】: NOW健康( 健康傳媒 )「免疫力失控殺紅了眼 細胞激素風暴多發生在年輕人」: https://bit.ly/3dNu8ZG
∎【註3】: 科技大觀園「細胞激素風暴:失控的免疫反應」:
https://bit.ly/3bypAVx
∎【註4】:
03/27-【從流行病學理論,了解為何推口罩實名制2.0】:
https://www.facebook.com/forum.nhri/posts/2481386348858088
04/01-【(解析)看懂群體免疫是甚麼,換你講給周遭朋友了解】:
https://www.facebook.com/forum.nhri/posts/2485020768494646
∎【註5】:詳細機制,詳:科技大觀園「細胞激素風暴:失控的免疫反應」:
https://bit.ly/3bypAVx
∎【註6】: 科學月刊 Science Monthly「當冠狀病毒入侵—人體內的免疫風暴與致病機轉」:https://bit.ly/361i5VX
作者謝世良/中研院基因體研究中心特聘研究員、教育部國家講座教授。宋佩珊/中研院基因體研究中心博士後研究員。
➤➤照片
∎【註2】、【註6】
2. 【國衛院論壇出版品 免費閱覽】
∎國家衛生研究院論壇出版品-電子書(PDF)-線上閱覽: http://forum.nhri.org.tw/forum/book/
3. 【國衛院論壇學術活動】
➤http://forum.nhri.org.tw/forum/category/conference/
#國家衛生研究院 #國衛院 #國家衛生研究院論壇 #國衛院論壇 #衛生福利部 #國民健康署 #健保署 #中央健康保險署 #五南圖書 #國家書店 #五南網路書店
#武漢肺炎 #新型冠狀病毒 #COVID-19 #Wuhan coronavirus #新興傳染病 #2019COVID19 #2019COVID19News
#免疫反應 #細胞激素風暴 #免疫風暴 #cytokine storm #基本傳染數 #R0 #免疫機制
台大醫院 National Taiwan University Hospital-感染科 / 台灣感染症醫學會 / 國衛院感染症與疫苗研究所台南院區 / 台大公衛學院
衛生福利部 / 國民健康署 / 疾病管制署 / 疾病管制署 - 1922防疫達人 / 財團法人國家衛生研究院 / 國家衛生研究院-論壇
envelope pdf 在 papercraft-spectrometer/6x9-envelope.pdf at main - GitHub 的推薦與評價
An introductory papercraft spectrometry kit. Contribute to publiclab/papercraft-spectrometer development by creating an account on GitHub. ... <看更多>
envelope pdf 在 Envelope - Free download as PDF File (.pdf), Text File (.txt ... 的推薦與評價
... <看更多>