看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
同時也有1部Youtube影片,追蹤數超過3萬的網紅李祥數學,堪稱一絕,也在其Youtube影片中提到,線上課程賣場:https://myship.7-11.com.tw/general/detail/GM2103314830237 成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join 追蹤我的ig...
「矩陣 指數 律」的推薦目錄:
- 關於矩陣 指數 律 在 每天努力Hack國家!士修的17時間 Facebook 的精選貼文
- 關於矩陣 指數 律 在 黃土條 Facebook 的精選貼文
- 關於矩陣 指數 律 在 黃欽勇 Facebook 的精選貼文
- 關於矩陣 指數 律 在 李祥數學,堪稱一絕 Youtube 的最佳解答
- 關於矩陣 指數 律 在 4.12方陣之間的指數律有壞消息 - YouTube 的評價
- 關於矩陣 指數 律 在 矩陣的運算-矩陣的次方 - YouTube 的評價
- 關於矩陣 指數 律 在 指數矩陣例題(解法一:對角化) - YouTube 的評價
- 關於矩陣 指數 律 在 Linear algebra notebook - 線性代數筆記本 - GitHub 的評價
- 關於矩陣 指數 律 在 李群李代数 - 一索哥传奇 的評價
矩陣 指數 律 在 黃土條 Facebook 的精選貼文
看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
矩陣 指數 律 在 黃欽勇 Facebook 的精選貼文
我們正在迎接「指數」成長的新時代
自從Alpha Go打敗圍棋之後,圍棋不再是比賽,只是娛樂而已!了
工業時代線性成長的模式,在走向數位化之後,都變成指數成長。過去人們想累積成果,總是得一步一步往前推進。我們可以清楚的看到競爭對手擦身而過,我們也可以清楚的描述競爭對手與我們之間的關係。但如果是「矩陣型」、「網路」的相對關係,我們對於世界的改變,可能會渾然不知,但也可能隨時會有新創的機會。
如果社會以指數模式成長的話,走30步之後,就可以堆疊超過10億步了。我們已經可以想像,在技術快速進展之後,攝影鏡頭將越來越小,在蜜蜂頭上裝置一個千萬畫數的相機,已經不是遙不可及。但關鍵是蒐集到的大量資訊,如何透過人工智慧判讀,哪些是有意義的資訊?哪些必須迴避「隱私」的考量?
奇點台灣大使葛如鈞說,全世界有九種產業,正以「摩爾定律」的速度進展中,一旦這九種技術(如下)相互支援、互動,所形成的網站關係,就已經足以讓我們對「大霹靂時代」的來臨有所想像了。
以我個人的理解,在未來幾年間,以5G架構為基礎的數位大潮,將快速的改變人類的生活,也會改變產業結構。台灣的產業基礎深厚,而電腦視覺技術更是全球領先群中的一個。別自怨自艾,別因為誰說台灣在發展人工智慧將面臨「撞牆」的風險就自我放棄。
我們會一代不如一代嗎?不見得,如果我們相信科技會繼續往前邁進,下一代就會比我們優秀;如果我們相信社會將持續進化,那我們就得尊重,下一代與我們曾經有過的生活經驗是大不相同的!
電腦運算 Infinite Computing
感測器與網路 Sensor and Networks
機器人 Robotics
3D列印 3D Printing
合成生物學 Synthetic Biology
數位醫療 Digital Medicine
奈米材料 Nanomaterials
人工智慧 Artificial Intelligence
虛擬實境與全景影像科技 VR 360 Tech.
矩陣 指數 律 在 李祥數學,堪稱一絕 Youtube 的最佳解答
線上課程賣場:https://myship.7-11.com.tw/general/detail/GM2103314830237
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join
追蹤我的ig:https://www.instagram.com/garylee0617/
加入我的粉絲專頁:https://www.facebook.com/pg/garylee0617/
有問題來這裡發問:https://www.facebook.com/groups/577900652853942/
喜歡這支影片,記得按個"喜歡",並且分享
訂閱就可以看到最新的影片
你最棒,記得按鈴鐺^^
高中數學重要觀念解析:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkzAh5k3h-CI0-clwS7xsWm
數學思考題型:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmx__4F2KucNWpEvr1rawkw
關於數學的兩三事:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlD5ABfGtLkOhNIRfWxIRc5
真的祥知道:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmQC77bAQPdl_Bw5VK8KQc-
YouTube合作影片:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlQk7b-jDmCaUjJ57UMSXsf
高中數學講座:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmgafYQliX1Ewh2Ajun9NNn
學測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGko-fghK4k3eZJ23pmWqN_k
指考數甲數乙總複習https://www.youtube.com/playlist?list=PLOAKxvSm6LGlrdoVFRflK46Cm25CGvLBr
統測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkP_Nvl8iToZUWNfOHT42Pg
抖音精選:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmoWuzdrsxoeKQBR_GgZyIk
國中會考總複習:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlbMqjF4W6ElHM_lrFZijkg

矩陣 指數 律 在 矩陣的運算-矩陣的次方 - YouTube 的推薦與評價

矩陣 的運算- 矩陣 的次方. ntsh2102. ntsh2102. 7.71K subscribers. Subscribe. 63. I like this. I dislike this. ... <看更多>
矩陣 指數 律 在 指數矩陣例題(解法一:對角化) - YouTube 的推薦與評價

微分方程 指数矩阵 (At) | MIT 18.06SC 线性代数, 秋2011. MIT OpenCourseWare. MIT OpenCourseWare. •. •. 31K views 10 years ago ... ... <看更多>
矩陣 指數 律 在 4.12方陣之間的指數律有壞消息 - YouTube 的推薦與評價
4.12方陣之間的 指數律 有壞消息. 郭炎明. 郭炎明. 1.11K subscribers. Subscribe ... 100 views 1 year ago B4數A第九章 矩陣 的運算. ... <看更多>